

Better Data Faster: MassHunter Quantitative Analysis

Jade C. Byrd MassHunter Product Manager July 29, 2015

Agenda

Brief Introduction

How to fully leverage the information in the raw data during data analysis Tips and Tricks for fast data review of even thousands of complex samples Ways to automate peak detection to eliminate the need for manual integration New features to quickly and automatically create pdf reports Integrating MassHunter Quantitative Analysis with other laboratory systems

Labs Have More Samples than Ever

Agilent MassHunter Suite

Acquisition	 Agilent LCs, GCs, ICP and MS dMRM, tMRM, All Ions, Ion Mobility 	
Quantitative Analysis	 High-throughput quantitation Easily visualize results (Review-by-Exception) Integration with LIMS/LIS Custom reports 	VVVVVVVV VVVVVVV VVVVVVV VVVVVVVV VVVVVV
Qualitative Analysis	ID and characterize compounds in all marketsNovel algorithms for feature finding	Structure MOL Text

MassHunter for all your needs

MassHunter Software One software for all Agilent Mass Spectrometers

Minimize the training costs and delays – A Single User Experience for all techniques

MassHunter Quantative Analysis Workflow

MassHunter Quantative Analysis Workflow

Including Additional Sample Information about Samples

We have an electronic sample list with sample information (pH, company identifiers, etc.) and we wish this information to appear in the final reports. How can we do this?

- Worklist/Sequence has two columns, "Comments" and "Info." that will get read by MassHunter Quantitative Analysis.
- 10 additional columns can be created that are labeled "UserDefined, UserDefined1, UserDefined2, etc."
- Custom columns of other names will get stored in the .D folder but not read by MassHunter Quantitative Analysis to be included in the results for reporting.

Column Type MS Parameter User Defined	Column Information	nation
MFC Protein Sequences Modification Profiles	Column name:	UserDefined2
Masses	Value:	12345
	User defined dat C Text	a type
		OK Cancel

Remembering Worklist/Sequence Column Layout

We hide, add, or reorder columns but next time MassHunter Acquisition brings it up the original way. How do we get MassHunter to remember these changes?

For LC/MS

- After getting Worklist the way we want, save the Worklist to the MassHunter/Worklist Templates folder
- Rename the file from myworklist.wkl to myworklist.wkt
- To use this template, select New Worklist
- If we don't need more than one, we name it default.wkt

For GC/MS

• Use the Sequence Table Tools

MassHunter Quantative Analysis Workflow

Unified Method

One location, one name

- Defines acquisition method
- Defines analysis method
- Defines report method

Allows granular control over analysis and reporting by sample

MassHunter Quantative Analysis Workflow

A ailant M	la sal luartas Ours	ata ati ya Amato ati	- (6 000)																												
Eile Edit	lass∺unter Quar /iew_∆nalvze	Method Unda	is(torQQQ) ate Librany Re	nort Tools	Heln																										
1 Ph խ 🖟		nalvze Batch 🔻	alle Elibidity ne	t: 🖽 🖽		Restor	re Default L	avout																							
Batch Table			• • • • • •					,																							+ X
Sample: 👔			👻 👢 Sar	mple Type:			✓ Co	ompound: 🔄				- B	ISTD:				l ⊒ li				199	-									
_	Sam	ple																													
9	Name Data File	Type Level A	cq. Date-Time																												
Compound Info	rmation													т X	Calibration	Curve															+ X
2 ↔ 3	· \Lambda 🔺 🛛			ш 🚖 ,	LÎA		本本。	A A 1	à A [NI LT	GT BA	CO RT	INT		2 ↔	‡ 🛒 -	-	Type:			▼ Origin	n:	~	Weight:	~	ISTD	QC CC				
Chromatogram																															
×10 ¹															8 ×10 ²																
0.9-															ର୍ଚ୍ଚ 0.8-																
0.85-															° 0.7-																
0.8-															0.6-																
0.7-															0.4-																
0.65 -															0.3-																
0.6-															0.2-																
0.55-															0.1-																
0.45 -															-0.1-																
0.4 -															-0.2-																
0.35-															-0.3-																
0.25-															-0.4-																
0.2 -															-0.6-																
0.15-															-0.7-																
0.1-															-0.8-																
0.05															-0.9-																
	0.05 0.1	0.15 0.2	2 0.25 0	.3 0.35	0.4 0.4	45 0.5	0.55	0.6 0.65	0.7	0.75	0.8	0.85 (0.9 0.	.95		-90	-80	-70	-60	-50 -	40 -3	0 -	20 -10) Ó	10	20	30 40) 50	60	70	80 90 Concentration
															1																

ilent MassHunter Qu	uantitative Analysis (for QQQ)								
Edit View Analyze	e Method Update Library Report Tools Help								
🗁 🛃 🗈 💭	Analyze Batch 👻 🕜 🛛 Layout: 🔛 🔯 🛄	🛕 📝 Restore Default Layout							
ple: 👔	▼ ↓ Sample Type:	- Compound: 🐖	✓ ISTD:						
Sa	ample								
🕅 Name Data F	ile Type Level Acq. Date-Time								
			()				
			Add Samples	? <mark>- x -</mark>					
			C.M	assHunter\Data\Qua					
			Batch Folder:						
			File name	Sample name 🔺					
			CMAMBIk_01.d	Blank-1					
				Calib.I 1					
			CMAMCal_L2.d	Calib-L2					
			CMAMCal_L3.d	Calib-L3					
Information			CMAMCal_L4.d	Calib-L4					
• ‡ <u>R</u> 🔼	L 🛓 🖈 🗛 🖉 🖉		CMAMCal L5.d	Calib-L5	▼ Origin:	▼ Weight:	✓ ISTD QC CC		
gram		·		0012			'		
			Browse to Copy San	nples					
			Translate MSWS Sa	mples					
			Select All O	K Cancel					
				-0.4-					
				-0.6-					
				-0.7- -0.8-					
				-0.9-					
		0.45 0.5 0.55 0.6 0.65 0.7		00 00 70	CO EO 40 20		10 20 20	10 50 60	70 00

📅 Agilent MassHunter Quantitative Analysis (for QQQ) - Drug	sOfAbuse - NewBatch.batch.bin											
File Edit View Analyze Method Update Library Repo	rt Tools Help											
🚹 🍙 🛃 斗 💭 Analyze Batch 🕶 🕢 Layout:	🔜 🔝 📰 🛋 📝 Restore Defa	ult Layout										
Batch Table												+ X
Sample: 👔 🔍 🔻 🎩 Samp	le Type: <all></all>	Compound: 💷	▼ ISTD:		🕴 🗉 💷 🖡	1 💙 ݣ 🧳	>					
♥ Name Data File Type Level Blank-1 CMAMBIk_01.d Blank Elank Elank Elank Calib-L1 CMAMCal_L1.d Cal L1 Calib-L2 CMAMCal_L2.d Cal L2 Calib-L2 CMAMCal_L3.d Cal L3 Calib-L3 CMAMCal_L4.d Cal L4 Calib-L3 CMAMCal_L5.d Cal L5 CQC-L2 CMAMQc_L2.d QC L2 QC-L4 CMAMQc_L4.d QC L4 Sample-1 CMAMSam_01.d Sample Sample-3 CMAMSam_03.d Sample Sample Elank Elank Elank	Acq. Date-Time 5/12/2006 1:51 PM 5/12/2006 1:51 PM 5/12/2006 1:57 PM 5/12/2006 1:57 PM 5/12/2006 2:00 PM 5/12/2006 2:00 PM 5/12/2006 2:00 PM 5/12/2006 2:12 PM 5/12/2006 2:13 PM 5/12/2006 2:18 PM											
Compound Information			🕳 🗙 Calib	oration Curve								+ X
L X 🗚 🖷 🖻 📱 👔 🔺 🛧 🗘	L 🕿 🔔 🖺 🏛 🗛 🖾 🛣 🛣	A A A A NI LT GT BA	CO RT INT	' ↔ ‡ ¾ •	Туре:	▼ Origin:	✓ Weight	ght:	✓ ISTD QC CC			
Chromatogram x10 1 0.9- 0.85- 0.8- 0.75- 0.7- 0.65- 0.6- 0.55- 0.5- 0.45- 0.45- 0.4- 0.35- 0.3- 0.25- 0.2- 0.1- 0.05-			Response	10 2 0.8- 0.7- 0.6- 0.5- 0.4- 0.2- 0.1- 0- -0.1- -0.2- -0.3- -0.4- -0.5- -0.6- -0.5- -0.6- -0.5- -0.8- -0.9-								
0-1 0.05 0.1 0.15 0.2 0.25 0.3	0.35 0.4 0.45 0.5 0.55	0.6 0.65 0.7 0.75 0.8 0	0.85 0.9 0.95	-1	0 -70 -60	-50 -40 -30	-20 -10	0 10	20 30	40 50	60 7	0 80 90
L]						Modified			11 Samples (11 total)

