

Comprehensive Analysis of FAMEs, Fatty Acids, and Triglycerides

Agilent J&W GC columns for food nutrition testing

Maintain the Highest Standards for Product Content, Quality, and Purity

To optimize processing, taste, texture, and shelf life, you must thoroughly test the oils and fats that go into your products.

The most common analytical methods rely on indirect GC analysis of free fatty acids or fatty acid methyl esters (FAMEs). Direct analysis of triglycerides—as well as mono- and diglycerides—also provides insights into fat and oil characterization, and can be paired with the analysis of cholesterol and other lipids.

Agilent J&W GC columns for fat and oil analysis were developed and tested for qualitative and quantitative analysis of FAMES, free fatty acids, and triglycerides. Our comprehensive, innovative column portfolio enables you to achieve fast, accurate, and reproducible separations for both simple and complex samples.

This easy-reference guide will help you select the right column for your application. It includes:

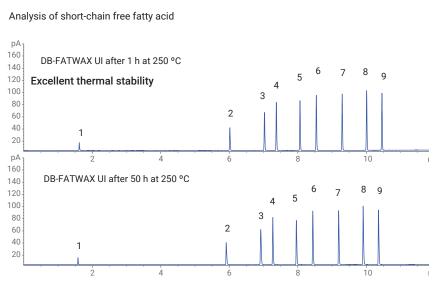
- Detailed chromatograms and analytical conditions
- Column specifications
- Selection charts based on specific analytes

Accurately determining total fat content is critical to complying with food identity and nutritional labeling laws

Tests run by food testing labs (under 'nutrition label testing')

- Fat profile (total fat, saturated fat, monosaturated fat, trans fat from fatty acids)
- Free fatty acids
- Omega 3 fatty acids
- Omega 3, 6 fatty acids

Agilent's comprehensive portfolio for fatty acid and oils analysis


Each Agilent J&W GC column is tested with the tightest industry QC specifications for column bleed, sensitivity, and efficiency to give you utmost confidence in your qualitative and quantitative results.

DB-FATWAX Ultra Inert Fast separation of saturated/unsaturated FAMEs	 Ideal for omega 3 and 6 analysis and chain length/degree of unsaturation Simple FAME mixtures, no cis-trans separation Free fatty acids, C4-C16 Superior inertness for difficult samples (for example, food matrix) For more information, see page 5
DB-FastFAME Fast analysis of saturated/ unsaturated FAMEs, including positional geometric cis-trans isomers	 Most nutrition-labeling FAMEs resolved in under eight minutes, including key cis-trans isomers Separation of a 63-FAME mix, including cis-trans positional isomers, in less than 48 minutes Robust and faster separation than high cyanopropyl phases For more information, see page 8
CP-Sil 88 and HP-88 Traditional analysis of positional geometric FAME isomers	 Detailed analysis of positional cis-trans FAMEs As suggested in AOAC 996.06 and AOCS Ce 1j-07 methods Ideal for CLA FAMEs and partially hydrogenated vegetable oils (PHVO) For more information, see page 11
Select FAME Most detailed analysis of FAMEs, complementary selectivity to CP-Sil 88 for FAME/HP-88 phases	 Best choice for positional cis-trans FAMEs Alternative option to CP-Sil 88 for FAME/HP-88 selectivities Ideal for GC/MS applications Largest column commercially available (up to 200 m) For more information, see page 12
CP-TAP CB and Chromspher Triglyceride and cholesterol analysis by GC and LC	 Mono-, di- and triglycerides analysis Complementary techniques for ehanced selectivity for isomeric triglycerides Ideal for high-temperature applications Unique selectivity also for isomeric FAMEs For more information, see page 14

DB-FATWAX Ultra Inert: Fast separation of saturated/unsaturated FAMEs

The DB-FATWAX Ultra Inert is designed for the separation of fatty acid methyl esters (FAMEs), fatty acid ethyl esters (FAEEs) and fatty acids. This column is tested with a FAME mixture to ensure reproducible FAME equivalent chain length (ECL) values, proper identification of important FAMEs such as EPA, DPA, and DHA, and resolution of key pairs of FAMEs. Because of Agilent's proprietary Ultra Inert technology, DB-FATWAX UI is the only WAX-type phase that is able to offer symmetric peaks for even challenging polar compounds such as free fatty acids. This feature improves inertness, thermal stability, and column lifetime compared to traditional WAX columns.

Fatty acid analysis

Chromatograms of short-chain volatile organic acids (C1-C6) on a DB-FATWAX Ultra Inert column after conditioning for 1 h and 50 h at 250 °C.

