

# A Fast Analytical LC/MS/MS Method for the Simultaneous Analysis of Barbiturates and 11-nor-9-carboxy- $\Delta^9$ -tetrahydrocannabinol (THC-A) in Urine

Using ESI negative ionization mode and alternating column regeneration

#### **Authors**

Andre Szczesniewski and Carrie J. Adler Agilent Technologies, Inc.

# **Abstract**

Most of the compounds in large drug panels are analyzed using positive ionization mode. However, barbiturates and 11-nor-9-carboxy- $\Delta^9$ -THC (THC-A) perform better using electrospray ionization (ESI) in negative mode with the mobile phase pH favorable for negative ionization. This work developed a fast analytical method combining eight barbiturates and THC-A in a single analysis using alternating column regeneration (ACR) to increase sample throughput. Moving the analytes preferring negative ionization into a separate test increases the analytical sensitivity of the compounds, allowing for greater research capabilities. The simple sample preparation techniques used provided rapid analysis, good analytical sensitivity, and quantitation over a wide dynamic range.

This analysis used an Agilent 6470 triple quadrupole mass spectrometer with Agilent Jet Stream technology in ESI negative ionization mode and an Agilent Infinity II 1290 UHPLC system. A second pump and 2-position 10-port switching valve were added to facilitate use of the ACR. A 100 µL aliquot of human urine was used for the analysis of barbiturates and THC-A. Chromatographic separation of the analytes was achieved in less than 3 minutes using a gradient method composed of a H<sub>a</sub>O:acetonitrile mixture with 5 mM ammonium acetate and two Agilent Poroshell 120 EC-C18, 2.1 × 100 mm, 1.9 µm columns. Quantitative analysis was performed using multiple reaction monitoring (MRM) transition pairs for each analyte and an internal standard in the negative ionization mode. The isobaric pair, amobarbital and pentobarbital, were not separated under these chromatographic conditions. Good linearity and reproducibility were obtained for the concentration range from 5 to 1,000 ng/mL with a coefficient of determination >0.995 for all analytes. Excellent reproducibility was observed for all analytes (CV <15 %). A fast, specific, and accurate quantitative LC/MS/MS analytical method was developed and verified for the simultaneous measurement of barbiturates and THC-A in urine.

## Introduction

Compounds in large drug panels are analyzed using positive ionization mode. However, barbiturates and 11-nor-9-carboxy-Δ<sup>9</sup>-THC (THC-A) perform better in negative ionization mode using a separate assay with the mobile phase pH favorable for negative ionization. Included in the analysis were eight barbiturates and THC-A (Figure 1). barbiturates included: amobarbital. butabarbital, butalbital, methohexital, pentobarbital, phenobarbital, hexobarbital, and secobarbital. This work developed a fast analytical method combining barbiturates and THC-A in a single analysis using alternating column regeneration (ACR) to increase sample throughput. This analytical method used the ability of LC/MS/MS to detect compounds over a wide range of concentrations simultaneously. The calibration concentrations ranged from 0.1 ng/mL to 5,000 ng/mL. The standard curve preparation was generated using matrix-matched standards, diluting 1:10 and injecting into the LC/MS/MS system. The methodology was developed on an Agilent 1290 Infinity II UHPLC and an Agilent 6470 LC/TQ mass spectrometer with a 5-minute analytical gradient. ACR reduced the analysis time by 26 %, to 3.7 minutes injection to injection.

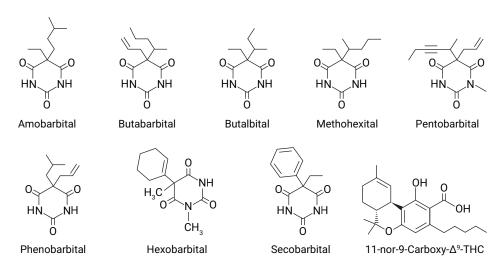


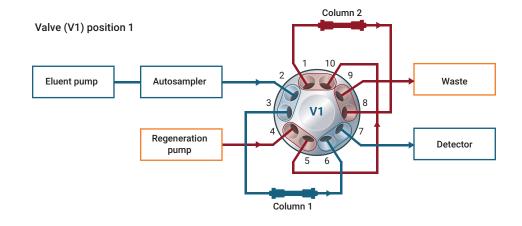

Figure 1. Analyte structures.