	Agilent MassHunter Quantitative Analysis (fo	or QQ	Q) - DrugsOfAbuse - NewBatch.batch.bin			
Ē	ile Edit View Analyze Method Update	Libra	ary Report Tools Help			
	New 🕨	·	New Method from Acquired MRM Data			
	Open •	·	New Method from Acquired Scan Data			→ X
	Append •	•	New Method from Acquired Scan Data with Library Search] ➡ ISTD:	🔄 😒 💙 ݣ 🚺 📰 📰 📰 💷	
R	'Edit F10		New Method from Acquired Chromatographic Data			
	Validate		New Method using Manual Setup			
	Save		New Method from File			
	Save As	F	L2 5/12/2006 1:54 PM			
×	Exit F11	E	L4 5/12/2006 2:00 PM			
	Method Setup Tasks	-	L5 5/12/2006 2:03 PM			
	Manual Setup Tasks		L4 5/12/2006 2:09 PM			
	Outlier Setup Tasks		5/12/2006 2:12 PM 5/12/2006 2:15 PM			
	Advanced Tasks		5/12/2006 2:18 PM			
	Copy Calibration Levels To					
	Average Calibration Replicates					
	Create Levels from Calibration Samples					
	Import Calibration Levels from File					
-						

Compound Information	× Calibration Curve -
A → ↓ A ▲ ▲ A A A A A A A A A A A A A A A A	I ISTD QC CC
Chromatogram	8 x102]
0.85	²⁰ 0.7-
0.8-	0.6-
0.7-	0.4-
0.65-	03-02-
0.55-	0.1-
0.5- 0.45-	0- -01-
0.4-	-02-
0.3-	-0.3- -0.4-
0.25-	-0.5-
0.15-	-0.6-
0.1	-0.8-
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.65 0.7 0.75 0.8 0.85 0.9 0.95	-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 Concentrati
	Modified 11 Samples (11 tot

📅 Agilent MassHunter Quantitative Analysis (for 0	QQQ) - DrugsOfAbuse - NewBatc	h.batch.bin						
File Edit View Analyze Method Update Li	brary Report Tools Help		_					
New	New Method from Acquired	MRM Data						
Open •	New Method from Acquired	Scan Data			•) • • • • • • •			+ ×
Append F	New Method from Acquired	Scan Data with Library Search		:	🖩 † 🖩 🔲 🛯 🚺 🚺 🖊 🚺 📥 🖊			
Edit F10	New Method trom Acquired	Setup						
		Setup						
Save As	📆 New Method	from Acquired Data					×	
Exit F11 Method Setup Tasks	Look in:	\mu DrugsOfAbuse	•	G 🤌 📂 🖽 -				
Manual Setup Tasks Outlier Setup Tasks	æ	Name	^	Date modified	Туре	Size	^	
Advanced Tasks		CMAMBIk 01.d		1/6/2015 8:39 AM	File folder			
Copy Calibration Levels To	Recent Places	CMAMCal 11.d		1/6/2015 8:39 AM	File folder			
Average Calibration Replicates				1/6/2015 8:20 AM	File folder			
Create Levels from Calibration Samples				1/6/2015 0.35 AM	File folder			
	Deckton			1/0/2013 6:59 AIVI	File folder			
	Desktop	CMAMCal_L4.d		1/6/2015 8:39 AM	Filefolder		=	
	F	CMAMCal_L5.d		1/6/2015 8:39 AM	File folder		-	
		📗 CMAMQC_L2.d		1/6/2015 8:39 AM	File folder			
Compound Information	Libraries	📗 CMAMQC_L4.d		1/6/2015 8:39 AM	File folder			- ×
	4	CMAMSam_01.d	l	1/6/2015 8:39 AM	File folder			
x10 ¹		CMAMSam_02.d	l	1/6/2015 8:39 AM	File folder			
0.9-	Computer	CMAMSam_03.d	l	1/6/2015 8:39 AM	File folder			
0.8-	comparer	DOA ReportMet	hod.m	11/19/2014 11:34	File folder			
0.75- 0.7-		OuantReports		6/18/2015 10:11 AM	File folder			
0.65-		QuantResults		7/28/2015 9:54 AM	File folder			
0.55 -	Network	Background - D() A in OE noster ASMS ont	5/23/2006 8:01 PM	Microsoft PowerP	1.855 KB	-	
0.5-		Duckground De	or in or poster Asinsippe	5/25/2000 0.01 1 111	Wilerosorer owen in	1,000 100		
0.4-		Object name:				-	Open	
0.35-								
0.25-		Objects of type:				•	Cancel	
0.2- 0.15-				-07-				1
0.1-				-0.8-				
0				-0.9-	· · · · · ·			
0.05 0.1 0.15 0.2 0	.25 0.3 0.35 0.4	0.45 0.5 0.55 0.6 0.65	5 0.7 0.75 0.8 0.85 0.9	0.95 -90	80 -70 -60 -50 -40	-30 -20 -10	0 10 20 30	40 50 60 70 80 90 Concentration
							Modified	11 Samples (11 total)

Agilent MassHunter Quantitative Analysis (for QQQ) - [New Method]

B wind B wind I have back by I	File Edit View Analyze Method Update Library Report Tool:		
The defended of the set of a be defended by the set of a b	Method Tasks	2 Z II III IA Kestore Default Layout	- *
	New / Open Method	a mana hance	* ^
	Workflow	Samla	
	Method Setup Tasks	Name Data File Type Level Acq. Method File Acq. Date-Time	<u> </u>
	MPM Compound Setup	- CMAMCal_L3.d CMAMCal_L3.d	
	Retention Time Setup	Quantifier	
A Constrained information i	m∑ ISTD Setup	Name TS Transition Scan Type ISTD Compound Name CAS# ISTD Flag ISTD Conc. Time Reference Flag	
A dealer star and dealer star and dealer star and dealer of a by a b	150 Concentration Setun	□ Amp 1 136.2-> 91.4 MRM Target <none></none>	
	- Concentration Setup	Qualifier	
• de la der outer lange • de la der outer lange 00000 000	Calibration Curve Satur	Precursor ion Product ion Iransition HeI. Hesp. Uncertainty	
Image: State State </td <td>- Calibration Curve Setup</td> <td></td> <td>-</td>	- Calibration Curve Setup		-
Seed / Said Image diamond Image diamond <td>Globals Setup</td> <td>Name TS Transition Scan Type ISTD Compound Name CAS# ISTD Flag ISTD Conc. Time Reference Flag</td> <td>-</td>	Globals Setup	Name TS Transition Scan Type ISTD Compound Name CAS# ISTD Flag ISTD Conc. Time Reference Flag	-
Winder Bint Sor As Sor As Sor As Sort As	Save / Exit	▲ Amp-d5 1 141.1->93.4 MRM ISTD 🔽	
If Int Tende Soci Intil 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	🤯 Validate	Qualifier	
Toro Ac. 1411 124 1411 1411 124 1411 124 1411 124 1411 124 1411 124 1411 141 1411 141 1411 141 1411 141 1411 141 1411 141 1411 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141	Save	Precursor Ion Product Ion Transition Rel. Resp. Uncertainty	
Si Cir Hamad Scale Taka Ouder Schap Taka Oud	Save As	- <u>141.1</u> 124.4 141.1 -> 124.4 26.2 20.0	
All Cut Nome To Transition Scient Type ISTO Compand Name CLSS ISTO Plag ISTO Compand Name CLSS ISTO Plag ISTO Compand Name ISTO Compand Nam		Quantifier	
Memoral Statup Tacks Image: 1 pack 1 = 10 k/0 mm/m Image: 1 pack 1 = 10 k/0 mm/m Image: 1 pack 1 = 10 k/0 mm/m Advanced Tacks Image: 1 pack 1 = 10 k/0 mm/m Advanced Tacks Image: 1 pack 1 = 10 k/0 mm/m Option: 1 pack 1 = 10 k/0 mm/m Scient 1 pack 1 = 10 k/0 mm/m Image: 1 pack 1 = 10 k/0 mm/m Image: 1 pack 1 = 10 k/0 mm/m Option: 1 pack 1 = 10 k/0 mm/m Scient 1 pack 1 = 10 k/0 mm/m Scient 2 pack 1 pac	X Exit	Name TS Transition Scan Type ISTD Compound Name CAS# ISTD Flag ISTD Conc. Time Reference Flag	
Outlier Scale Understand Advanced Tasks Understand Outlier Scale Understand Decision Transition Name TS Transition Transition Stat Stat Decision Transition Decison transition Transition	Manual Setup Tasks	Courter 1 304.1-> 182.0 MirtM 1 arget <none></none>	
Advanced Tasks Interview Outcome Interview	Outlier Setup Tasks	Qualifier Production Parallelian Transition Pal Page Upgettight	
Questifier 1 \$27.1-> 150 MFM 15TD Compound Name CASE 15TD Fileg 15TD Conc Time Reference Fileg Questifier Questifier Image: State Concerned on the concerned on t	Advanced Tasks	- 304.1 82.0 304.1 - 82.0 3.9 20.0	
Name Tonsibio Scan Type ISTO Compound Name CAS# ISTO Flag ISTO Conc. Time Reference Flag Concenter-d3 13071-51850 MEM ISTO MEM ISTO MEM ISTO ISTO <td< td=""><td></td><td>Quantifier</td><td></td></td<>		Quantifier	
Concessioned a 1 807.1->185.0 MEM ISTD Home> Coulifier Product lon Transition Rel. Resp. Uncertainty 307.1 85.0 307.1->85.0 4.4 20.0 Serrele Information Correspond Info		Name TS Transition Scan Type ISTD Compound Name CAS# ISTD Flag ISTD Conc. Time Reference Flag	
Qualifier Trension 307.1 305.0 307.1 -> 85.0 4.4 20.0 Servele Information		Cocaine-d3 1 307.1 -> 185.0 MRM ISTD <none> ☑</none>	
Precursor lon Precursor lon Transition Rel Resp. Uncertaininy Sample Information		Qualifier	
307.1 85.0 344 200 Sample information		Precursor Ion Product Ion Transition Rel. Resp. Uncertainty	
		307.1 85.0 307.1 -> 85.0 4.4 20.0	-
		Sample Information	т X
Chromatogram Nº + M → M → M → M → M → M → M → M → M → M		Compound Information	- X
Chromatogram x10 ¹ 09- 08- 0.7- 06- 05- 04- 0.3- 02- 01- 0- 0.02 004 006 008 0 ¹ 0.12 0.14 016 018 0 ¹ 2 0.22 0.24 0.26 0.28 0/3 0.32 0.34 0.35 0.38 0/4 0.42 0.44 0.45 0.52 0.54 0.56 0.52 0.54 0.56 0.58 0/7 0.72 0.74 0.76 0.78 0/8 0.82 0.84 0.86 0.88 0/9 0.92 0.94 0.95 0.98			• •
Chromateria and Chromateria an			
09 08 07- 06 05- 04 03- 02- 0.1 0- 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.54 0.56 0.58 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.56 0.58			
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.2 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		0.9-	
0.7 0.6- 0.5- 0.4- 0.3- 0.2- 0.1- 0- 0- 0.1- 0- 0- 0.1- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-			
0.5- 0.4- 0.3- 0.2- 0.1- 0- 0- 0.1- 0- 0.1- 0- 0- 0.1- 0.1			
0.3- 0.2- 0.1- 0.1		0.5	
0.3- 0.2- 0.1- 0- 0.02 0.04 0.06 0.08 0'1 0.12 0.14 0.16 0.18 0'2 0.22 0.24 0.26 0.28 0'3 0.32 0.34 0.36 0.38 0'4 0.42 0.44 0.46 0.48 0'5 0.52 0.54 0.56 0.58 0'6 0.52 0.54 0.56 0.58 0'7 0.72 0.74 0.76 0.78 0'8 0.82 0.84 0.86 0.88 0'9 0.92 0.94 0.96 0.98		0.4-	
		0.3-	
		0.2-	
		0.1-	
0.02 0.04 0.05 0.1 0.12 0.14 0.15 0.18 0.2 0.22 0.24 0.25 0.3 0.32 0.34 0.35 0.38 0.4 0.42 0.46 0.45 0.5 0.52 0.54 0.55 0.5 0.52 0.54 0.56 0.58 0.7 0.72 0.74 0.76 0.78 0.8 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.95 0.98			0.00 0.00
			0.30 0.30