Analysis of short-chain and medium-chain free fatty acids

FID chromatograms of fatty acid test mix on DB-FATWAX Ultra Inert column after conditioning 1 h at 250 °C.

5. Butyric acid

- 1. Acetone and formic acid
- 2. Acetic acid
- 3. Propionic acid
- 4. Isobutyric acid
- 6. Isovaleric acid 7. Valeric acid
- 8. 4-Methylvaleric acid
- 11. Octanoic acid 12. Nonanoic acid
- 13. Decanoic acid 9. Hexanoic acid 10. Heptanoic acid

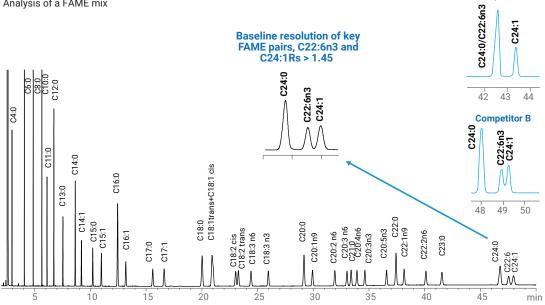
Did you know?

The triglyceride of butyric acid makes up 3-4% of butter, and is responsible for the unpleasant odor in rancid milk.

> - J. Dairy Science, 48, 1582-1584, 1965

Conditions:	
GC system:	Agilent 7890B
Column:	DB-FATWAX UI, 30 m x 0.25 mm, 0.25 μm (p/n G3903-63008)
Inlet:	250 °C, split ratio= 25:1
Carrier gas:	Helium, 40 cm/s @ 80 °C
Oven:	80 °C (1min), to 200 °C @ 10 °C/min
FID:	250 °C
Injection volume:	0.5 μL

1.	Formic acid	6.	Isovaleric acid
2.	Acetic acid	7.	Valeric acid
3.	Propionic acid	8.	4-Methylvaleric acid
4.	Isobutyric acid	9.	Hexanoic acid
5.	Butyric acid		


Conditions:	
GC system:	Agilent 7890B
Column:	DB-FATWAX UI, 30 m x 0.25 mm, 0.25 μm (p/n G3903-63008)
Inlet:	280 °C, split mode, split ratio=50:1, 40 cm/s
Carrier gas:	Helium, constant flow mode, 38 cm/s
Oven:	100 °C to 250 °C @ 10 °C/min, 260 °C (10 min)
FID:	250 °C
Injection volume:	1 μL
Sample:	Approximately 0.5 mg/mL each component in acetone

15. Myristic acid

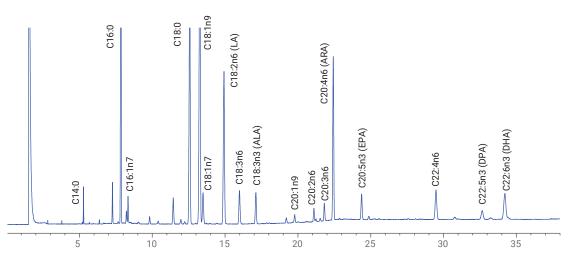
16. Palmitic acid

FAME analysis

Analysis of a FAME mix

Competitor A

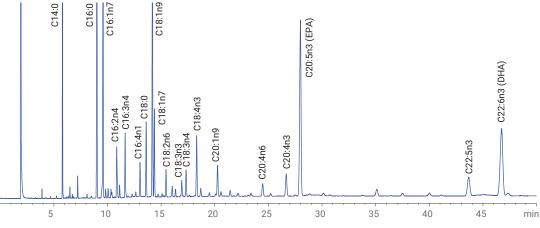
DB-FATWAX Ultra Inert columns resolve DHA from common interferences.


Conditions:

GC system:	Agilent 7890B	Oven:	50 °C (2 min), 50 °C/min to 174 °C (14 min), 2
Column:	DB-FATWAX UI, 30 m x 0.25 mm, 0.25 µm,		°C/min to 215 °C (25 min)
	(p/n G3903-63008)	FID:	280 °C, Hydrogen: 40 mL/min, Air:
Inlet:	250 °C, split/splitless mode, split ratio 50:1		400 mL/min, make-up gas: 25 mL/min
Carrier:	Helium, constant flow, 40 cm/s @ 50 °C	Injection:	1 μL

Good peak shape was achieved for two PUFA (polyunsaturated fatty acid) methyl ester mixes. These complex qualitative standard mixtures are used to verify the presence of omega 3 and omega 6 FAMEs.

PUFA No. 2 (animal source FAMEs)



Baseline resolution for EPA, DHA, and other key omega 3/6 FAMEs found in animal fat.

