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INTRODUCTION 
The diagnosis and prognostication for Prostate cancer (PCa) remains challenging in this relatively common cancer. Diagnosis can involve a number of clinicopathological indicators, including Gleason score and prostate-specific antigen (PSA) for example. PSA which is the most common 

of the few blood-based protein biomarkers currently available in clinical practice, however, PSA by itself is not accurate especially since there is no reliable PSA range that explicitly signifies the presence of PCa. Studies on potential biomarkers and measurable signatures for the disease 

thus remain a key area of translational research. Appropriate assay accuracy, precision and sensitivity still need to be attained. Combining multiple levels of molecular information has the potential to improve biomarker panels and help gain a better understanding into the biology 

underpinning the disease. Within this study, we used a combination of lipid and protein measurements to identify biomarkers that are more beneficial in detecting the disease status of men who are most likely to develop PCa. Data from newly diagnosed PCa patients at various stages of 

the disease, as well as age-matched controls, were used to generate proteomic and lipidomic profiles. Serum samples were collected from newly diagnosed prostate cancer patients and their age matched healthy individuals. Healthy control (n=126) samples satisfied both a normal digital 

rectal examination (DRE) and prostate-specific antigen (PSA) levels below 1 ng/mL (<1ng/mL). The inclusion criteria for newly diagnosed prostate cancer patients (n=205) were an abnormal prostate on DRE, symptomatic presentation with high PSA levels and abnormal biopsy; or 

alternatively, a diagnosis made solely on a steep rise in PSA associated with urinary symptoms. We identified signatures for mild and advanced staged PCa, providing AUC values of 0.955 and 0.966, respectively. Combining lipidomic and proteomic data, provided a striking separation 

between cancer and non-cancer samples. Importantly, we found that based on the top five biomarkers (i.e., combination of lipids and proteins) provided cumulative AUCs of 0.940 and 0.955 for mild and advanced staged PCa, respectively, suggesting a clear path for translation into 

clinically meaningful tools. 
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RESULTS & CONCLUSIONS 
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Figure 1. Study overview (a) 
Patient categories of the 
SUN cohort, representing 
healthy controls, mild PCa 
and advanced PCa groups; 
(b) Age distribution for each 
of the groups; (c) PSA level 
distributions for each of the 
groups; (d) Total Gleason 
Scores representing the mild 
and advanced PCa groups; 
(e) Di’Amico scores to 
indicate risk levels for mild 
and advanced PCa. LR = 
Low Risk, IR = Intermediate 
Risk, HR = High Risk 

Figure 2. Sample preparation, data acquisition and data 
analysis pipeline. Sera samples intended for lipidomic analysis 
were prepared and analysed using the LipidQuan Workflow. 
Samples were protein precipitated using IPA and LC-MS 
analysed using the ACQUITY™ I-Class UPLC™ system 
coupled to a Xevo™ TQ-XS mass spectrometer. The resulting 
data were then automatically transferred via Symphony™ and 
processed using TargetLynx™ and Skyline

2 
software. 

 
Proteomic analysis consisted of tryptically digesting sera 
samples prior to LC-MS analysis, which comprised of a 
ACQUITY Premier I-Class UPLC system coupled to a 
SYNAPT™ XS mass spectrometer. Peptides were separated 
over a 15 min gradient using a ACQUITY UPLC CSH™ 
(2.1x100 mm) Column. Data were subsequently processed 
using Progenesis™ QI for Proteomics software.  
 
The acquired data from both platforms was integrated using a 
bioinformatics method which was subjected to attribute 
selection, using machine learning algorithms to construct a 
diagnostic model. Further downstream statistical analysis and 
enrichment analysis was also performed to estimate their 
statistical significance across the tested conditions and to 
determine their role in diseases and functions.  

