

Application Note

Roger Bardsley, Applications Chemist; Teledyne Tekmar

Abstract

Increasing concerns over the availability of helium, and its rising cost, has led the United States Environmental Protection Agency (USEPA) to update drinking water Method 524 to USEPA Method 524.4. This new method affords environmental laboratories increased Purge and Trap (P&T) parameter flexibility and permits the use of nitrogen as a sample purge gas.

For this application note, a Teledyne Tekmar Atomx Automated VOC Sample Prep System was configured with nitrogen sample purge gas and connected to a Thermo Scientific[™] TRACE[™] 1310 gas chromatograph (GC) and ISQ[™] LT mass spectrometer (GC-MS) system equipped with the newly released Thermo Scientific[™] Instant Connect[™] Helium Saver Module.

This cost-efficient configuration effectively minimized helium consumption and met the calibration curve, Minimum Reporting Level (MRL), precision and accuracy, and Initial Demonstration of Capability (IDC), requirements of USEPA Method 524.4¹

Introduction

USEPA Method 524.2 was the standard method for analysis of Volatile Organic Compounds (VOC) in drinking water since 1995. In 2009, the USEPA released Method 524.3 that allowed laboratories additional P&T parameter flexibility and resulted in reduced total analysis time. This method specified helium as the purge and GC carrier gas, rather than any inert gas, as allowed in USEPA Method 524.2.

Today, as helium cost continues to increase and the finite supply dwindles, laboratories are increasingly confronted with the decision to switch to a more cost-efficient alternate gas. Consequently, the search for a suitable alternative gas has escalated.

Investigations into alternate gases found that hydrogen was a suitable carrier gas for GC/MS, but not as a purge gas, and its reactivity with VOCs of interest was an additional drawback. In May of 2013, USEPA Method 524.4 was released and nitrogen was again permitted to purge drinking water samples.

Experimental Instrumentation

A Teledyne Tekmar Atomx Automated VOC Sample Prep System, with nitrogen as the sample purge gas, was connected to a Thermo Scientific[™] TRACE[™] 1310 GC/ISQ[™] LT MS system equipped with a Thermo Scientific[™] Instant Connect[™] Helium Saver Module.

Thermo Scientific[™] TraceFinder[™] EFS software was used to control the GC/MS system parameters and collect the MS data. The GC/MS was tuned so that 4-bromofluorobenzene (BFB) ion abundance criteria met the requirements specified in USEPA Method 524.4.

The Atomx VOC TekLink software was configured to deliver an accurate volume of nitrogen gas, via the electronic Mass Flow Controller (MFC), to purge the VOC compounds onto a #9 trap. The Atomx was also equipped with an optional chiller tray to maintain sample temperatures below 10 °C throughout the analysis, according to USEPA 524.4, Section 8.4.

Table I shows the Atomx instrument parameters for purging the samples and standards. Table II shows the Thermo Scientific[™] TRACE[™] 1310 GC/ISQ[™] LT MS system instrument parameters for detecting VOCs released from the Atomx trap.

Page |1

Experimental Instrument Conditions

Table I Atomx Automated VOC Sample Prep System Instrument Parameter						
Purge Variable	Value	Desorb Variable	Value			
Valve Oven Temp	140 °C	Methanol Needle Rinse	Off			
Transfer Line Temp	140 °C	Methanol Needle Rinse Volume	3.0 mL			
Sample Mount Temp	90 °C	Water Needle Rinse Volume	7.0 mL			
Water Heater Temp	20 °C	Sweep Needle Time	0.25 min			
Sample Vial Temp	20 °C	Desorb Preheat Temp	240 °C			
Sample Equilibrate Time	0.00 min	GC Start Signal	Start of Desorb			
Soil Valve Temp	50 °C	Desorb Time	0.50 min			
Standby Flow	10 mL/min	Drain Flow	300 mL/min			
Purge Ready Temp	40 °C	Desorb Temp	250 °C			
Condensate Ready Temp	45 °C	Bake Variable	Value			
Pre-sweep Time	0.25 min	Methanol Glass Rinse	Off			
Prime Sample Fill Volume	3.0 mL	Number of Methanol Glass Rinses	1			
Sample Volume	5.0 mL	Methanol Glass Rinse Volume	3.0 mL			
Sweep Sample Time	0.25 min	Number of Water Bake Rinses	1			
Sweep Sample Flow	100 mL/min	Water Bake Rinses	7.0 mL			
Sparge Vessel Heater	On	Water Bake Rinse Volume	0.25 min			
Sparge Vessel Temp	40 °C	Bake Rinse Sweep Time	100 mL/min			
Pre-purge Time	0.00 min	Bake Rinse Sweep Flow	0.40 min			
Pre-purge Flow	0 mL/min	Bake Rinse Drain Time	2.00 min			
Purge Time	8.00 min	Bake Time	400 mL/min			
Purge Flow	55 mL/min	Bake Flow				
Purge Temp	20 °C	Bake Temp	260 °C			
Condensate Purge Temp	20 °C	Condensate Bake Temp	200 °C			
Dry Purge Time	1.00 min					
Dry Purge Flow	100 mL/min	Trap	#9			
Dry Purge Temp	20 °C					