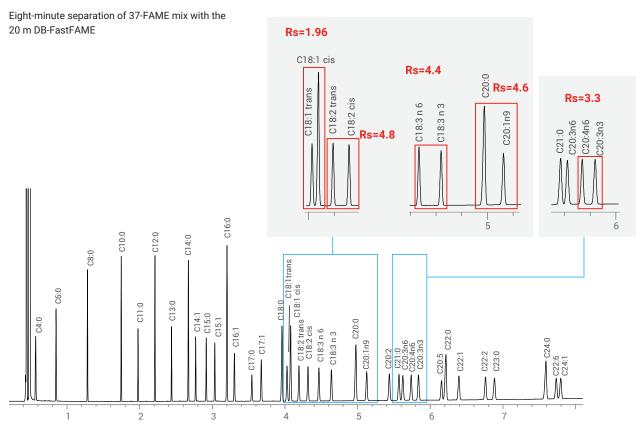
Conditions:

GC system: Column:	Agilent 7890B DB-FATWAX UI, 30 m x 0.25 mm, 0.25 µm	Oven:	140 °C, 15 °C/min to 190 °C (11 min), 4 °C/min to 220 °C (20 min)
Inlet:	(p/n G3903-63008) 250 °C, split/splitless mode, split ratio 100:1	FID:	280 °C, Hydrogen: 40 mL/min, Air: 400 mL/min, make-up gas: 25 mL/min
Carrier:	Helium, constant flow, 1.4 mL/min	Injection:	1 μL
		Sample:	PUFA No. 2 (diluted)

PUFA No. 3 (menhaden oil FAMEs)

Baseline resolution for EPA, DHA, and other key omegas found in menhaden oil.

Conditions:


GC system:	Agilent 7890B	Oven:	180 °C (2 min), 2 °C/min to 210 °C
Column:	DB-FATWAX UI, 30 m x 0.25 mm, 0.25 µm		(35 min)
	(p/n G3903-63008)	FID:	280 °C, Hydrogen: 40 mL/min, Air:
Inlet:	250 °C, split/splitless mode,		400 mL/min, make-up gas: 25 mL/min
	split ratio 100:1	Injection:	1 μL
Carrier:	Helium, constant flow, 30 cm/s @ 180 °C	Sample:	PUFA No. 3 (diluted)

Agilent J&W DB-FastFAME: Fast separation of FAMEs

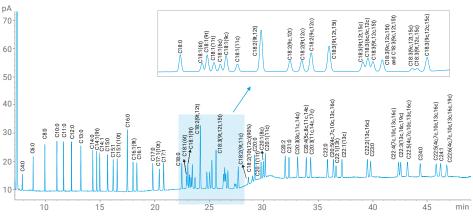
DB-FastFAME is a mid-content cyanopropyl column that is slightly less polar than high-content cyanopropyl columns, such as HP-88 and CP-Sil 88 for FAME. However, it has similar intermolecular forces, keeping similar interactions between the stationary phase and analytes. With DB-FastFAME, it is possible to reduce analysis time, with good resolution even for challenging cis-trans FAME isomers.

Resolve saturated/unsaturated FAMEs, including key cis-trans isomers, in under eight minutes

In this chromatogram, we show the separation of a typical mix of nutrition-labeling FAMEs in under eight minutes. These include C18:1 and C18:2 pairs, and popular FAMEs commonly found in milk fat, vegetable oil, and fish oil, including DPA and EPA.

Separation of most food nutrition-labeling FAMEs in under 8 minutes. Completely resolve AOCS and AOAC critical pairs. For details, see technical note **5991-8706EN**: *Improving the Analysis of 37 Fatty Acid Methyl Esters*.

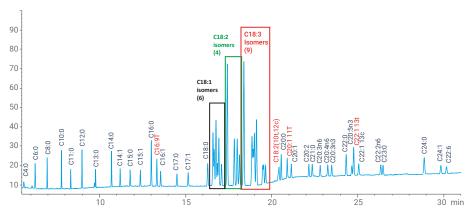
Conditions:


GC system:	Agilent 7890B	FID:
Column:	DB-FastFAME, 20 m x 0.18 mm, 0.20 μm	
	(p/n G3903-63010)	Injec
Inlet:	250 °C, split/splitless mode, split ratio 50:1	Sam
Carrier:	Hydrogen, constant pressure, 28 psi	
Oven:	80 °C (0.5 min), 65 °C/min to 175 °C, 10 °C/min to 185 °C (0.5 min), 7 °C/min to 230 °C	