4 Compounds (4 total) 4 ISTD (4 total)

Target, Internal Standard and Qualifier Ion Ratios learned from the Data

Qu	antifier										
	Name		TS	Transiti	on	Sc	an		Туре		
·	Amp		1	136.2 -> 91.	4	MRM		Target			
	Qualifier										
	Precursor Ion		Pro	duct lon	Tr	ansition	Rel. Res	p.	Uncertainty		
·	13		119.4	136.2 -	-> 119.4		26.6	20.0			
Qu	antifier										
	Name		TS	Transiti	on	Sc	an		Туре		
	Amp-d5	p-d5			4	MRM		ISTI	D		
	Qualifier										
	Precursor Ion P		Pro	oduct Ion	Tr	ansition	Rel. Res	р.	Uncertainty		
·	14		124.4	141.1	-> 124.4		26.2	20.0			

New in B.07.00 – SIM from GC/MSD works the same as MRM

Available for MSD, QQQ, TOF, and Q-TOF

Name	TS	RT	Transition	ISTD Flag	(^
13C-Ochratoxin A		1 6.425	424.2 -> 250.1	V	
13C-T2-Toxin		1 5.959	508.3 -> 322.1	V	
13C-Zearalenone		1 6.437	335.2 -> 290.0	V	
Aflatoxin B1		1 4.426	313.1 -> 241.0		Ξ
Aflatoxin B2		1 4.176	315.1 -> 258.9		
Aflatoxin G1		1 3.868	329.1 -> 243.0		
Aflatoxin G2		1 3.585	331.1 -> 313.0		
Deoxynivalenol		1 <u>1.493</u> II	297.1 -> 249.0		• •
Calculation Include: Cals QCs	s:				

Peak Detection

Each peak can be configured to use 1 of 5 peak detection algorithms

📅 Agilent MassHunter Quantitative Analysis (for QQQ) - [N	lew Met	thod]														
File Edit View Analyze Method Update Library R	eport T	Fools Help														
🚹 🗁 🛃 📭 💭 Analyze Batch 🔻 🥝 🛛 Layo	ut: 🔤		📝 Re	estore Default Lay	/out											
Method Tasks 🗸 🗸	Method	d Table														
New / Open Method	Lev	el Name Prefix:		# of Levels	: 10	Create Levels	Time Segr	nent:	<= <all></all>	• =	Compo	und: 🔙 A	mp-d5	-	Reset Table View	w
Workflow	Sa	mple													1	
Method Setup Tasks		Name	Dat	a File	Туре	Level	Acq. Metho	d File	Acq. Date-Tim	e						
Save / Exit		CMAMCal_L3.d	CMAMC	Cal_L3.d												
Manual Setup Tasks		Quantifier														
Outlier Setup Tasks		Name	1	TS Trans	ition	Scan	Туре		RT	Int.		Int. Parr	ms.			
		Amp		1 136.2 -> 9	1.4 MRM		larget		2.134	Agile2						
Advanced Tasks		Qualifier														
Integration Parameters Setup		Precursor	lon	Product Ion	Transition	Rel. Resp	 Uncertaint 	У	Int. Parms.							
Signal to Noise Setup		·	136.2	119.	4 136.2 -> 119.4	2	6.6 2	0.0								
Smoothing Setup		Quantifier														
		Name	T	TS Trans	ition	Scan	Туре		RT	Int.		Int. Parr	ms.			
Mass Extraction Setup	Ē	► Amp-d5		1 141.1 -> 9	3.4 MRM		ISTD		2.122	Agile2						

ntegrator	General	Universal	Spectrum Summation	Peak Filter	
<u>Integrato</u>	r:				
Agile2					-
Agile					
Agile2					
MS-MS					
MS-MS (GC)				
General					
General	1				
C	Cummetic				

Agile and Agile2 – parameter-less integrators

1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9 2.95 3

Acquisition Time (min)

Building the Calibration Table

😿 Agilent MassHunter Quantitative Analysis (for QQQ) - Method - <E:\ I homas Data try 2\Pesticides_Water_QQQ\Pesticides_Water_Demo.batch.bin>