# **Experimental**

#### LC Configuration and parameters

| Configuration           |                                                                                                     |                                                        |  |  |  |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|--|--|--|
| Pump                    | Two Agilent 1290 Infinity II bin                                                                    | Two Agilent 1290 Infinity II binary pumps (p/n G7120A) |  |  |  |  |  |  |  |  |
| Multisampler            | Agilent 1290 Infinity II multisampler (p/n G7167A)                                                  |                                                        |  |  |  |  |  |  |  |  |
| Column compartment      | Agilent 1290 Infinity thermostatted column compartment with a 2-position 10 port valve (p/n G7116B) |                                                        |  |  |  |  |  |  |  |  |
| Needle wash             | 50:20:20:10 IPA:MeOH:ACN:H                                                                          | 50:20:20:10 IPA:MeOH:ACN:H <sub>2</sub> O              |  |  |  |  |  |  |  |  |
| Autosampler temperature | 10 °C                                                                                               |                                                        |  |  |  |  |  |  |  |  |
| Injection volume        | 10 μL                                                                                               |                                                        |  |  |  |  |  |  |  |  |
| Analytical column       | 2 Agilent Poroshell 120 EC-C1                                                                       | 8, 2.1 × 100 mm, 1.9 μm, LC columns (p/n 695775-902)   |  |  |  |  |  |  |  |  |
| Column temperature      | 55 °C                                                                                               |                                                        |  |  |  |  |  |  |  |  |
| Mobile phase A          | 5 mM Ammonium acetate in water                                                                      |                                                        |  |  |  |  |  |  |  |  |
| Mobile phase B          | Acetonitrile                                                                                        |                                                        |  |  |  |  |  |  |  |  |
| Flow rate               | 0.35 mL/min                                                                                         | 0.35 mL/min                                            |  |  |  |  |  |  |  |  |
|                         | Eluent pump                                                                                         | Regeneration pump                                      |  |  |  |  |  |  |  |  |
| Gradient                | Time (min) %B<br>0.00 35<br>1.60 45<br>1.61 98<br>3.00 98<br>3.01 45<br>3.59 45                     | Time (min) %B<br>0.00 98<br>1.40 98<br>1.50 35         |  |  |  |  |  |  |  |  |
| Stop time               | Eluent pump: 3.65 minutes                                                                           | Regeneration pump: no limit                            |  |  |  |  |  |  |  |  |
| Valve position          | 0.00 minutes Current position                                                                       |                                                        |  |  |  |  |  |  |  |  |
| ναινό μοσιτιοπ          | 3.59 minutes Next position                                                                          |                                                        |  |  |  |  |  |  |  |  |

## Chemicals and reagents


Human urine used for matrix-matched calibrators was purchased from Golden West Biologicals, Inc, (Temecula, CA). Standards and internal standards were bought from Cerillant Corporation (Round Rock, TX). Sample preparation and LC solvents were acquired from Honeywell (Muskegon, MI).

## Sample preparation

Standards were spiked into drug-free human urine solution (10 %). The calibration curve was created by serial dilution following a pattern of 1:2:2:2.5. Concentrations ranged from 0.5 to 5,000 ng/mL. Internal standards were added to a final concentration of 200 ng/mL. Then, 10  $\mu$ L were injected onto the LC/MS system.

## Data analysis

Data acquisition was performed using Agilent MassHunter Acquisition Software (B.08.00). MS/MS transitions were obtained using Agilent MassHunter Acquisition optimizer software to determine optimal parent and product ions, fragmentor voltages, and collision energies. Data were analyzed using Agilent MassHunter Quantitative Analysis Software (B.08.00) and Qualitative Analysis Software (B.07.00).