260 °C, Hydrogen: 40 mL/min, Air: 400 mL/min, make-up gas: 25 mL/min

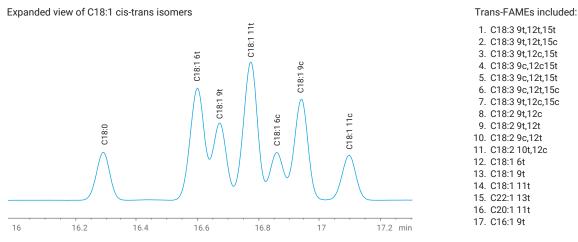
Injection: 1 µL Sample: 37-FAME Mix

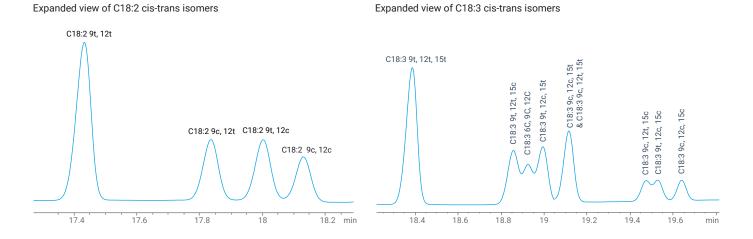
New high-resolution 90 m and 60 m DB-FastFAME for the separation of positional cis-trans isomers


The longer DB-FastFAME GC columns provide the necessary selectivity with the advantage of very fast separations to resolve all critical fatty acids as FAMEs. The 90 m DB-FastFAME can effectively separate a 63-component FAME mixture, including several C18:1, C18:2, and C18:3 cis-trans positional isomers within 48 minutes. Challenging positional isomers, including the C18:1 11*t* and C18:1 6*c* critical pair, can be baseline resolved ($R_s = 1.4$).

Conditions:	
GC system:	Agilent 8890
Column:	DB-FastFAME, 90 m x 0.25 mm i.d., 0.25 µm (p/n G3903-63013Z, s/n T009721Z)
Inlet:	260 °C, split/splitless mode, split ratio 30:1
Carrier:	Helium, constant pressure 44 psi
Oven:	75 °C (1 min), 35 °C/min to 200 °C (14 min), 2.5 °C/min to 210 °C (5 min), 12 °C/min to 230 °C (20 min)
FID:	260 °C, Hydrogen: 30 mL/min, Air: 300 mL/min, make-up gas: 25 mL/min
Injection:	1 µL

Analysis of 63-component FAMEs standard mixture using new 90 m DB-FastFAME.





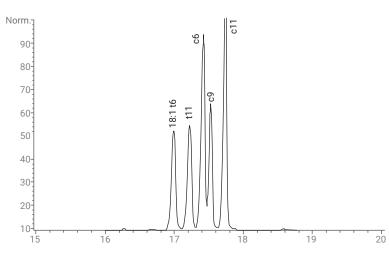
GC/FID chromatogram of a 54-FAME mix, including the 37-FAME mix and some trans-FAMEs.

Conditions:	
GC system:	Agilent Intuvo GC/FID
Column:	DB-FastFAME Intuvo GC column, 60 m x 0.25 mm i.d., 0.25 µm (p/n G3909-63007)
Inlet:	260 °C, split/splitless mode, split ratio 100:1
Guard chip:	200 °C
Carrier:	Helium, constant pressure, 30 psi
Oven:	70 °C (1 min), 200 °C/min to 175 °C (2 min), 5 °C/min to 210 °C (8 min), 15 °C/min to 240 °C (15 min)
FID:	260 °C, Hydrogen: 40 mL/min, Air: 400 mL/min, make-up gas: 25 mL/min
Injection:	1 μL

Fast separation of FAMEs including positional cis-trans isomer with the 90 m DB-FastFAME

Agilent Intuvo 9000 GC system

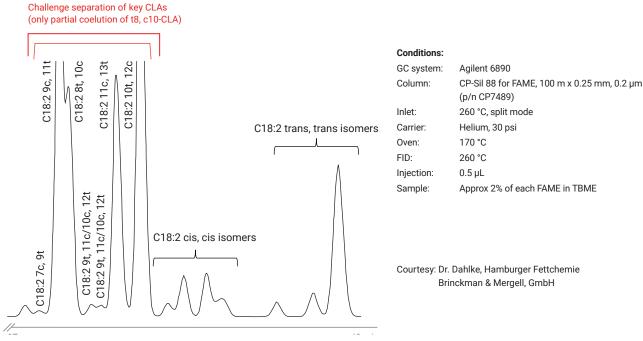
The Intuvo offers ultrafast gas chromatography while simplifying your laboratory workflow. Eliminate column maintenance and change columns in less than a minute with Intuvo's click-and-run connections. Faster cycle times through ballistic direct-heating ensure reproducible chromatography and allow for higher throughput in the laboratory. Intuvo's built-in intelligence reduces operational and maintenance costs through its self-guided diagnostic troubleshooting and early maintenance feedback. Agilent Smart Keys will identify the exact instrument configuration and column parameters to reduce user error.