Following data processing and z-score transofrmation on the combined proteomic and lipidomic datasets, Random Forest/Boruta were performed prior to training and cross validation of the model. A total of 1115 features (combination of proteins & lipids) were used for the random forest classification. The 
output of the machine learning models applied to these data are summarised below for mild PCa vs. healthy controls (Figure 3) and advanced PCa vs. healthy controls (Figure 4). In both cases, a variety of proteins and lipids were identified as being discriminating features for categorising patients with 
either mild or advanced PCa. Enirchment and network analysis was also conducted on the features identified via Boruta/Random Forest for both PCa groups (Figure 5). In order to minismise errors in the models constructed, cross testing was performed. The percentage distribution of missingness across 
all samples in the lipidomic and proteomic data, indicated very low levels of missigness (Figure 6). Finally, Receiver operating characterising (ROC) curves were generated to highlight the discriminating power based on the significant features identified in both the mild and advanced PCa groups (Figure 7).    

Figure 3. Mild PCa vs. Healthy Controls: Machine learning models resulted in 59 protein/lipid 
features as being the most significant, ranked by Gini coefficient. The Mean Decrease Gini 
(importance) score of all molecules contributing to the construction of the predictive model are 
shown in (a), with KIF5C, KIF28P, ADAMTSL1, SHBG. Permutation tests to cross validate the 
model were conducted in the form of unsupervised PCA and U-MAP (b), shows distinct separation 
between both groups. Hierarchial custering (c) further highlights distinct clusters between mild PCa 
and healthy controls. 

(c) 

(a) 
(b) 

Figure 4. Advanced PCa vs. Healthy Controls: Machine learning models resulted in a larger 
number of lipid features as being significant (Gini coefficient) when compared with the mild PCa 
analysis. The Mean Decrease Gini (importance) score of all molecules contributing to the 
construction of the predictive model are shown in (a), with CE(18:2) and XRCC5 being the 
highest ranking. Permutation tests to cross validate the model were conducted in the form of 
unsupervised PCA and U-MAP (b), shows distinct separation between both groups. Hierarchial 
custering (c) further highlights distinct clusters between advanced PCa and healthy controls. 
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Figure 7. A comparative analysis of 
Area under ROC curve of the model 
built using raw protein quantification 
data, raw lipid quantification data and 
z-score normalised integrated 
proteomic-lipidomic dataset for both 
mild (upper plots) and advanced 
(lower plots) PCa. 
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Figure 6. In order to avoid potentially 
amplifying any noise in the dataset 
and potentially overfitting the models, 
the distribution of missing values was 
assessed (upper bar chart) for the 
total number of proteins and lipids 
used. The percentage of missingness 
calculated within the datasets was 
<5% in both cases. Body Mass Index 
(BMI) which can be a potential co-
founder linked with PCa was also 
assessed to ensure that the group 
separations observed, are not 
influenced by BMI. Evaluation of the 
patient data indicates that the mean 
BMI across all groups is similar and 
therefore no BMI adjustment was 
necessary. 

Figure 5. Enrichment analysis of Boruta-identified features for 
mild (a) and advanced (b) PCa. Under expressed molecules are 
represented in green, whilst those which are over expressed, are 
presented in pink. Molecules with no direct link to the network 
were excluded from the analysis. 
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HIGHLIGHTS 

 Combined proteomic and lipidomic biomarker signatures to potential improve the accuracy of differentiating 
between healthy controls and mild/advanced stages of prostate cancer (PCa). AUCs of 0.955 and 0.966 were 
determined for mild and advanced PCa respectively. 

 
 Pathway analysis highlighted a number of pathways exclusively associated with mild/advanced PCa. Acute 

phase response signalling is one example pathway which was identified for both stages of PCa investigated.  
 
 The LipidQuan™ platform and label-free (UDMS

E
)
1
 proteomic workflows generated a comprehensive list of 

candidate biomarkers that not only allowed PCa stages to be differentiated but also provided deep biological 
insight of the mechanisms which underpin PCa. 

LipidQuan, ACQUITY, UPLC, Xevo, Synapt, CSH, Symphony, TargetLynx and Progenesis are trademarks of Waters Technologies Corporation  