Table II Thermo Scientific™ TRACE™ 1310 GC/ISQ™ LT MS System Instrument Parameters					
Variable	Value				
Column	Thermo Scientific™ TG-VMS, 20m, 0.18mm ID, 1µm; Constant Flow 0.5 mL/min				
Oven Program	35 °C for 3 min; 14 °C/min to 100 °C, 25 °C/min to 210 °C, hold for 2.00 min				
Inlet:	Temp 200 °C; Split Ratio 70:1, Septum Purge Flow 5 mL/min, Thermo				
Line Pressure	Helium, 110 Psi: Nitrogen 95 psi				
MS	Ion Source Temp 325 °C; Solvent Delay 1.35 min; Atune; Transfer Line 230 °C				
Scan Mode	Scan - 35.0 m/z to 260.0 m/z, Scan Time 0.2 sec, Emission Current 25 µA				

Standard Preparation

The Internal Standard (IS) consisted of a 524.3 Internal Standard/Surrogate mix diluted to 12.5 ppm with P&T methanol. The Atomx accurately added 5 µL of this solution into each 5 mL sample.

The preservation reagent consisted of deionized water containing approximately 0.625 g/L of ascorbic acid and 5 g/L of maleic acid.

The stock standard consisted of a 524.3 Gas Calibration Mix and a 524.3 VOA MegaMix[®] diluted to 50 ppm with P&T methanol.

A calibration curve from 0.2 ppb to 100 ppb, seven MRL samples (0.5 ppb) and seven precision and accuracy samples (20 ppb) consisted of dilutions of the stock standard with preservation reagent. Headspace-free 40 mL VOA vials were used to prepare calibration curve standards, MRL standards, and precision and accuracy standards.

524.4 Results

Thermo Scientific[™] TraceFinder[™] EFS software was used for all data collection and processing. The peak shape and height above the noise provided for easy quantification of peak area for adequate detection of a majority of VOCs down to 0.2 ppb. Methyl acetate, pentachloroethane, 1,2-dibromo-3-chloropropane and hexachlorobutadiene peak areas were sufficient for the 0.5 ppb MRL level only. No peaks were detectable for these compounds at the 0.2 ppb level. The 1 ppb level was the lowest detectable peak for t-butyl alcohol. The MRL level was not calculated for this VOC.

Figure 1 displays the extracted quantitation ion (quant ion) chromatograms for the critical first six gases of a 0.5 ppb MRL standard. Figure 2 displays a baseline-subtracted TIC chromatogram of this 0.5 ppb MRL standard for the remaining VOCs.

USEPA 524.4 Section 10.1.10 requires that calibration points \leq MRL must calculate to within ±50% of their true value. All other calibration points must calculate to within ±30% of their true value. All of the VOCs passed this requirement for each calibration point, based on their percent difference from their true value.

USEPA 524.4 IDC Section 9.2.2 and 9.2.3 requires a mid-point accuracy determination where the precision, calculated as percent Relative Standard Deviation (%RSD), is to be \leq 20% and the accuracy, calculated as average recovery, is to be \leq 20%. Both are to be calculated with seven replicates of a concentration at or near the mid-point of the calibration. The precision and accuracy data from seven replicate samples at 20 ppb passed these requirements and is shown in Table III.

USEPA 524.4 IDC Section 9.2.4 requires the Lower Prediction Interval of Results (LPIR) to be \geq 50% and the Upper Prediction Interval of Results (UPIR) to be \leq 150% for all VOCs. The software calculated the concentration of the seven 0.5 ppb MRL samples from the standard curve and then the data was exported to a Microsoft[®] Excel[®] spreadsheet. The spreadsheet was then used to calculate the LPIR and UPIR for all VOCs following the calculations in IDC Section 9.2.4. Table III presents the LPIR and UPIR data meeting these requirements for all VOCs, with the exception of the surrogate standards and t-butyl alcohol.

Figure 1 Chromatogram of a 0.5 ppb Standard Displaying the Extracted Quantitation Ion Chromatograms for the First Six Gases.

Figure 2 TIC Chromatogram of a 0.5 ppb Standard. The TIC chromatogram is background subtracted, which removes the internal standard and surrogate peaks.