For more information, please visit the Intuvo product page.

Agilent J&W CP-Sil 88 for FAME and HP-88: Analysis of positional geometric FAME isomers

Our most comprehensive choice for FAMEs

CP-Sil 88 for FAME and HP-88 are your best column choices for detailed analysis of positional cis-trans FAME isomers in the C6-C26 range. These high-cyanopropyl phases are optimized for cis-trans isomers separation and are ideal for the most challenging FAMEs applications, including partially hydrogenated oils (PHVO) and conjugated linoleic acids. These columns are also recommended for many AOCS and AOAC methods, including AOAC 996.06 and AOCS Ce 1j-07.


Analysis of five C18:1 isomers

Conditions:	
GC system:	Agilent 6890
Column:	HP-88, 100 m x 0.25 mm, 0.2 µm (p/n 112-88A7)
Inlet:	250 °C, split/splitless mode, split ratio 50:1, split liner (p/n 5183-4647)
Carrier:	Hydrogen, constant flow, 2 mL/min
Oven:	120 °C (1 min), 10 °C/min to 175 °C (10 min),
	5 °C/min to 210 °C (5 min),
	5 °C/min to 230 °C (5 min)
FID:	280 °C
Injection:	1 μL

Gas chromatography using an Agilent HP-88 column separated 16 FAMEs of conjugated linoleic acids in soya bean oil in 50 minutes.

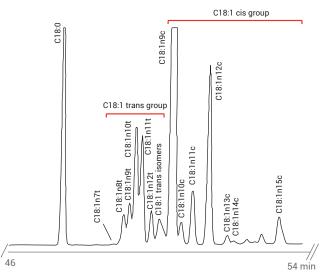
Analysis of C18:2 conjugated FAME isomers of linoleic acid (CLA)

Ideal column of choice for separating and quantitating CLA isomers in complex mixtures.

Select FAME: Most detailed FAME analysis with complementary selectivity to CP-Sil 88 for FAME/HP-88 phases

Select FAME columns provide complementary selectivity to CP-Sil 88 and HP-88 GC columns making them ideal for the detailed analysis of positional cis-trans isomers. What's more, Select FAME columns are tuned for optimal cis-trans FAME analysis, especially for C18 isomers.

These low-bleed, bonded columns have an isothermal maximum operating temperature of 275 °C and a programmed temperature of 290 °C. That's an improvement of 50 °C, compared to nonbonded columns—and makes Select FAME columns suitable for GC/MS applications. You also get three times greater loadability, further improving shape and separation for FAME isomers. Columns up to 200 m are available for detailed analysis of the C18:1 isomer cluster.


Your column of choice for the most detailed analysis of positional cis-trans FAMEs

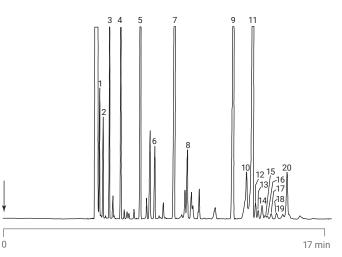
For separating individual FAME trans isomers, the highest separation efficiency is required. A 200 m column was used for this application, and many trans fatty acids were individually quantified. The CP-Select CB column is stable up to 290 °C.

Conditions:

GC system:	Agilent 7890B	
Column:	Select FAME, 200 m x 0.25 mm	
	(p/n CP7421)	
Inlet:	250 °C, split mode, split ratio 1:20	
Carrier:	Helium, 520 kPa	
Oven:	185 °C	
FID:	250 °C	
Injection:	0.5 μL	

Detailed analysis of cis-trans FAMEs C18:1 positional isomers

Column of choice for the most detailed analysis of positional cis-trans FAMEs.

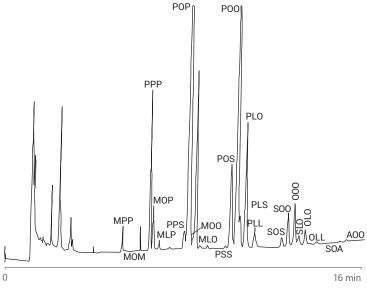

Separation of 20 cis-trans isomers in 17 minutes

One characteristic of Select FAME columns is high loadability, which enables better separations for FAME isomers eluting closely together. Column bleed is also low, providing excellent quantification for trace compounds—especially with sensitive MS detectors.