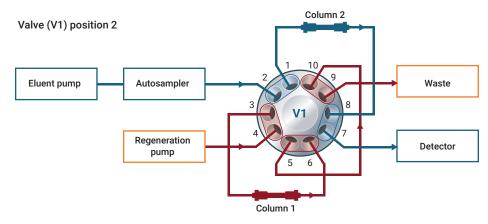



Figure 2. Alternating column regeneration (ACR) valve configuration.

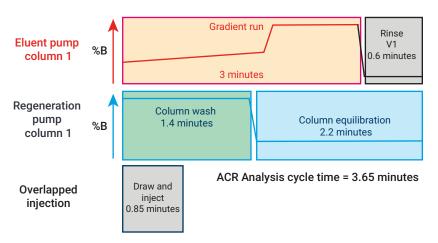



Figure 3. Graphical timeline for ACR analysis.

# **Results and discussion**

## Chromatography

The main emphasis of this work was increased throughput. Therefore, under these chromatographic conditions, the isobars amobarbital and pentobarbital did not separate, and are reported as a single peak (Figure 4). If separation between amobarbital and pentobarbital is required, adjust the gradient and the run time to achieve baseline separation between those isobars, as shown in Figure 6.

# LC/TQ Mass spectrometer configuration and parameters

| Configuration            |                                                                          |  |  |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Instrument               | Agilent 6470 triple quadrupole mass spectrometer with Agilent Jet Stream |  |  |  |  |  |  |  |
| MS/MS mode               | MRM                                                                      |  |  |  |  |  |  |  |
| Ionization mode          | Negative                                                                 |  |  |  |  |  |  |  |
| Drying gas temperature   | 150 °C                                                                   |  |  |  |  |  |  |  |
| Drying gas flow          | 11 L/min                                                                 |  |  |  |  |  |  |  |
| Nebulizer pressure       | 30 psi                                                                   |  |  |  |  |  |  |  |
| Sheath gas temperature   | 350 °C                                                                   |  |  |  |  |  |  |  |
| Sheath gas flow          | 11 L/min                                                                 |  |  |  |  |  |  |  |
| Nozzle voltage           | 2,000 V                                                                  |  |  |  |  |  |  |  |
| Capillary voltage        | 6,000 V                                                                  |  |  |  |  |  |  |  |
| Delta EMV                | 800 V                                                                    |  |  |  |  |  |  |  |
| Q1/Q2 resolution         | Unit/Unit                                                                |  |  |  |  |  |  |  |
| Dwell time               | 50 ms                                                                    |  |  |  |  |  |  |  |
| Cell accelerator voltage | 4 V                                                                      |  |  |  |  |  |  |  |

# MS/MS Compound information for analytes and internal standards

| Compound            | ISTD?        | Precursor ion (m/z) | Product ion (m/z) | RT (min) | Fragmentor (V) | Collision energy (V) |  |
|---------------------|--------------|---------------------|-------------------|----------|----------------|----------------------|--|
| Amo/Pentobarbital   |              | 225.1               | 182               | 1.78     | 105            | 12                   |  |
| Amo/Pentobarbital   |              | 225.1               | 42                | 1.78     | 105            | 24                   |  |
| AmoPentobarbital-D5 | ✓            | 230.1               | 42                | 1.78     | 105            | 24                   |  |
| Butabarbital        |              | 211.1               | 168               | 1.32     | 165            | 12                   |  |
| Butabarbital        |              | 211.1               | 42                | 1.32     | 165            | 40                   |  |
| Butalbital          |              | 223.1               | 180               | 1.45     | 165            | 8                    |  |
| Butalbital          |              | 223.1               | 42                | 1.45     | 165            | 36                   |  |
| Butalbital-D5 🗸     |              | 228.1               | 42                | 1.45     | 165            | 36                   |  |
| Hexobarbital        |              | 235.1               | 42                | 1.85     | 85             | 20                   |  |
| Methohexital        | Methohexital |                     | 42                | 2.66     | 65             | 20                   |  |
| Phenobarbital       |              | 231.1               | 188               | 1.17     | 140            | 8                    |  |
| Phenobarbital       |              | 231.1               | 42                | 1.17     | 140            | 36                   |  |
| Phenobarbital-D5    | ✓            | 236.1               | 42                | 1.17     | 140            | 36                   |  |
| Secobarbital        |              | 237.1               | 194               | 2.02     | 170            | 12                   |  |
| Secobarbital        |              | 237.1               | 42                | 2.02     | 170            | 36                   |  |
| Secobarbital-D5     | ✓            | 242.1               | 42                | 2.02     | 170            | 36                   |  |
| THC-A               |              | 343.2               | 299.2             | 2.88     | 125            | 24                   |  |
| THC-A               |              | 343.2               | 245               | 2.88     | 125            | 36                   |  |
| THC-A-D9            | ✓            | 352.2               | 254.1             | 2.88     | 125            | 32                   |  |