File Edit View Analyze Method Update Library Report Tools Help

🛅 🗁 ⋥ 斗 💭 Analyze Batch 🔻 🥑 🛛 Layout: 🖽 🔢 🕅 🛄 🕰 🧭 Restore Default Layout

lethod Tasks	- - X	Method '	Table								_	_						
New / Open Method		Leve	l Name Prefix: L		# 🕎	Agilent M	assHunter Qi	iantitative Ai	nalysis (for	• <ai< td=""><td> ></td><td>Α 🖥</td><td>Agilent Ma</td><td>assHun</td><td>iter Quanti</td><td>tative Analys</td><td>is (for</td><td>Reset</td></ai<>	>	Α 🖥	Agilent Ma	assHun	iter Quanti	tative Analys	is (for	Reset
Workflow		Sam	ple		F	ile Edit V	iew Analyze	Method	Update L	.i		File	e Edit V	iew A	nalyze M	ethod Upd	ate Li	J
Method Setup Tasks			Name	Data File		New				Acq. D	Date		New					
MRM Compound Setup		····	QC-100-r003.d (QC-100-r003.c	1	INCOV			,	- 5	Sampl	е						
🎢 Retention Time Setup		-	Quantifier		_	Open			•			Na	ame		Data File		Туре	
🔗 ISTD Setup		-	Name	15		Append			•		Sa	ampl	e-1	CM	IAMSam_01	I.d Sample		
2 Concentration Setup			Alachlor	. 1	1	5 .00			510	Lir	0	anti	fier					
Cualifier Setup			Atrazine	1	1 E	Edit			FIU	<u>Lir</u>			Name		те	Transiti		
Calibration Curve Setup		-	Boscalid	1	3	Validate				Lir Lir	<u> </u>	100	INdifie		13	120.2 > 01	4	MDM
			Carbamazepin	1	1 🖦	Sauce				Lir	-)	An	np		1	130.2 -> 31.4	+	
Globals Setup			Chlorfenvinphos	1		Save				Lir		Ca	libration					
Save / Exit		-	Chloridazon (Pyr Chloridazon-des	. 1	ł	Save As				Lir		L	.evel (Conc.	Туре	e Respo	nse E	nable
👔 Validate			Chloridazon-met			Evit			E11	Lir			L1	1.0000	Calibratio	n	658	1
a Save			Chlorpyrifos	1	- ~	LXIII			111	Lir		• •	L2	2.0000	Calibratio	n 1	073	1
Save As		-	Deisopropylatra	. 1	ł	Method	Setup Tasks		•	Lir	-		L2	2.0000	QC	1	011	V
Jave As			Desethylatrazine	1	-	Manual	atup Tacks			Lir	-		L3	3.0000	Calibratio	n 2	686	1
K Exit			Desethylterbutyl.	. 1	1	Walluar.	etup tasks		,	Lir			L4	4.0000	Calibratio	n 5	128	V
Manual Setup Tasks		-	Ethofumesate	1		Outlier S	etup Tasks		•	Lir Lir	-		L4	4.0000	QC	4	721	v
Outlier Setup Tasks			Isoproturon	1	2	Advance	d Tasks		•	Lir			L5	5.0000	Calibratio	n 18	410	V
Advanced Tasks			Lenacil	1	1					Lir	<u>_</u> 0	ianti	fier		L To			
		-	Metalaxyl	1		Copy Cal	bration Leve	ls To		Linear	_		Copy Call	bration	1 Levels To			
			Metazachlor	1	2	Average	Calibration R	eplicates		Linear			Average (Calibrat	tion Replic	ates		-
			Metolachlor	1	2					Linear			Create Le	vels fro	um Calibrat	ion Sampler		
		-	Metribuzin Pendimethalin	1		Create Le	vels from Cal	ibration Sam	ples	Linear			create Le	veis ire	in canorat	ion samples		
			Quinoxyfen	1	1	Import C	alibration Lev	els from File.		Linear		1	Import Ca	libratio	on Levels f	rom File		-
			Simazine	1	2			r orgot		Linear			Blank o	ffset	None			
			Terbuthylazine	1	230.1	-> 174.1	4RM	Target		Linear			Blank o	ffset	None			

Compound Group Sample & Compound based Review/Report

🛃 Agilent MassHunter Quantitative Analysis (for GCMS) - Me	thod -	- <d:\\< th=""><th>MassHunter\Dat</th><th>a\QuantExamp</th><th>les\MS\</th><th>VOA\QuantRes</th><th>ults\Vola</th><th>tileOrganics.</th><th>batch.bin></th><th></th><th></th><th></th><th></th></d:\\<>	MassHunter\Dat	a\QuantExamp	les\MS\	VOA\QuantRes	ults\Vola	tileOrganics.	batch.bin>				
File Edit View Analyze Method Update Report Tool	s Hel	lp											
🎦 🗁 🛃 📑 💭 Analyze Batch 🔹 🛞 🕴 Layout:				Restore Default	t Layout								
Method Tasks 🗸 🗸	Meth	nod Tal	ble										
New / Open Method	1	Time S	Segment: 🖛 🤜	AII>	-	Compound:	🔙 Dic	hlorodifluor.	🔻 📑 🛛 Reset Ta	able View			
Method Setup Tasks		Sampl	e										
Compound Setup			Name	Data File		Туре		Level	Acq. Method File	Acq. Date-Tim	e		
Retention Time Setup		C	AL_L03	CAL_L03.D	Cal		3		624A.M	6/20/2008 8:53			
is⊉ ISTD Setup		Qu	antifier									1	
Concentration Setup			Name	TS	C	Scan	T	уре	MZ 🛆	RT	Ion Polarity	Criteria	Cmpd. Group
R Qualifier Setup			Acetone	1	Scan		Target Target		42.0	9.311 6.194	Positive	Close RT Close RT	B
Calibration Curve Setup			Vinyl Acetate	1	Scan		Target		43.0	8.064	Positive	Close RT	A,B
,			2-Butanone (MI	E 1	Scan		Target		43.0	8.437	Positive	Close RT	A,B
🔮 Globals Setup			4-Methyl-2-Pen	t 1	Scan		Target		43.0	12.382	Positive	Close RT Close RT	A,B
Save / Exit			Methylene Chlo	e 1 ri 1	Scan		Target Target		44.0	6.877	Positive	Close RT Close RT	B
Validate			Chloromethane	1	Scan		Target		50.0	4.493	Positive	Close RT	В
M vandate			2-Hexanone	1	Scan		Target		58.0	13.562	Positive	Close RT	A,B
Save.			LEDGER ALCOLOGI		C		T		E0.0	0.200	n	CI DT	<u>La</u>]

Useful when there is one analysis method but wish to review and report different sets of the compound list based on individual samples

Also used for StreamSelect (2 or 4 streams)

Compound Math: group peaks for calibration and quantitation

Five peaks representing Aroclor PCBs mixture

Agilent	MassHunter Q	uantitativ	e Analysis (for GC) - PCB-0	CompoundGrou	p - Arochlor	PCB Compo	oundMat	n.batch.b	in	-				-	_ 0 X
File Edit	View Analy	ze Metho	od Update	Report Too	s Help					_						
1 🗠 🖬	🕒 🖓 Anal	yze Batch	• 🕝 🕴 La	ayout: 📰 🔛 🗃	🛯 🖾 🕅 Res	tore Default	t Layout									
Compound I	nformation															+ ×
i 🛃 ↔ 🌩	<u>A</u> 🛋 🗈 🛃	💼 ា	▲ 念 🛓													
Total 1016-1	GC7-1850.D															
und -	5.63	33 min.														
ge 2.4-		8														
2.3-		n														
2.2-		0														
21-																
2																
2	/															
1.9-																
1.8-																
1.7-	[
1.6-																
1.5-			5.74	4 min.												
1.4-				Δ												
1.3-				Д								6.274	min.			
1.2																
1.2					5.901	min.							l			
1.11															6	.447 min.
1-			- (/	1									
0.9-	Í		1										1			
0.8-			(1 11	Λ					1			
0.7-							1 11	\square								
0.6-							1 11	()								
0.5-						} [$\left \right ^{\prime}$	1					1β	۱ n	1	
0.4-						$ \Lambda $	Λ						\mathbf{N}			
0.2						1/	$\langle \rangle$							$\backslash $	V	/ \
0.0						V	V						Y	$\backslash /$	- V	
0.2		5	/	Y										\bigcirc	τ_	
0.1-																
0-																
5	55 5.6	5.65	5.7	5.75 5.8	5.85 5.9	5.95	Ġ	6.05	6.1	6.15	6.2	6.25	6.3	6.35	6.4	6.45 6.5 Acquisition Time (min)
						Pr	ocessed 1	016/1260	@ 500/300	0 ng/ml	Total 1016	-1 6 Com	pounds (1	4 total incl	uding ISTE	s) AGILENT\mtischler

Met	hod T	able					
0	Comp	ound: 🔄 Tota	al 1016-1 👻 🛃	Reset Table View			
	Samp	le	2				a
		Name	Data File	Туре		Level	Acq.
	10	16/1260 @ 50	GC7-1842.D	Cal	500		
	Q	uantifier					
		Name	Туре	Cmpd. Gr	oup	Compound	Math
		TCMX	Target	S			
		Aroclor1016-1	Target	L1-1			
		Aroclor1016-2	Target	L1-1			
		Aroclor1016-3	Target	L1-1			
	Sec.	Aroclor1016-4	Target	L1-1			
		Aroclor1016-5	Target	L1-1			
		Aroclor1260-1	Target	L2-1			
		Aroclor1260-2	Target	L2-1			
		Aroclor1260-3	Target	L2-1			
		Aroclor1260-4	Target	L2-1			
	·····	Aroclor1260-5	Target	L2-1			
		DCB	Target	S			
		Total 1016-1	Target	L1-1	Co	ncentration	Sum
	L	Total 1260-1	Target	L2-1	Co	ncentration :	Sum

New Find Feature in Method Editor

After applying the Analysis Method

📅 Agilent MassHunter Quantitative Analysis (for QQQ) - Pesticides_Water_QQQ - Pesticides_Water_Demo.batch.bir

