Resolving 18 PAHs, Including Benzofluoranthenes, Using the Unique Selectivity of a 50% Phenyl Methylpolysiloxane-Phased GC Column

Anila I. Khan, Thermo Fisher Scientific, Runcorn, UK

Key Words

PAH, GC-MS, selectivity, fluoranthenes

Abstract

One of the major difficulties in analyzing polycyclic aromatic hydrocarbons (PAHs) by GC-MS is achieving baseline resolution for isobaric compounds. In demonstrating the separation of 18 PAHs using a Thermo Scientific[™] TraceGOLD[™] TG-17SiIMS GC column, the unique selectivity of this stationary phase is shown to fully resolve benzo[j]fluoranthene from benzo[b] fluoranthene and benzo[k]fluoranthene.

Introduction

The GC column most commonly used for PAH analysis is a low polarity 5% diphenyl/95% dimethyl polysiloxane (equiv to 5SilMS) stationary phase. This can separate a 16 priority PAH standard mix according to US EPA Method 610. However, when two EU PAHs, benzo[e] pyrene and benzo[j]fluoranthene are added to the mix, benzo[j]fluoranthene co-elutes with two other isobaric components benzofluoranthenes b and k. These three challenging isobaric compounds are difficult to resolve by GC-MS.

The stationary phase in the TraceGOLD TG-17SilMS GC column, unlike any other 50% phenyl methylpolysiloxane (17MS) phase, is optimized to give unique selectivity to separate isomeric pairs as well as isobaric PAHs using GC-MS. Thus, the column provides adequate resolution for these critical pairs.

The resolution of benzo[j]fluoranthenes from benzofluoranthenes b and k, and the separation of 18 PAHs on a TraceGOLD TG-17SilMS GC column is demonstrated. This low bleed column offers more resolving power for the separation of critical pairs and isobaric compounds compared to a 5% diphenyl/95% dimethyl polysiloxane stationary phase GC column.

Consumables		Part Number		
Columns:	TraceGOLD TG-17SiIMS, 30 m × 0.25 mm × 0.25 μm	26072-1420		
	5% diphenyl/95% dimethylpolysiloxane (equiv to 5SiIMS), 30 m \times 0.25 mm \times 0.25 μm			
Septum:	Thermo Scientific BTO, 17 mm	31303211		
Liner:	Thermo Scientific™ Splitless FocusLiner™453T299for 50 mm needle, 5 × 8 × 105 mm			
Column ferrules:	100% graphite ferrules for Thermo Scientific [™] 2905348 TRACE [™] injector 0.1–0.25 mm i.d.			
Column ferrules:	Graphite/Vespel [®] for transfer line 0.1–0.25 mm i.d.	29033496		
Injection syringe:	10 μL fixed needle syringe for Thermo Scientific [™] 365D029 TriPlus [™] RSH Autosampler			
Vials and closures:	Thermo Scientific™ National™ Target™ DP (9 mm) wide opening screw thread vial	C4000-1W		
	Thermo Scientific National 9 mm screw caps and septa, red PTFE/white silicone/red PTFE	C5000-53B		

Sample Preparation

Benzo[j]fluoranthene and benzo[e]pyrene were added to a 16 PAH mix according to US EPA Method 610 at a concentration of 10 μ g/mL. The standard was prepared in hexane for GC-MS analysis.

Instrumentation:		
GC:	Thermo Scientific™ TRACE GC Ultra™	
Autosampler:	Thermo Scientific™ TriPlus RSH™	
Detector type:	Thermo Scientific [™] ISQ [™] mass spectrometer	
Carrier gas:	Helium	
Column flow:	1.2 mL/min, constant flow	
Oven temperature:		
TG-17SilMS:	90 °C (1.0 min), 30 °C/min, 250 °C, 4 °C/min, 330 °C (5 min)	
Equivalent to 5SilMS:	90 °C (1.0 min), 25 °C/min, 280 °C, 4 °C/min, 320 °C (2 min)	
Injector type:	Split/Splitless	
Injector mode:	Split 25:1, 30 mL/min split flow	
Injector temperature:	250 °C	
Transfer line temperature:	300 °C	
Source temperature:	250 °C	
Ionization conditions:	El	
Electron energy:	70 eV	
Emission current:	50 µA	
Solvent delay time:	2.8 min	
Scan range:	40-450 amu full scan	
Injection volume:	1 µL	

Data Processing

Data was acquired and processed using Thermo Scientific[™] Xcalibur[™] software

Results

Figure 1 shows the separation of 18 PAHs on a TraceGOLD TG-17SilMS GC column, and Figure 2 shows the comparison with an equivalent phase to a 5SilMS phased GC column. Due to their isobaric status, the compounds benzofluoranthenes b, k, and j require chromatographic separation. To do this, the unique selectivity provided by the TG-17SilMS capillary column is required as shown in Figure 1. When compared to a 5SilMS GC column (Figure 2), the TG-17SilMS column fully separates the three isobaric compounds.