Sales/Support: 800-874-2004 · Main: 513-229-7000 4736 Socialville Foster Rd., Mason, OH 45040 www.teledynetekmar.com

P a g e **|5**

Table III	Initial Demonstration of	Capability (II	DC) (Section 9.2.2	2, 9.2.3, 9.2.4)
-----------	--------------------------	----------------	--------------------	------------------

	Capability		1011 9.2.2, 9.2.3	, 3.2.4)		
Compound	RT	Quant	Precision	Accuracy	MRL Confirmation (0.5 ppb)	
Compound	(min)	lon	(≤ 20%)	(± 20%)	LPIR	UPIR
					(> 50%)	(< 150%)
Dichlorodifluoromethane	1.50	85	5.6	-10.9	75.8	117.9
Chlorodifluoromethane	1.54	51	5.5	-7.2	77.8	145.9
Chloromethane	1.68	50	5.0	-8.7	54.7	135.6
Vinyl Chloride	1.75	62	5.2	1.7	69.8	144.3
1,3-Butadiene	1.77	54	5.3	1.7	92.3	145.0
Bromomethane	2.08	94	5.8	-4.6	75.1	145.7
Trichlorofluoromethane	2.36	101	4.5	-6.3	85.0	126.1
Diethyl Ether	2.72	59	5.2	-4.1	72.6	147.3
1,1-Dichloroethene	2.93	96	5.6	-7.9	81.3	124.1
Carbon Disulfide	2.93	76	5.8	-9.4	88.7	130.9
lodomethane	3.08	142	5.4	-8.5	64.7	105.0
Allyl Chloride	3.51	76	3.8	-6.3	83.4	133.3
Methylene Chloride	3.63	84	4.0	-5.6	81.1	113.1
trans-1,2-Dichloroethene	3.80	96	5.8	-6.4	80.3	131.9
Methyl Acetate	3.87	43	5.7	-10.0	78.9	148.6
Methyl-tert-Butyl Ether-d3	3.93	76	2.4	-12.1		
(Surrogate T) Methyl_tert_Butyl Ether (MtBE)	3.06	73	3.8	-5.1	78.2	107.4
tort Butyl Alcohol (TRA)	3.90	73 50	3.0	-5.1	Noto ¹	Noto ¹
Diigopropyl Ether (DIDE)	4.12	15	4.7	6.4		110.5
1 1 Disbloroothono	4.39	40	4.7	-0.4	80.0	119.0
1,1-Dichloroethane	4.47	50 50	0.1	-3.5	00.4 02.2	120.0
cia 1.2 Disblorestheres	4.70	59	4.4	-2.2	02.3	114.9
CIS-1,2-Dichloroethene	5.02	100	3.9	-2.5	82.8	119.9
Chloroform	5.21	128	4.6	-4.4	81.7	148.5
Carbon Totrophlarida	5.30	03	3.2	-4.2	84.0	109.1
	5.41	72	4.2	-3.4	04.0 59.7	131.9
	5.47	110	5.7	-10.4	00.7	143.3
1,1-Dichloropropene	5.01	07	5.0	-3.3	03.0	149.4
	5.40	97	0.0	-0.0	00.4	114.0
I-Chiorobulane Benzone	5.00	00 70	5.0	-5.7	00.0	122.4
Denzene tert Amul Methyl Ether (TAME)	5.64	70	5.2	-6.9	04.4	110.0
	5.96	73	5.3	-0.2	76.4	119.6
T,2-Dichloroethane	6.03	122	4.0	1.9	70.0	109.2
1 4 Diffuerebenzene (IS 1)	6.39	132	3.2	-0.3	79.1	137.5
1,4-Dilluorobenzene (IST)	6.43	F0	4.7	2.0	06.0	110.0
Dibromomothano	6.04	03	4.2	-2.9	90.0	110.9
	6.88	93	4.0	-3.6	90.6	100.3
Remedichloromethane	6.04	03	3.2	-3.0	90.0 70.2	112.2
	0.94	75	4.7	-5.5	79.2	125.2
	7.31	75	5.5	-0.0	00.0	120.2
	1.13	92	5.4	-0.2	67.0	109.0
	0.00	75	3.0	-2.5	07.0	134.9
1 1 2 Trichlereethane	0.11	75	4.0	-5.0	63.9	125.5
	0.24	60	4.9	-0.9	00.0	127.9
Dibromochloromothono	0.20	120	4.3	-9.1	04.3	117.3
	0.30	129	4.ð	-5.0	02.0	100.1
1,3-Dichioropropane	0.40	107	4.4	-4.1	87.9	122.8
Chlorobonzono d5 (IS 2)	0.57	107	4.5	-4.1	81.1	133.9
Chlorobonzono	0.90	112	4.7	2 /	02.6	110.2
	0.99	01	4.0	-3.4	93.0	110.3
Euryidenzene	9.02	91	5.2	-4.4	84.8	130.5