Conditions:

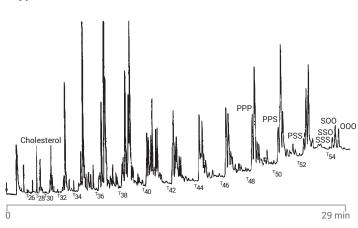
GC system:	Agilent 7890B		
Technique:	GC-capillary		
Column:	Select FAME,		
	50 m x 0.25 mm,	0.25 µm (p/n CP7419))
Inlet:	Split, 1:100, T = 2	50 °C	
Carrier:	Helium, 130 kPa	(1.3 bar, 19 psi)	
Oven:	185 °C		
FID:	250 °C		
Injection:	1 µL		
Sample:	Butter (methyl es	ters)	
1. C16:0	6. C14:1	11. C18:1 9 cis	16. C18:1 15 cis
2. C8:0	7. C16:0	12. C18:1 11 cis	17. C18:2 9 trans, 12 trans
3. C10:0	8. C16:1 9 cis	13. C18:1 12 cis	18. C18:2 9 cis, 12 trans
4. C12:0	9. C18:0	14. C18:1 13 cis	19. C18:2 9 trans, 12 cis
5. C14:0	10. C18:1 trans	15. C18:1 14 cis	20. C18:2 9 cis, 12 cis

Fast analysis of cis-trans geometrical isomers in butter


Twenty cis-trans isomers were separated in 17 minutes. One characteristic of Select FAME columns is high loadability, which enables better separations for FAME isomers eluting closely together.

CP-TAP CB for Triglycerides/Chromspher Lipids: Complementary techniques for triglyceride analysis

CP-TAP CB for Triglycerides columns for GC analysis


CP-TAP CB for Triglycerides is a highly-phenyl substituted phase, specifically engineered for detailed analysis of triglycerides, and provides resolution depending on carbon number, and according to the degree of unsaturation to give a more refined separation. This bonded phase exhibits low bleed and provides longer column lifetimes. CP-TAP CB is available in a special fused silica tubing for maximum column strength at temperatures up to 360 °C, or UltiMetal stainless steel capillary for ultimate robustness.

Triglycerides in palm oil

Conditions:	
GC system:	Agilent 7890B
Technique:	GC-capillary
Column:	CP-TAP CB for Triglycerides, 25 m x 0.25 mm, 0.10 μm (p/n CP7483)
Temperature:	340 °C (1 min) to 355 °C, 1 °C/min
Carrier:	H ₂ , 100 kPa (1 bar, 15 psi)
Injector:	On-column
Injection:	0.2 μL of 0.05% palm oil in hexane
Detector:	FID
Sample size:	0.2 μL
Concentration range:	0.05% palm oil in hexane

Separation of 24 C_{46} to C_{56} triglycerides in palm oil under 16 minutes using Agilent J&W CP-TAP CB for Triglycerides.

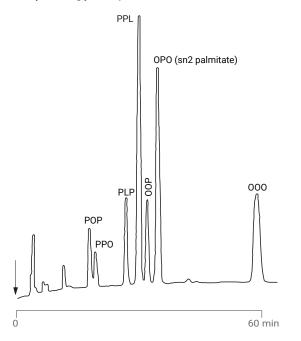
Triglycerides and cholesterol in butter fat

Separation of 11 butter fat components in 29 minutes using CP-TAP CB for Triglycerides.

Conditions:

GC system:	Agilent 7890B
Technique:	GC-capillary
Column:	CP-TAP CB for Triglycerides,
	25 m x 0.25 mm, 0.10 µm (p/n CP7483)
Temperature:	280 °C (1 min) to 355 °C, 3 °C/min
Carrier:	H ₂ , 100 kPa (1 bar, 15 psi)
Injector:	On-column
Injection:	0.2 μL of 0.05% butter fat in hexane
Detector:	FID

M : Myristic acid (tetradecanoic acid)	C14: 0
P: Palmitic acid (hexadecanoic acid)	C16: 0
O: Oleic acid (cis-9-octadecanoic acid)	C18: 1
L : Linoleic acid (cis,cis-9,12,octadecadienoic acid)	C18: 2
S: Stearic acid (octadecanoic acid)	C18: 0
A: Arachidic acid (eicosanoic acid)	C20: 0


ChromSpher Lipids columns for HPLC analysis

ChromSpher Lipid columns are LC columns packed with a cation exchange resin in the Ag+ ionic form. It is specifically designed for the analysis of triglycerides. This column is the ideal complement to CP-TAP CB for Trigylceride analysis, or to CP-Sil 88 for FAME analysis, and is commonly used for quality control in vegetable oil and dairy products.