Comparing the selectivity for peaks 16 and 17, there is co-elution with the TG-17SilMS GC column; however, they can be resolved by using the mass spectrometer based on their difference in molecular weights. The equivalent 5SilMS in Figure 2 shows isomeric separation of compounds 16 and 17.

The stationary phase in the TG-17SilMS column is designed to give low bleed at high temperatures as shown in Figure 1. This is ideal for analyzing heavy, late-eluting PAHs at high boiling points.

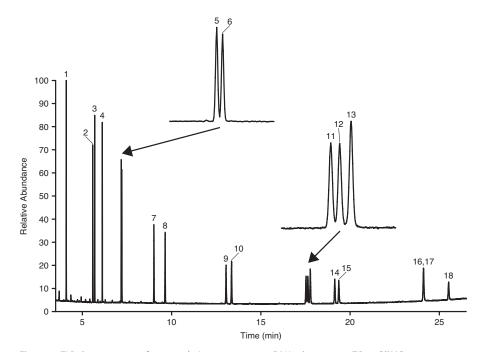


Figure 1: TIC chromatogram for 10 $\mu g/mL$ 18 component PAH mixture on a TG-17SilMS 30 m \times 0.25 mm \times 0.25 μm GC column

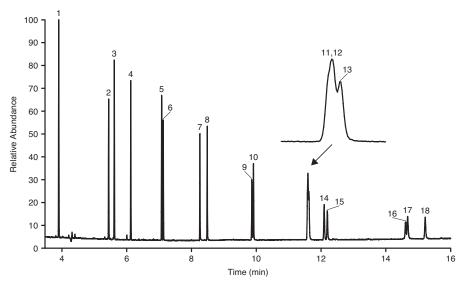


Figure 2: TIC chromatogram for 10 μ g/mL 18 component PAH mixture on an equiv 5SilMS phased 30 m × 0.25 mm × 0.25 μ m GC column

Peak	Compound	TG-17SilMS t _R (min)	Equiv to 5SilMS t _R (min)
1	Napthalene	4.10	3.91
2	Acenaphthylene	5.59	5.44
3	Acenapthene	5.69	5.62
4	Fluorene	6.12	6.13
5	Phenanthrene	7.18	7.08
6	Anthracene	7.21	7.13
7	Fluoranthene	9.01	8.26
8	Pyrene	9.63	8.49
9	Benzo[a]anthracene	13.05	9.86
10	Chrysene	13.36	9.91
11	Benzo[b]fluoranthene	17.53	11.59
12	Benzo[j]fluoranthene	17.64	11.59
13	Benzo[k]fluoranthene	17.77	11.62
14	Benzo[a]pyrene	19.14	12.09
15	Benzo[e]pyrene	19.37	12.20
16	Indeno[1,2,3-cd]pyrene	24.11	14.61
17	Dibenzo[a,h]anthracene	24.11	14.67
18	Benzo[g,h,i]perylene	25.52	15.21

Table 1: Peak identification according to retention times for 10 µg/mL 18 component PAHs

Conclusion

The TraceGOLD TG-17SilMS GC column can resolve the three challenging isobaric PAHs, the benzofluoranthenes b,k and j. This column can also resolve other isobaric pairs such as phenanthrene and anthracene. Since the critical pair indeno[1,2,3-cd]pyrene (peak 16) and dibenzo[a,h]anthracene (peak 17) are not isobaric, they are easily resolved by a mass spectrometer.

thermoscientific.com/columnsforgc

© 2013 Thermo Fisher Scientific Inc. All rights reserved. Vespel is a registered trademark of E. I. du Pont de Nemours and Company. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

USA and Canada +1 800 332 3331 France +33 (0)1 60 92 48 34 Germany +49 (0) 2423 9431 20 or 21 United Kingdom +44 (0)1928 534110 Japan +81 3 5826 1615
 China + 86 21 68654588 + 86 10 84193588

 + 86 20 83145199
 800 810 5118

 India + 91 22 6742 9494 + 91 27 1766 2352

 Australia 1 300 735 292 (free call domestic)

 New Zealand 0800 933 966 (free call domestic)

 All Other Enquiries + 44 (0) 1928 534 050

Technical Support North America +1 800 332 3331 **Outside North America** +44 (0) 1928 534 440