Page |6

Table III Initial Demonstration of Capability (IDC) (Section 9.2.2, 9.2.3, 9.2.4)								
Compound	RT (min)	Quant Ion	Precision (≤ 20%)	Accuracy (± 20%)	MRL Confirmation (0.5 ppb)			
					LPIR (> 50%)	UPIR (< 150%)		
1,1,1,2-Tetrachloroethane	9.05	131	5.2	-4.1	51.0	140.0		
m- , p-Xylene	9.14	106	5.0	-3.7	93.1	121.3		
o-Xylene	9.46	106	4.6	-6.4	83.2	120.1		
Styrene	9.50	104	5.0	-6.6	78.4	112.1		
Bromoform	9.51	173	5.5	-3.4	81.4	134.8		
Isopropylbenzene	9.69	105	4.8	-4.4	104.2	117.8		
4-Bromofluorobenzene (Surrogate 2)	9.89	95	1.9	-4.3				
Bromobenzene	9.96	156	4.9	-4.6	88.3	125.6		
Propylbenzene	9.99	91	5.1	-6.7	96.7	117.4		
1,1,2,2-Tetrachloroethane	10.04	83	4.4	-9.1	76.5	122.6		
2-Chlorotoluene	10.10	126	5.9	-8.2	84.7	134.6		
1,3,5-Trimethylbenzene	10.13	105	4.4	-3.8	96.6	112.0		
1,2,3-Trichloropropane	10.14	110	5.8	-5.9	67.1	147.4		
4-Chlorotoluene	10.22	91	4.0	-6.0	91.8	114.4		
tert-Butylbenzene	10.36	134	5.3	-7.4	53.8	137.1		
Pentachloroethane	10.37	167	6.0	-6.6	70.1	148.5		
1,2,4-Trimethylbenzene	10.40	105	5.3	-5.9	92.2	126.2		
sec-Butylbenzene	10.48	105	5.1	-7.7	82.2	109.2		
4-Isopropyltoluene	10.58	119	4.6	-6.8	102.0	119.5		
1,3-Dichlorobenzene	10.63	146	5.2	-5.3	87.2	132.1		
1,4-Dichlorobenzene-D4 (IS 3)	10.68	152	4.4					
1,4-Dichlorobenzene	10.69	146	4.2	-5.7	88.3	130.8		
Butylbenzene	10.87	134	4.9	-9.1	83.6	131.5		
Hexachloroethane	10.96	166	4.8	-1.5	54.7	134.7		
1,2-Dichlorobenzene-d4 (Surrogate 3)	10.98	146	1.8	-0.6				
1,2-Dichlorobenzene	10.98	152	3.9	-5.0	84.2	125.6		
1,2-Dibromo-3-chloropropane	11.53	157	4.2	-10.1	66.5	149.4		
Hexachlorobutadiene	11.96	225	6.6	-0.5	104.0	147.6		
1,2,4-Trichlorobenzene	11.98	180	5.6	-5.8	98.5	141.2		
Napthalene	12.21	128	5.1	-11.2	86.0	112.2		
1.2.3-Trichlorobenzene	12.34	180	4.8	-7.6	81.4	137.1		

Note 1 – This compound was not detectable at the 0.5 ppb level. The 1 ppb level was detectable and the precision and accuracy data was calculated for the curve from 1 to 100 ppb.

Conclusion

The Teledyne Tekmar Atomx Automated VOC Sample Prep System using nitrogen as the sample purge gas, was used to purge and trap 76 VOCs from preserved reagent water according to USEPA Method 524.4. These desorbed compounds were separated and quantified using a Thermo Scientific[™] TRACE[™] 1310 gas chromatograph (GC) and ISQ[™] LT mass spectrometer (GC-MS) system with the Thermo Scientific[™] Instant Connect[™] Helium Saver Module to significantly reduce helium use. The optional chiller for the Atomx maintained the samples below 10 °C while awaiting sampling from the autosampler tray to the sparge vessel. The Atomx accurately dispensed three surrogate standards and three internal standards during sample transfer.

All 76 VOCs met the precision and accuracy requirements of USEPA Method 524.4. 75 of the VOCs met the LPIR and UPIR requirements for a MRL at 0.5 ppb. One VOC, t-butyl alcohol, provided no detectable peak at the 0.5 ppb, but a peak was present at the 1 ppb level. This VOC passed the initial calibration requirement for the 1 ppb to 100 ppb calibration range.

References

1. USEPA Method 524.4, Measurement of Purgeable Organic Compounds in Water by Gas Chromatography/Mass Spectrometry using Nitrogen Purge Gas, May 2013

Special thanks to Terry Jeffers of Thermo Fisher Scientific for technical assistance with the Instant Connect[™] Helium Saver Module.