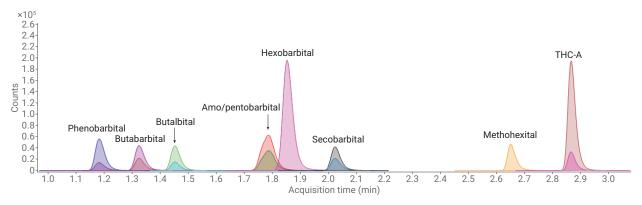



Figure 4. dMRM Chromatogram showing elution of the nine compounds at 500 ng/mL.

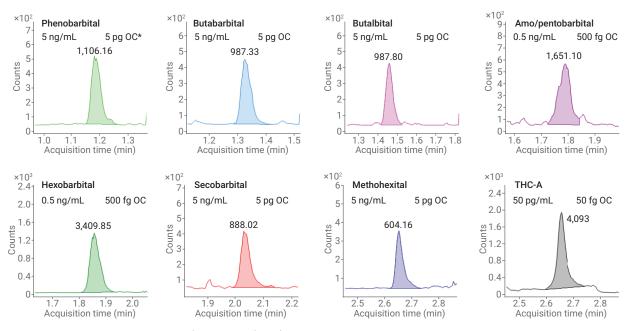
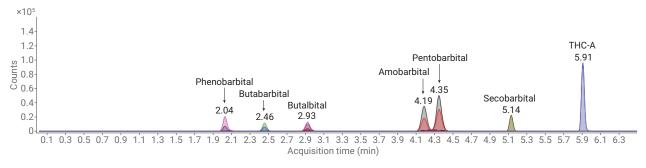




Figure 5. Chromatograms at lower limit of quantitation (LLOQ).



 $\textbf{Figure 6.} \ \textbf{Chromatogram with amobarbital and pentobarbital baseline separation}.$ 

## Calibration curves

All calibration curves were linear, and a 1/x weighting factor was used. Figure 7 shows examples of calibration curves, and Table 1 lists curve fit correlations (R²). For better visual presentation, amo/pentobarbital and THC-A are shown with logarithmic scales so that all calibration points can be displayed.

Table 1. Linear curve correlation coefficients.

| Name              | Transition    | R <sup>2</sup> |  |  |
|-------------------|---------------|----------------|--|--|
| Amo/Pentobarbital | 225.1 → 42.0  | 0.9963         |  |  |
| Butabarbital      | 211.1 → 42.0  | 0.9980         |  |  |
| Butalbital        | 223.1 → 42.0  | 0.9982         |  |  |
| Hexobarbital      | 235.1 → 42.0  | 0.9928         |  |  |
| Methohexital      | 261.1 → 42.0  | 0.9916         |  |  |
| Phenobarbital     | 231.1 → 42.0  | 0.9968         |  |  |
| Secobarbital      | 237.1 → 42.0  | 0.9974         |  |  |
| THC-A             | 343.2 → 299.2 | 0.9992         |  |  |