File Edit View Analyze Method Update Library Report Tools Help

🔁 🗁 🛃 斗 💭 Analyze Batch 🕶 🕢 Layout: 🔜 🔢 🖽 🖾 🐼 Restore Default Layout

Datah Tahla																											🚽 X
Sample: TapWater_Blank	- 1	Sample Typ	e: <all></all>		▼ Cor	mpound: 🔄	Chlori	dazon-methy	rl-desph	🔻 🔿 IS	TD:			, , , , , , , , , , , , , , , , , , ,		I	۴	9 🕈 🖓									
Compound Method			TapWater_Blank	TapWater_	10ppt	TapWater_2	20ppt	TapWater_	50ppt	TapWater_	100ppt	TapWater	_200ppt	TapWater_5	i00ppt	TapWater_1	000ppt	TapWater_Blank	QC_100	Oppt	TapWater,	Blank	QC_100p	pt	TapWater_	Blank	F
Name	Tr	ansition Fir	nal Conc. Accuracy	Final Conc.	Accuracy	Final Conc. Ad	ccuracy	Final Conc.	Accuracy	Final Conc. A	Accuracy	Final Conc.	Accuracy	Final Conc. A	ccuracy	Final Conc. A	ccuracy I	Final Conc. Accuracy	Final Conc.	Accuracy	Final Conc.	Accuracy	Final Conc. Ad	curacy F	inal Conc. /	Accuracy Fir	al Cc
2,6-Dichlorobenzamide	19	90.0	0.0000	9.1937	91.9	18.2129	91.1	48.0247	96.0	100.2781	100.3	198.3317	99.2	504.5525	100.9	1014.6216	101.5	0.0016	93.7748	93.8	0.0432		98.4452	98.4	0.1268	-	45.7:
Alachlor	27	70.1	0.0000	10.2705	102.7	19.5266	97.6	48.6964	97.4	98.6059	98.6	201.4687	100.7	498.6039	99.7	1023.7946	102.4	0.0000	102.3866	102.4	0.0000		104.9183	104.9	0.0000		74.4:
Atrazine	2	16.1	0.0000	9.3996	94.0	18.3112	91.6	49.2480	98.5	103.1577	103.2	206.8804	103.4	507.7247	101.5	996.5813	99.7	0.1173	107.3937	107.4	0.0365		112.9472	112.9	0.0000		88.10
Boscalid	34	43.0	0.0000	9.0067	90.1	18.8585	94.3	48.3091	96.6	99.5080	99.5	205.0340	102.5	503.2323	100.6	1003.5681	100.4	0.6462	96.2291	96.2	0.1165		101.5400	101.5	0.0000		75.0
Bromacil	26	61.0	0.0000	9.3003	93.0	18.6574	93.3	48.7618	97.5	102.9587	103.0	201.8753	100.9	503.6542	100.7	999.4483	99.9	0.0896	100.5131	100.5	0.1179		106.0902	106.1	0.0000		94.2
Carbamazepin	23	37.1	0.0266	9.4975	95.0	19.6358	98.2	48.5084	97.0	99.5726	99.6	197.8596	98.9	489.1143	97.8	1023.3143	102.3	0.1584	104.8265	104.8	0.0717		104.9400	104.9	0.0000		97.6
Chlorfenvinphos	35	59.0	0.0000	7.4193	74.2	20.6909	103.5	47.2176	94.4	94.2221	94.2	226.1262	113.1	509.7450	101.9	1001.2650	100.1	0.3470	83.9786	84.0	0.0000		83.3952	83.4	0.0000		34.2 ≡
Chloridazon (Pyrazon)	22	22.0	0.0000	9.8987	99.0	18.7511	93.8	49.3986	98.8	102.7678	102.8	205.3185	102.7	512.4392	102.5	1022.1900	102.2	0.0752	100.0562	100.1	0.1443		103.0884	103.1	0.0000		99.5(
Chloridazon-desphenyl	14	46.0	0.0842	9.4229	94.2	19.4046	97.0	48.8804	97.8	99.5835	99.6	196.6906	98.3	501.5482	100.3	1020.7517	102.1	0.0473	118.7403	118.7	0.0000		123.3309	123.3	0.0000		48.00
Chloridazon-methyl-desphenyl	16	60.0	0.0000	9.6489	96.5	19.1230	95.6	49.6773	99.4	101.7110	101.7	202.2343	101.1	507.7204	101.5	1013.4379	101.3	0.0860	100.4924	100.5	0.0154		104.0213	104.0	0.0000		77.6
Chlorpyrifos	34	49.9	0.0000	6.3233	63.2	21.1044	105.5	44.2646	88.5	87.7354	87.7	230.4209	115.2	497.6379	99.5	1005.0455	100.5	1.1282	42.3430	42.3	0.0000		40.5051	40.5	0.0000		39.5
Chlortoluron (Chlorotoluron)	2	13.1	0.0000	9.3136	93.1	18.6633	93.3	49.2509	98.5	101.8758	101.9	204.7478	102.4	495.9656	99.2	1012.0544	101.2	0.2146	99.2415	99.2	0.0000		105.8249	105.8	0.0000		79.3:
Deisopropylatrazine	17	74.0	0.0000	9.5353	95.4	19.6563	98.3	49.8150	99.6	103.1062	103.1	206.2434	103.1	518.7587	103.8	1014.7753	101.5	0.0467	105.1516	105.2	0.0374		104.3119	104.3	0.0167		03.5
Desethylatrazine	18	88.1	0.0000	9.5455	95.5	19.1568	95.8	50.0757	100.2	104.0118	104.0	207.9635	104.0	510.5492	102.1	1003.2515	100.3	0.1191	107.3840	107.4	0.0622		112.0453	112.0	0.0000		52.2
Desethylterbutylazine	20	02.1	0.0000	9.8941	98.9	19.6820	98.4	50.2870	100.6	103.0138	103.0	204.6884	102.3	512.9148	102.6	1010.6521	101.1	0.3222	105.3669	105.4	0.0000		112.3335	112.3	0.0000		52.6
Diuron	23	33.0	0.0000	9.3922	93.9	19.1166	95.6	49.4369	98.9	102.5628	102.6	201.4063	100.7	509.5506	101.9	1008.2719	100.8	0.4077	101.7913	101.8	0.0000		108.0900	108.1	0.0000		81.1
Ethotumesate	30	04.1	0.0000	9.4448	94.4	19.1199	95.6	45.2241	90.4	99.5664	99.6	203.1267	101.6	506.8196	101.4	1000.2152	100.0	0.4342	103.0517	103.1	0.0000		105./015	105.7	0.0000		99.84
Isoproturon	20	0/.1	0.0000	9.7093	97.1	19.4901	97.5	49.0961	98.2	101.6062	101.6	204.3815	102.2	503.2161	100.6	1009.0831	100.9	0.2132	103.2964	103.3	0.0224		109.2091	109.2	0.0000		27.3
Lenacii	23	35.1	0.0000	9.7504	97.5	19.6204	98.1	51.5417	103.1	105.7330	105.7	208.55/0	104.3	520.7366	104.1	983.8666	98.4	0.1994	104.9982	105.0	0.0866		110.3429	10.3	0.0000		52.20
Metalaxyl	20	80.1	0.0000	9.1/44	91.7	19.0020	95.0	49.9733	99.9	102.5986	102.6	205.2550	102.6	497.9926	99.6	1012.8326	101.3	0.1247	99.9160	99.9	0.0298		104.3394	104.3	0.0000		47.74
Metamotron	20	70.1	0.0000	9.1850	91.8	20.2199	05.0	40,7015	101.4	102.4198	102.4	200.4870	100.2	515,3665	103.1	1013.9303	101.4	0.0000	38.8182	38.8	0.0000		115.0201	115.7	0.0000		03.0
Metalachior	20	/0.1	0.0000	9.6050	30.1	19, 1031	30.0 97.0	49.7330	90.1	100.0914	100.1	207.4300	103.7	400 5221	00.0	1008.7555	101.0	0.3162	00.0150	96.0	0.05/1		101 2075	101.2	0.0000		74.01 -
I Metolachioi	20	04.1 *	0.00001 1	3.4730	34.01	13.32621	37.0	43.30711	33.11	100.43401	100.51	203.1034	101.01	433.33311	33.31	1003.77021	101.01	0.23221	30.01301	30.01	0.1030	1	101.20751	101.21	0.00001	1	/4.0:
													× 0														
Compound Information												× Calibr	ation Curve	•													▼ ×
🛃 🕂 🌲 🏠 🛣 🚺 🛃 🛃	■ [A] Z	🗄 🔟 🖉	🔺 🏦 🛝		* * *	\	- A	NI LT G	it ba	CO RT IN	IT	2	↔ ‡	X - 🔄	🔿 Ту	rpe: Linear		 Origin: Blank of 	f 🔻 Weigh	t: None	▼ ISTD	QC CC					
+ MRM (160.0 -> 87.9) Blank-1-r001.d												Chlor	idazon-met	yl-desphenyl	- 7 Levels	s, 7 Levels Us	ed, 14 Poi	nts, 13 Points Used, 9	QCs								
끝 x10 ³ -				4.192 mir	n.							% x1	0 6 y = 31	55.411079 * x	+ 6774.8	20160											/
g 1.5-				\land								l i i	3.2 - Type:	U.556/2/32 Linear, Origin:	Blank offs	et. Weight:No	ne									•	-
1.4-				\square								Best	3-													~	