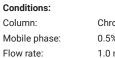
Analysis of triglycerides in milk fat

Analysis of triglyceride positional isomers

The most efficient and reliable method for the separation and quantification of 1,3-dioleoyl-2-palmitoylgycerol (OPO) in infant formulas and OPO oils.

Did you know?

The position of palmitate in triacylglycerols can influence health benefits in infant formulas.


- Nutrition Research, 44, 1-8, 2017

Conditions: Technique: HPLC ChromSpher Lipids 250 x 4.6 mm conventional Column: stainless steel, Cat.no. 28313 Mobile phase: A: dichloromethane/dichloroethane - 50/50 (v/v) B: acetone Gradient: t=0 to t=3 min 100% A T=3 to t=45 min 100% A to 50% A/50% B Flow rate: 1.0 mL/min Temperature: 25 °C Detector: Light Scattering Detector ACS Sample size: 20 µL Concentration range: 0.1 g/mL Solvent sample: Dicholoroethane

S: Saturated chain

- M: Mono-ene-chain
- D: Di-ene-chain1
- Elaidic acid E:

Courtesy: Dr. Deffense, Fractionnement TIRTIAUX, Fleurus, Belgium

ChromSpher 5 Lipids, 250 x 4.6 mm i.d. (p/n 28313) x 2 0.5% acetonitrile in hexane 1.0 mL/min 21 °C Temperature: Detector: UV detector, 206 nm Sample size: 12 µg on the column Concentration range: 12 mg/mL Solvent sample: Isooctane

P: Palmitic acid (hexadecanoic acid)

- L: Linoleic acid (cis, cis-9,12,octadecadienoic acid)
- O: Oleic acid (cis-9-octadecenoic acid)

Courtesy: R. O. Adlof, US Department of Agriculture, National Centre for Agricultural Utilization Research, Peoria, Illinois, USA

Ref: HRC 18 (1995) 105-107

Selecting the right column for your samples

Type of Fatty Acid	CP-FFAP CB	DB-FATWAX UI	DB-FastFAME	CP-Sil 88 for FAME/HP-88	Select FAME	CP-TAP CB for Triglycerides	ChromSpher Lipids (LC)
Short-chain free fatty acids (C2-C6)	٠	٠					
Medium-chain free fatty acids (C6-C16)	•	٠					
Long-chain free fatty acids (C16-C24)	٠						
Omega 3 & 6 FAMEs		٠	•	•	٠		
FAMEs by degree of saturation		٠					
FAMEs groups of cis and trans isomers			•	•	٠		
FAMEs geometrical positional isomers			•	•	•		
Cholesterol and triglycerides						•	•

Column selection by type of fatty acid

Column selection by type of food

Type of Food	CP-FFAP CB	DB-FATWAX UI	DB-FastFAME	CP-Sil 88 for FAME/HP-88	Select FAME	CP-TAP CB for Triglycerides	ChromSpher Lipids (LC)
Dairy products (e.g., milk, butter, cheese)	•	•	•	•	•	٠	•
Fish oil		٠	•	•	•	٠	•
Animal fat		•	•	•	•	٠	•
Omega 3 and 6		٠	•	٠	•		
Vegetable oils (e.g., canola, soybean, olive, palm, corn)			•	•	•	٠	٠
Refined (hydrogenated) oil (e.g., deep-fried foods, baked goods)			•	•	•		
Margarines and shortenings			•	•	•	•	•