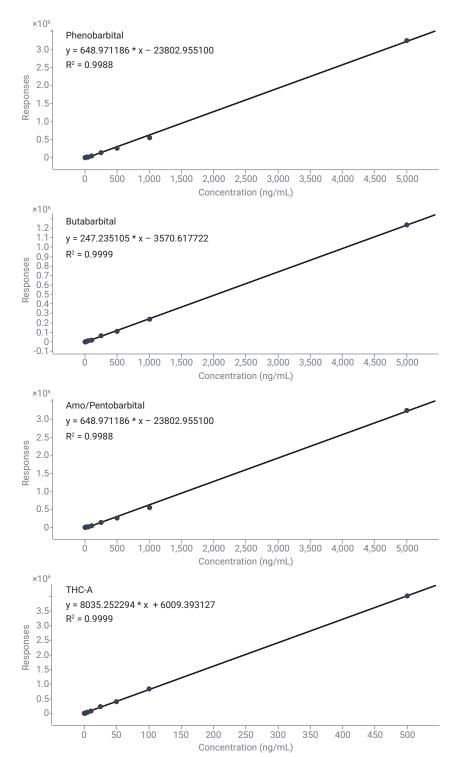



Figure 6. Example calibration curves.

## **Quantitation results**

Table 2 shows all quantitation results. This was a 10-point calibration curve ranging from 5 ng/mL to 5,000 ng/mL for all compounds except amo/pentobarbital and THC-A, which ranged from 0.5 ng/mL to 500 ng/mL. All compounds were analyzed down to 1 ng/mL (0.1 ng/mL for amo/pentobarbital and THC-A), and showed a signal-to-noise ratio of 5 or better.

Table 2. Quantitation results.

|       | Conc.    | Phenobarbital results |             |         | Butabarbital results |             |         | Butalbital results |             |         | Amo/Pentobarbital results |             |         |
|-------|----------|-----------------------|-------------|---------|----------------------|-------------|---------|--------------------|-------------|---------|---------------------------|-------------|---------|
| Level | (ng/mL)  | RT                    | Final conc. | Resp.   | RT                   | Final conc. | Resp.   | RT                 | Final conc. | Resp.   | RT                        | Final conc. | Resp.   |
| 1     | 2.5/0.25 | 1.19                  | 2.68        | 326     | 1.33                 | 3.84        | 558     | 1.46               | 3.44        | 381     | 1.78                      | 0.24        | 1155    |
| 2     | 5/0.5    | 1.18                  | 5.21        | 1107    | 1.32                 | 5.60        | 987     | 1.46               | 6.00        | 988     | 1.79                      | 0.59        | 1971    |
| 3     | 10/1     | 1.19                  | 8.86        | 2230    | 1.33                 | 8.96        | 1802    | 1.46               | 8.99        | 1696    | 1.78                      | 0.96        | 3911    |
| 4     | 25/2.5   | 1.18                  | 23.92       | 6875    | 1.33                 | 23.70       | 5376    | 1.46               | 23.48       | 5129    | 1.79                      | 2.18        | 11737   |
| 5     | 50/5     | 1.18                  | 40.24       | 11906   | 1.33                 | 40.86       | 9540    | 1.46               | 39.96       | 9035    | 1.79                      | 3.71        | 21176   |
| 6     | 100/10   | 1.18                  | 80.44       | 24298   | 1.33                 | 74.78       | 17770   | 1.46               | 78.94       | 18270   | 1.79                      | 9.20        | 62732   |
| 7     | 250/25   | 1.19                  | 255.89      | 78389   | 1.33                 | 254.05      | 61268   | 1.46               | 256.42      | 60317   | 1.79                      | 23.49       | 140534  |
| 8     | 500/50   | 1.18                  | 454.96      | 139761  | 1.33                 | 461.05      | 111491  | 1.45               | 464.14      | 109530  | 1.79                      | 42.42       | 257751  |
| 9     | 1000/100 | 1.18                  | 994.75      | 306175  | 1.33                 | 979.64      | 237317  | 1.46               | 1041.56     | 246330  | 1.79                      | 88.96       | 545678  |
| 10    | 5000/500 | 1.18                  | 5074.33     | 1563889 | 1.33                 | 5090.02     | 1234614 | 1.46               | 5019.58     | 1188795 | 1.79                      | 523.99      | 3240808 |