2 Configurable Views: both take advantage of Outliers

Batch-at-a-Glance

Batc	h Tab	le								
S	ample	e: 👔	Calib-L1		-	Sam	ple Type: <all></all>		-	Compo
				Sam	ple				Amp Result	s
	D	∇	Name	Data File	Туре	Level	Acq. Date-Time	RT	Final Conc.	Accuracy
		٣	Calib-L1	CMAMCal_L1.d	Cal	L1	5/12/2006 1:51 PM	2.140	3.2209	128.8
		٣	Calib-L2	CMAMCal_L2.d 🛚	Outlier(s)					15.0
			Calib-L3	CMAMCal_L3.d A	mp: Accuracy	value	= 128.8 is outside the allo	wed rar	nge [80.0, 120).0] 09.4
			Calib-L4	CMAMCal_L4.d	Cal	L4	5/12/2006 2:00 PM	2.022	26.7565	107.0
			Calib-L5	CMAMCal_L5.d	Cal	L5	5/12/2006 2:03 PM	2.101	124.4862	99.6
			QC-L2	CMAMQC_L2.d	QC	L2	5/12/2006 2:06 PM	2.142	5.2293	104.6
			QC-L4	CMAMQC_L4.d	QC	L4	5/12/2006 2:09 PM	2.135	27.8044	111.2
			Sample-2	CMAMSam_02.d	Sample		5/12/2006 2:15 PM	2.143	4.8978	
			Sample-3	CMAMSam_03.d	Sample		5/12/2006 2:18 PM	2.105	14.2185	

http://www.chem.agilent.com/en-US/products-services/Software-Informatics/MassHunter-Workstation-Software/Pages/Batch_at_a_glance_demo.aspx

Compounds-at-a-Glance

http://www.chem.agilent.com/en-US/products-services/Software-Informatics/MassHunter-Workstation-Software/Pages/quant_flat_table.aspx

Outlier Options: Configured in the Method

40+ Outliers can be configured (B.07.01):

- 1. Retention Time
- 2. Relative Retention Time
- 3. Peak Resolution
- 4. Peak Symmetry
- 5. Peak Purity
- 6. Signal-to-noise Ratio
- 7. Limit of Detection
- 8. Limit of Quantitation
- 9. Method Detection Limit
- 10. Qualifier Ratio
- 11. Internal Standard Response
- 12. Internal Standard % Deviation
- 13. Sample Amount
- 14. Sample % RSD
- 15. Blank Concentration
- 16. Blank Response
- 17. Accuracy
- 18. Average Response Factor
- 19. Average Response Factor %RSD
- 20. Curve Fit R²
- 21. Relative Response Factor
- 22. Response Factor
- 23. QC Max Deviation
- 24. QC Relative Standard Deviation
- 25. QC LCS Recovery
- 26. CC Average Response Factor
- 27. CC Internal Std Response Ratio
- 28. CC Relative Response Factor
- 29. CC Response Ratio
- 30. CC Retention Time
- 31. Matrix Spike
- 32. Matrix Spike % Difference
- 33. Matrix Spike Percent Recovery
- 34. Matrix Spike Group Recovery
- 35. Surrogate
- 36. Surrogate % Recovery
- 37. Response Check
- Mass accuracy
- 39. Mass Match Score
- 40. Library Match Score
- 41. Custom Calculation

Fi	le Edit View Analyze Method Update Library Report 1	Tool	s	Help						
122	🗅 🗁 🔲 🕞 🗔 Analyze Batch 🖌 🙆 🛛 Lavout: 🖽		R		7	Resto	re De	efault Lav	oL	it
: u Meth	nod Tasks			Method Tz	abl	e		,,		
N	ew / Open Method		1	Level	N-	me Drefiv			#	
						ine Frenz.				_
vv	orknow			Samp	le					_
M	ethod Setup Tasks					Name		Data File		
Sa	ive / Exit			····	al	ib-L1	СМ	AMCal_L1	l.d	
M	anual Setup Tasks			Q	ua	intifier			_	_
0	utlier Setup Tasks			_	_	Name	_	IS		
				-	•	7-amino cionaz	e	1	1	4
TVT	Retention Time				t	D4-7-amino clo	n	1	1	-
	Relative Retention Time				t	zopiclone		2	2	į
	Peak Resolution					alpha-OH alpra	z	3	3	2
	Peak Symmetry			···-		clonazepam		3	3	2
					+	D4-clonazeparr	-	3	3	1
	Peak Full Width Half Maximum				ł	flunitrazepam	_		3	ŝ
	Peak Purity				t	D5-alprazolam	-		1	Ì
յոնու	Signal-to-Noise Ratio				t	D5-oxazepam		4	4	2
	Limit Of Detection					flurazepam		4	1	2
	Limit Of Oursetitation			····	4	lorazepam		4	4	2
	Limit of Qualitation	=			+	oxazepam	_	4	4	2
	Method Detection Limit	=			+	triazolam D5-temazenam	-	4	+	ŝ
A	Qualifier Batio				t	desalkvlfluraze	p.,		5	2
<u></u>		-			t	temazepam		5	5	2
is the second se	ISTD Response					chlordiazepoxic	le	6	5	2
	ISTD Response Percent Deviation				+	D5-nordiazepar	n	6	5	2
	Consulta Associat	-			+	nordiazepam	_		5	-
	Sample Amount				+	midazolam	-		7	4
	Sample RSD					in dazonam				Ĩ
	Blank Concentration									
	Plank Response									
	biant neaponae	-								
	Accuracy									
	Average Response Factor									
	Average Response Factor RSD									
R 🎸	Curve Fit R2									
1	Relative Response Factor									
	Response Factor									
			1							
7	QC									
			11							

hod	Tab	ble								
.ev	el N	ame Prefix:		# of	Levels: 10		Create Level	s	Time Segment:	<= <aii></aii>
Sa	mple	•								
	-	Name	Data File		Туре		Level		Aca. Method File	Acq. Date-Time
	Ca	lib-l 1	CMAMCal L1	l d	Cal		11		APClautotune m	5/12/2006 1:51
1	0		on modi_c				2.			0122000 1.01
	Qu	antifier		_						
		Name	TS		Transition		Scan		Туре	QC Max. Dev.
	•	7-amino clonaz	:e	1 28	6.0 -> 121.0	MRM		Tar	get	0.2
		7-amino flunitra	az	1 284	4.0 -> 226.0	MRM		Tar	get	0.2
		D4-7-amino clo	n	1 290	0.0 -> 226.0	MRM		IST	D	0.2
		zopiclone	1	2 38	9.1 -> 245.1	MRM		Tar	get	0.2
		alpha-OH alpraz		3 32	5.0 -> 297.0	MRM		Tar	get	0.2
		clonazepam		3 310	6.0 -> 270.0	MRM		Tar	get	0.2
		clonazepam D4-clonazepam		3 320	0.0 -> 274.0	MRM		IST	D	0.2
		flunitrazepam		3 314	4.0 -> 268.0	MRM		Tar	get	0.2
		alprazolam	4	4 309	9.0 -> 281.0	MRM		Tar	get	0.2
		D5-alprazolam	4	4 314	4.0 -> 286.0	MRM		IST	D	0.2
		D5-oxazepam	4	4 292	2.0 -> 246.0	MRM		IST	D	0.2
		flurazepam	4	4 38	8.0 -> 315.0	MRM		Tar	get	0.2
		lorazepam	4	4 32	1.0 -> 275.0	MRM		Tar	get	0.2
		oxazepam	4	4 287	7.0 -> 241.0	MRM		Tar	get	0.2
		triazolam	4	4 343	3.0 -> 308.0	MRM		Tar	get	0.2
		D5-temazepam		5 306	6.0 -> 260.0	MRM		IST	D	0.2
		desalkylfluraze	p !	5 289	9.0 -> 226.0	MRM		Tar	get	0.2
		temazepam		5 30	1.0 -> 255.0	MRM		Tar	get	0.2
		chlordiazepoxio	de (5 300	0.0 -> 283.0	MRM		Tar	get	0.2
		D5-nordiazepar	m (5 276	6.0 -> 140.0	MRM		IST	D	0.2
		nordiazepam	(5 27	1.0 -> 140.0	MRM		Tar	get	0.2
		diazepam	1	7 28	5.0 -> 222.0	MRM		Tar	get	0.2
		midazolam		7 320	6.0 -> 291.0	MRM		Tar	get	0.2