Faster Slower

GC columns

Description	Part No.
DB-FATWAX UI	
20 m x 0.18 mm, 0.18 μm	G3903-63007
30 m x 0.25 mm, 0.25 μm	G3903-63008
30 m x 0.32 mm, 0.25 μm	G3903-63009
20 m x 0.18 mm, 0.18 μm, Intuvo	G3909-63002
30 m x 0.25 mm, 0.25 μm, Intuvo	G3909-63003
30 m x 0.32 mm, 0.25 µm, Intuvo	G3909-63004
DB-FastFAME	
20 m x 0.18 mm x 0.20 μm	G3903-63010
30 m x 0.25 mm x 0.25 μm	G3903-63011
20 m x 0.18 mm x 0.20 μm, Intuvo	G3909-63005
30 m x 0.25mm x 0.25 µm, Intuvo	G3909-63006
60 m x 0.25 mm x 0.25 μm	G3903-63012
60 m x 0.25 mm x 0.25 μm, Intuvo	G3909-63007
90 m x 0.25 mm x 0.25 μm	G3903-63013
CP-Sil 88 for FAME	
50 m x 0.25 mm x 0.2 μm	CP7488
60 m x 0.25 mm x 0.2 μm	CP7487
100 m x 0.25 mm x 0.2 μm	CP7489
HP-88	
30 m x 0.25 mm x 0.2 μm	112-8837
30 m x 0.25 mm x 0.2 μm, 5" cage	112-8837E
60 m x 0.25 mm x 0.2 μm	112-8867
60 m x 0.25 mm x 0.2 μm, 5" cage	112-8867E
100 m x 0.25 mm x 0.2 μm	112-88A7
100 m x 0.25 mm x 0.2 μm, 5" cage	112-88A7E
60 m x 0.25 mm x 0.2 μm, Intuvo	112-8867-INT
Select FAME	
50 m x 0.25 mm	CP7419
100 m x 0.25 mm	CP7420
200 m x 0.25 mm	CP7421
50 m x 0.25 mm, 5" cage	CP7419I5
CP-TAP CB for Triglycerides	
25 m x 0.25 mm x 0.1 μm, UltiMetal	CP7463
25 m x 0.25 mm x 0.1 μm	CP7483

LC columns

Description	Part No.
ChromSpher Lipids (LC)	
30 mm x 4.6 mm x 5.0 µm	G7601-85000
50 mm x 4.6 mm x 5.0 µm	G7601-85001
250 mm x 4.6 mm x 5.0 μm	CP28313
250 mm x 10.0 mm x 5.0 μm	CP28509

A Complete GC Workflow: Improve User Experience, Lab Operations, and Business Success

Agilent intelligent GC systems

Spend more time on what matters

Instruments in the Agilent GC portfolio aren't just smart, they're insightful. They go beyond collecting system information to help you increase productivity, minimize downtime, and improve efficiency. That means you can keep your lab moving toward a successful future.

Learn more at www.agilent.com/chem/smartgc

Agilent J&W GC capillary columns

Count on consistent performance and reliability

- Ensure a leak-free, inert flow path for optimal signal-to-noise performance.
- Deliver the lowest bleed levels, highest inertness, and tightest column-to-column reproducibility.
- Include Smart Keys that provide information on column use, configuration, age, temperature, and number of injections. Default parameters facilitate configuration.

Learn more at www.agilent.com/chem/gccolumns

Agilent J&W GC supplies

Improve scientific outcomes

Our precision-engineered GC supplies, including ferrules, nuts, tubing, inlet liners, syringes, and septa, ensure reproducible results and dependable performance.

Learn more at www.agilent.com/chem/gcsupplies

Agilent sample preparation solutions

Reliably extract and concentrate samples from complex matrices

Simplify sample preparation with prepackaged Agilent Bond Elut QuEChERS kits

- Extraction kits with preweighed salts in anhydrous packets let you add salts after the organic solventavoiding exothermic reactions.
- Dispersive kits accommodate the aliquot volumes specified by current AOAC and EN methodologies.
- Ceramic homogenizers break up salt agglomerates, promoting consistent sample extraction and increasing recovery.

Produce cleaner extracts using Agilent Bond Elut SPE

- A selection of polymer, silica, and other sorbents are available in formats ranging from multiple cartridge sizes to 96-well plates.
- Consistent particle size ensures superior flowthrough and performance.
- Vacuum manifolds and accessories help you meet all your SPE challenges.

Learn more at www.agilent.com/chem/sampleprep

Agilent CrossLab services. From insight to outcome.

CrossLab is an Agilent capability that integrates services and consumables to support workflow success and important outcomes like improved productivity and operational efficiency. Through CrossLab, Agilent strives to provide insight in every interaction to help you achieve your goals. CrossLab offers method optimization, flexible service plans, and training for all skill levels. We have many other products and services to help you manage your instruments and your lab for best performance.

Learn more about Agilent CrossLab, and see examples of insight that leads to great outcomes, at **www.agilent.com/crosslab**

Learn more: www.agilent.com/chem/db-fastfame www.agilent.com/chem/fatwax-ui

Buy online: www.agilent.com/chem/store

Contact us: www.agilent.com/chem/contactus

U.S. and Canada 1-800-227-9770 agilent_inquiries@agilent.com

Europe info_agilent@agilent.com

Asia Pacific inquiry_lsca@agilent.com

This information is subject to change without notice.

DE.6237731481

© Agilent Technologies, Inc. 2022 Published in the USA, September 7, 2022 5991-8763EN