|       | Conc.    | Hexobarbital results |             |         | Secobarbital results |             |         | Methohexital results |             |         | THC-A results |             |         |
|-------|----------|----------------------|-------------|---------|----------------------|-------------|---------|----------------------|-------------|---------|---------------|-------------|---------|
| Level | (ng/mL)  | RT                   | Final conc. | Resp.   | RT                   | Final conc. | Resp.   | RT                   | Final conc. | Resp.   | RT            | Final conc. | Resp.   |
| 1     | 2.5/0.25 | 1.86                 | 3.81        | 1777    | 2.03                 | 3.73        | 365     | 2.65                 | 2.51        | 391     | 2.87          | 0.21        | 2471    |
| 2     | 5/0.5    | 1.85                 | 6.11        | 3410    | 2.03                 | 6.02        | 885     | 2.65                 | 5.85        | 604     | 2.87          | 0.50        | 4773    |
| 3     | 10/1     | 1.85                 | 9.35        | 7489    | 2.03                 | 8.98        | 1559    | 2.65                 | 9.60        | 1554    | 2.87          | 0.98        | 8687    |
| 4     | 25/2.5   | 1.86                 | 19.74       | 20576   | 2.04                 | 22.80       | 4702    | 2.65                 | 21.59       | 4594    | 2.87          | 2.81        | 23554   |
| 5     | 50/5     | 1.86                 | 34.93       | 39720   | 2.03                 | 36.86       | 7898    | 2.65                 | 33.59       | 7637    | 2.87          | 4.80        | 39706   |
| 6     | 100/10   | 1.86                 | 71.48       | 85748   | 2.03                 | 79.09       | 17502   | 2.65                 | 69.44       | 16727   | 2.87          | 9.87        | 80784   |
| 7     | 250/25   | 1.86                 | 230.17      | 285638  | 2.03                 | 239.81      | 54046   | 2.65                 | 223.89      | 55890   | 2.87          | 27.89       | 226961  |
| 8     | 500/50   | 1.85                 | 409.39      | 511383  | 2.03                 | 464.13      | 105055  | 2.65                 | 399.36      | 100383  | 2.87          | 48.75       | 396146  |
| 9     | 1000/100 | 1.85                 | 931.90      | 1169527 | 2.03                 | 1076.06     | 244202  | 2.65                 | 883.23      | 223071  | 2.87          | 103.10      | 836973  |
| 10    | 5000/500 | 1.86                 | 5224.62     | 6576592 | 2.03                 | 5005.01     | 1137604 | 2.65                 | 5290.95     | 1340690 | 2.87          | 495.35      | 4018515 |

## **Conclusions**

This work combined detection of barbiturates and THC-A into a single analytical method. More emphasis was placed on increasing throughput using alternating column regeneration (ACR). To have a fast analytical method, there was no separation between the isobars amobarbital and pentobarbital, and the initial analysis time for all compounds was 5.0 minutes. The addition of ACR reduced the analysis runtime to 3.7 minutes injection to injection, which translates to a 26 % improvement in throughput. Calibration curves for all compounds were linear, with correlations of 0.99 or better. LLOQs for urine-spiked phenobarbital, butalbital, butabarbital, secobarbital, and methohexital were at least 5.0 ng/mL or better, and for amo/pentobarbital and THC-A the LLOQs were 0.5 ng/mL or better.

Assessing potential interferences for this analytical method of urine matrices from different suppliers prepared for LC/MS analysis through a range of more sample preparation techniques is a project for the future.

## References

- Workman, H.; et al. A Combined Method for the Analysis of Barbiturates and 11-nor-9-carboxy Δ<sup>9</sup>THC in Urine by LC/MS/MS. SOFT 2011, Poster.
- Cichelli, J.; Doyle, R. M. LC/MS/MS Analysis of Barbiturates in Urine, Oral Fluid and Blood. MSACL 2015, Poster.

#### www.agilent.com/chem

For Research Use Only. Not for use in diagnostic procedures.

DE.4032175926

This information is subject to change without notice.