Regilent MassHunter Quantitative Anal	lysis (for QQQ) - Mycotoxins_QQQ - Myco	otoxins_Demo.ł	batch.bin																					
File Edit View Analyze Method U	pdate Library	/ Report Tools Help	-																						
Batch Table	0 L	ayout: 🔝 😰 📴 🔲	\Lambda 📝 Rest	ore Default	t Layout																				
 Compound Information 																									+ ×
Calibration Curve	- 1	Sample Type: <all></all>		- (Compound:	💷 Deo	xynivalenol		-	ISTD: 13	C-Deoxyniv	alenol			• • •	× 😥	🚩 🚩 🏱	P							
Sample Information			Deoxynivale	enol Res	Aflatoxin G2	2 Results	Aflatoxin G	1 Results	Aflatoxin B2	2 Results	Aflatoxin B	1 Results	HT2-Toxin	Results	Fumonisin B1	1 Results	T2-Toxin R	lesults	Ochratoxin A	Results	Zearalenone	Results	Fumonisin B2	Results	
Metrics Plot	Туре	Level Acq. Date-Time	Final Conc.	Accuracy	Final Conc.	Accuracy	Final Conc.	Accuracy	Final Conc.	Accuracy	Final Conc.	Accuracy	Final Conc.	Accuracy	Final Conc.	Accuracy	Final Conc. A	Accuracy	Final Conc. A	ccuracy	Final Conc.	Accuracy	Final Conc. A	ccuracy	
Method Table	nple	8/3/2011 8:48 PM	95.3381		28.1892		5.1051		6.8315		8.2204		43.2515		41.4520		7.0834		13.5732		30.5107		51.4217		
Method Davelopment Tasks	nple	8/3/2011 9:13 PM 1 8/3/2011 9:26 PM	0.0000	128.2	0.0014	122.2	0.0042	127.5	0.0035	128.9	0.0014	120.4	0.0257	126.6	0.0853	143.1	0.0005	134.8	0.0000	145.4	0.0000	0.0	0.0709	157.1	
Method Development Tasks		2 8/3/2011 9:38 PM	0.2454	108.9	0.0248	109.7	0.0229	101.4	0.0225	100.6	0.0214	95.7	0.1969	97.7	0.0767	102.6	0.0284	125.8	0.0228	99.3	0.0825	109.3	0.0516	68.7	
Method Error List		3 8/3/2011 9:51 PM	0.6825	90.9	0.0706	93.7	0.0715	94.8	0.0691	92.6	0.0713	95.6	0.5869	87.3	0.2214	88.9	0.0657	87.2	0.0706	92.2	0.3043	120.9	0.3238	129.2	
✓ Status Bar		5 8/3/2011 10:05 PM	6.9948	93.2	0.2038	92.1	0.2098	95.3	0.2074	93.4	0.7293	97.7	6.1391	91.4	2.1444	86.1	0.6900	91.5	0.6851	89.6	2.1540	85.6	2.0497	81.8	
Compounds-at-a-Glance		6 8/3/2011 10:29 PM	21.1500	93.9	2.1893	96.8	2.1354	94.4	1.8739	83.7	2.2344	99.8	20.0025	99.2	6.6171	88.6	2.0369	90.1	2.1378	93.1	6.9392	91.9	6.6411	88.4	
Toolbars	•	7 8/3/2011 10:41 PM 8 8/3/2011 10:54 PM	72.9867	97.2	7.3218	97.1	7.2630	96.4	8.3728 21.3032	112.2 95.2	7.4287	99.5 95.7	68.6467	102.2	22.4563	90.2	7.1423	94.8	7.1220	93.1 98.2	26.4649	105.1	23.1225	92.3	
Window Layout	•	9 8/3/2011 11:06 PM	763.4102	101.7	76.5047	101.5	76.8672	102.0	75.2327	100.8	75.6584	101.4	669.4873	99.6	253.6088	101.9	77.1990	102.4	77.6985	101.6	251.7291	100.0	254.0880	101.4	
Ratch Table Lavout	nple	8/3/2011 11:19 PM	3286.0170		32.6179		36.3763		40.8611		55.0843		958.9777		113.7979		20.2239		38.1642		98.8875		120.9559		
	nple	8/3/2011 11:57 PM 8/4/2011 12:09 AM	5.0085		0.0024		0.0055		0.0052		0.0046		3.6190		1.5708		0.0015		0.0052		1.8909		1.3844		
Add/Remove Columns	nple	8/4/2011 12:22 AM	15.7770		1.4740		1.4470		1.4434		1.4543		12.1565		5.0211		1.4902		1.6385		4.7109		3.5953		
Restore Default Columns	nple	8/4/2011 12:35 AM	43.9983		4.4282		4.5907		4.3826		4.7169		38.4992		14.0406		4.3725		3.8254		17.2780		10.9553		
Load Column Settings	nple	8/4/2011 1:00 AM	451.1134		47.0283		47.6888		46.5171		47.5886		429.2127		141.6326		47.7655		42.0208		168.6467		131.0514		
Save Column Settings	nple	8/4/2011 1:12 AM	1528.7403		148.9406		150.4875		148.1366		158.5599		1390.5888		490.9122		157.1570		143.3065		514.9689		478.2135		
Reset Sort	nple	8/4/2011 1:25 AM	38.5318		84.1637		5.7807	I	4.9510		13.8139	I	155.1843		0.0000	I	9.4868	I	15.8/11	I	65.9222		44.1909		
Lock Sample/Compound Columns	_																								
	-																								
Expand All											– X Cali	ibration Cur	rve												- X
Collapse All			a lat ta	at ta	AAI	A A		GT PA	CO PT	INIT			• tor _ 1 m		Tune Lines		- Origin	Innera	- Main			000			
Auto Review Samples Ctrl+1	1 1 🕰				亞 4	14 #	INI LI	GI DA	CO KI	11/1			• 🔊 🏻 🖻		Type: Linear	9 Pointe I	Origin	gnore	 weig 	Juc 1/X	• 15TL				
Auto Review Compounds Ctrl+2	2		1.493 mi	in.							8		1.068232 * x	- 1.28041	SEC. 5 Forms, SE-004	5 Fornis (Used, Vidics								/
ਤੋਂ 2.6- ਪ			\land								Dons	8.5- R^2	2 = 0.9993122 pe:Linear, Orio	0 qin:Iqnore,	Weight:1/x										•
2.4 -											Bes	7.5-			-										
2.2-											ative	7-												_	
2-											B	6.5-											_		
1.8-												6-													
1.6-			l j j	l								5.5-									_		-		
14-				l I								45-													
12				1								4-													
1				1								3.5-													
				}								3-						/							
0.8-			1									2.5-						-							
0.6-				1								2-													
0.4 -												1.2													
0.2 -												0.5-		↓	*										
0			J									0-	•	×											
-0.2-												-0.5-													
0.6 0.7 0.8	0.9 1	1.1 1.2 1.3	1.4 1.5	1.6	1.7	1.8 1	.9 Ż	2.1	2.2 2 Acqui	.3 2.4 sition Time	t e (min)	-(0.5 0	0.5	1	1.5	2 2	2.5	3 3.5	4	4.5	5	5.5	6 6.5	7 7.5 8 Relative Concentration

Processed ISTD-30 Deoxynivalenol 20 Samples (20 total)

Setup Graphics	Setup Graphics	Setup Graphics	Setup Graphics
Samples Compounds Organ Samples: Name Data File Name Data File Add > Samples shown in this order: Name Data File Solvent Blank Blank_01.d ISTD-Blank Std-01-r001. ISTD-10000 Std-02-r001. ISTD-3000 Std-03-r001. ISTD-1000 Std-05-r001. ISTD-100 Std-05-r001. ISTD-100 Std-06-r001.	Samples Compounds Organ Compounds: Name Type Add > Compounds shown in this order: Name Type 13C-Deoxynivale ISTD Deoxynivalenol Target 13C-Aflatoxin G2 ISTD Aflatoxin G2 Target 13C-Aflatoxin G1 ISTD Aflatoxin G1 Target 13C-Aflatoxin G1 ISTD Aflatoxin G1 Target 13C-Aflatoxin B2 ISTD Aflatoxin B2 ISTD Aflatoxin B2 ISTD Aflatoxin B2 ISTD Aflatoxin B2 ISTD	Samples Compounds Organize Rows by: Organize Organize Rows by: Compounds Samples Samples Overlay: None - target only None - target and qualifiers Qualifiers Qualifiers ISTD Matrix Spike Compounds Sample Groups Samples Compounds Samples	Samples Compounds Organize Outlier Image: Samples Compounds Organize Image: Samples Image: Peak Resolution Front Peak Resolution Rear Image: Samples Image: Samples Relative Retention Time Image: Samples Image: Samples Image: Samples Image: Samples Relative Retention Time Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Sample Image: Samples Image: Samples Image: Samples Image: Samples Image: Sample Image: Sample Image: Samples Image: Samples Image: Samples Image: Sample Image: Samples Image: Samples Image: Samples Image: Samples Image: Sample Image: Samples Image: Samples Image: Samples Image: Samples Image: Sample Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Sample Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samples Image: Samp

Compo	ounds at a Glance -	Myc	otoxin	is_QC	QQ - Myco	otoxir	is_Demo.batch.b	in	
File F	Edit View Analyz	e Li	ayout	Тос	ls Help				
A	Predefined Layou	ts	×	Batch	n 🕶 🔛	4		-	=
IST	Saved Layouts		×		Jade's fa	avouri	te Layout		
×10	Setup Layout	F1	.0		Jades' la	yout	for Drugs of Abu	se	
1.2	Load Layout				update				
1.1	Save Layout								
1. 1.0	Set as Default Lay	out							
Compoun	ds at a Glance - Mycotoxi	ns_QQ	Q - My	cotoxii	ns_Demo.bat	ch.bin			
File Edit	t View Analyze Layout	Тоо	ls Help						
<u>р</u>	redefined Layouts		Sample	es/Targ	ets/Auto Sca	ale			
IST S	aved Layouts		Sample	es/Targ	ets/Link X A	xes + Fi	t to low CAL		
×10 1. ⊯ S	etup Layout F10		Sample	es/Targ	ets/Overlay	Qualifie	ers + Link X Axes		
1. L	oad Layout		Sample	es/Targ	ets/Overlay l	ISTDs +	Link X, Y Axes		
0. S	ave Layout		Sample	es/ISTD)s/Overlay Qu	ualifiers	+ Link X Axes		
0. S	et as Default Layout		Sample	es/Targ	ets/By Comp	ound \	Wrapped + Fit to low (AL	
0.5-			Sample	es/Targ	jets/By Samp	le Wrap	oped + Fit to low CAL		
0.4-			Calibra	tion/T	argets/ByCor	mpound	d Overlapped + Fit to p	beak	
0.2- 0.1-	} {		Calibra	tion/IS	TDs/ByComp	oound (Overlapped + Fit to pe	ak	

