

Mass Spectrometry Application Group Mass Spectrometry Business Unit JEOL Ltd.

No.123

GC/TOFMS analysis of high boiling point compounds ~ cholesterol and Irganox® 1010 ~

Introduction

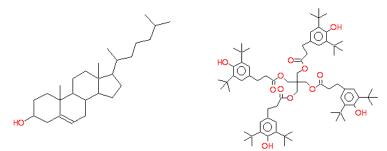
As examples of GC/MS analyses of high boiling point compounds, cholesterol and Irganox® 1010, an anti-oxidant additive for polymers, were analyzed. The analyses were performed with electron ionization (EI) and field ionization (FI,) which is a soft ionization method.

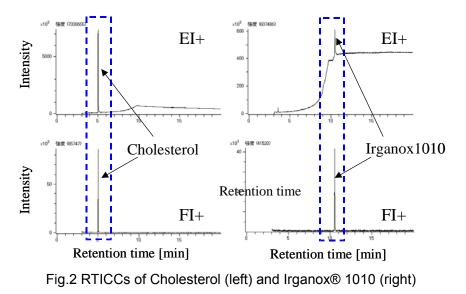
Methods

Samples

cholesterol Irganox® 1010

1 mg/mL (in methanol) 1 mg/mL (in methanol)




Fig.1 Structural formulas of Cholesterol (left) and Irganox® 1010 (right)

GC conditions

Column:	DB-1HT, 7 m x 0.25 mm, 0.10 µm
Injector:	380 °C, 2 mL/min (constant flow mode)
Injection mode:	EI: split (80:1), FI: split (10:1)
Oven:	120 °C (1 min) → 30 °C/min → 380 °C (10.33 min)

MS conditions

Mass spectrometer:	JMS-T100GC "AccuTOF GC"		
Ionization mode: EI:	Electron energy:	70 eV	
	Ionization current:	300 µA	
	Ion source temperature:	300 °C	
FI:	Cathode potential:	-10 kV	
	Emitter current:	35 mA for 30 msec between spectra	
	Ion source temperature:	250 °C	
GC interface temperature	: 350 °C		
Acquired mass range:	<i>m/z</i> 35 – 1,400		
Spectral recording interval: 0.4 sec			

Reconstructed total ion current chromatograms are shown on Fig. 2. In GC/EI analyses, ions derived from GC column bleed (e.g., *m/z* 207, 281) were strongly observed. As a result, the baseline of RTICC went up as GC oven temperature was programmed up. Since cholesterol eluted at around 240 °C, the base line rise was not so significant and the chromatographic peak was easily seen. Irganox® 1010 peak eluted at 380 °C (i.e., at the final oven temperature,) was on a high baseline.

In GC/FI analyses, the GC column bleed was hardly ionized and the RTICC baseline was flat. Both cholesterol and Irganox® 1010 peaks were easily detectable on RTICCs.

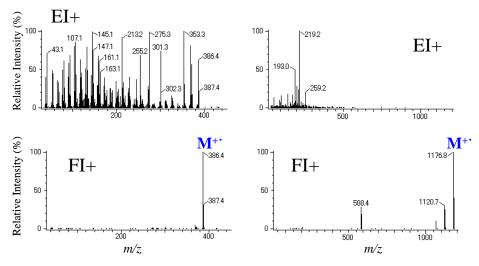


Fig.3 Mass spectra of Cholesterol (left) and Irganox® 1010 (right)

The mass spectra observed are shown on Fig. 3. In El mass spectra, a lot of fragment ion peaks and no molecular ion peak from Irganox® 1010 were observed. In contrast, there were only a few fragment ion peaks in FI mass spectra and the molecular ion peaks were observed as base peaks for both compounds.

The JMS-T100GC "AccuTOF GC" is capable of performing GC/MS analyses of very high boiling point compounds, such as Irganox® 1010. The ionization method can be chosen from EI, FI, and chemical ionization (CI.) By combining FI, with which you can observe molecular ion from most analytes, and EI, a hard ionization method, more accurate and confident qualitative analyses become possible. (U – JT)