NEW in B.07.01

Со	mp	ound	s at a G	Glance - N	Aycotoxin:
Fi	le	Edit	View	Analyze	Layout
A		Pre	edefine	d Layout	s ▶
IST		Sav	/ed Lay	outs	•
x10	Ħ	Set	tup Lay	out	F10
1.2	Calaat	Loi	ad Layo	out	
1.1		Sav	/e Lavo	out	
1		Set	as Def	ault Lavo	ut
1.0		Set	t as Def	fault Layo	ut

X 2.22 Y 146.775 20 Samples (20 total) 22 Compounds (22 total)

MassHunter Quantative Analysis Workflow

Excel Reports: A Case Study

Reduced Cost for Pesticides Residues Analysis by GC/MS/MS Using Mini-QuEChERS and a High Efficiency Source Melissa Churley¹ and Joan Stevens² ¹Agilent Technologies Inc., 5301 Stevens Creek Blvd., Santa Clara, CA 95051 USA ²Agilent Technologies Inc., 2850 Cent<u>erville Road, Wilmington, DE 19808 USA</u>

Distribution of Average Recoveries (n=6) for 126 Pesticides Spiked at 1, 5, 10 and 50 ng/g in Carrot, Tomato and Celery

These graphs took just **3 minutes** to prepare!

http://www.chem.agilent.com/Library/applications/5991-6069EN.pdf

How reports work in MassHunter Quantitative Analysis

Significant Gains in Performance

Quant Report Generation Time in Excel

Agilent Technologies

Performance Comparison

July 29, 2015

Automatically Generating Reports

Report Method

- Consolidates report settings
 - Templates, Graphic settings, post process
- Supports both Excel and PDF

Include Report Method in Unified Method

Dozens of PDF Report Templates Available at Installation

AuditTrail.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
DrugAnalysis.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
DrugAnalysis_DopingScreening.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_CC_Avg.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_CC_MidPoint.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_CC_Previous.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_DualGCResults.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_DualGCResults_TIC.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_InitialCal.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_LCSSpike.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_MSD.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_QA_Check.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_Results.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_Results_withGraphics.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Env_TPH_Validation.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_ByCompound.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_BySample.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_BySample_withSN.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_Calibration.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_Complete.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_LIMsIntegration.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_ResultsQualifierRatio.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_ResultsSummary.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_Samples.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Gen_Samples.template.xml	6/1/2015 3:45 PM	XML Document	84 KB
gen_samplesJade.template.xml	6/1/2015 4:21 PM	XML Document	84 KB
LIMsIntegration_ExportResults.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
🛃 logo.tif	5/19/2015 5:42 PM	TIFF image	743 KB
OPCW.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Outlier-BlankConc.template.xml	5/19/2015 6:14 PM	XML Document	72 KB
PAH_BioMarkers.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
Pesticide_Residues.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
QuantCSV.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
SIMScan.report.xml	5/19/2015 5:42 PM	XML Document	1 KB
TargetedDeconvolution.report.xml	5/19/2015 5:42 PM	XML Document	1 KB

PDF Logo File

Customize the PDF reports by replacing the shipping Agilent logo file with a desired graphic (jpeg, etc.)

2 mechanisms to create reports: via Excel or Directly (PDF reporting)

Excel

Fully supported

Uses Industry Standard Excel Plug-In

Available since initial version of MassHunter Quantitative Analysis (~10 years), 400+ templates

Excel file format can be useful for repurposing

• Word documents, Power Point Presentations

Rich content, feature-rich

PDF Reporting

Available since B.06.00 SP1

Significantly faster, especially for large data sets

Graphics are PDF direct content, virtually zero Graphics Device Interface resources consumed

Minimum Memory Usage

Logos, labels and graphics can be customized

Based on Python programming language

Foundation for LIMS/LIS fileless integration

MassHunter Quantative Analysis Workflow

Integration with LIMS/LIS/Intranet, etc.

- Done via reporting method
- Tutorial videos include details
- SQL Direct Insert is fileless transfer

Agiler	nt MassHunter Quantitative A	nalysis (for G	CMS) - DrugsOfAbuse - DrugsOfAbuse-LIMsExportResults.batch.bin	. 0 ×
File Ed	dit View Analyze Method	Update Rep	ort Tools Help	
1 🔁 🗁	🛃 🖻 💭 Analyze Batch 🔹	🛛 🕑 🕴 🕡	Generate	
Batch Tabl	le		Open Report Folder	• X
Sampl	e: 👔 Sample-3	、 [1] 切	Queue Viewer	📂 🔛 🦈
	Samplo		Query	alific
	Name Data File	Type	Recent Report Methods	tio MI
	Blank-1 CMAMBIk 01.d	Blank	1: C:\r\Report Templates\Quant\PDF-Reporting\LIMsIntegration ExportResults.m	
9	Calib-L1 CMAMCal_L1.d	Cal		9
~ ~	Complex LowAmodulad			25.9
	Generate Report		13/	28.8
			1053	26.4
	Batch file:		1350	
0			CilMana Hunta (Data) Davas Of Ahusa (
	Batch folder:			25.7
	Batch file:		DrugsOfAbuse-LIMsExportResults.batch.bin Browse	29.8
Compoun	Report folder:			* X
÷ 27 ↔	Colline al local	10-1-10-1		ht: N 👻 💂
+ MRM (1	C:\wassmunie	er/Data/Dru	gsolAbuse\QuantReports\DrugsOlAbuse-LiivisExc Browse	
	Poport mothod:			-
5	Report method.			
4	C:\MassHunte	er\Report Te	emplates\Quant\PDF-Reporting\LIMsIntegration_ExportResults.m	
т Э				
3			Choose New Edit	
2	Camples/Campounder			
1	Samples/Compounds:	88		
0	All sample	s	Choose samples	
	in a sumple		2	22 24 26
	All compo	unds	Choose compounds	tive Concentration
				GILENT\mtischler

User Community Resources Highlights

2 min videos and 30-60 min webcasts on www.agilent.com

Agilent Technologie	S Premier Labo for a Better V	oratory Partner World	ABOUT	AGILENT CONT	ACT US UNITED STATE	I COONI Q SEARC
Home 3 Search						
FILTERS APPLIED	All (35)	🕖 Expl	ore (34)	🦙 Shop (0)	🔩 Supp	ort (0)
Videos O	1-10 of 35 results to Looking for an El	r masshunter lectronic Measuremi	ent product? Vie	sit Keysight		1234
NARROW YOUR CHOICES	A FASTIN BOVE	MassHunter MassHunter Softwa Playing Time: 00:01:3	Software: N re - MassHunter V 1 Created 29 M	lassHunter W Valkup Iy 2015 File Size 4	alkup #8	PLAY
Solutions Clinical Research (1) Environmental (1) Food Testing & Agriculture (2) Geochemistry, Mining & Metals (1)	TO INSIGHT	What People MassHunter Softwa Playing Time: 00:01:3	Say About	MassHunter 1 s say about MassHu _{by 2015} Pile Size 4	Software nter and how they use the so #8	PLAY
Materials Teoling & Research (1) See More Product Group Abmic Spectroscopy (7) Mass Spectrometry (8)	AFASTER ROUTE TO INSIGHT	MassHunter MassHanter Softwa Playing Time: 02.01 (Software: P re - ProFinder Bab 7 Created: 29 M	roFinder Bate ch Analysis Worldlow by 2015 File Size 4	ch Analysis Workfl 	IOW
Nuclear Magnetic Resonance (1) Software & Informatics (25)	A PASTUR HOUTE	MassHunter NassHunter Guard	Software: C	ustomized R	eporting	

Library>Videos> Search "MassHunter"

In online Help, Videos, What's new

Agilent MassHunter Quantitative Analysis Video Demos What's New in Quant B.07.01

Centralized Network Solutions

OpenLAB ECM MassHunter Compliance (starter) #...!
 Network Attached Storage (NAS) (Advanced) #...!

- GC-MSD Library Search o Library Method (Starter)
 - o Library Search (starter)
 - Library Search Results (Advanced)
 - o Go To NIST MS Program (Advanced)

GC-MSD Library Search Report

- <u>TIC Library Search report (Starter</u>) **4.** TIC Library Search report Technical walkthrough (Advanced) **4.**
- TIC LIDrary Search report rechnical Walkthrough (Advanced)

GC Workflows

- <u>GC Instrument flavor Simplified presentation (starter)</u> #...!
 <u>Chromatogram Information GC/TIC signal overlay (starter)</u> #...!
- <u>Chromatogram Information GC/TIC signal overlay (start</u>
 <u>Compound Math Aggregate peaks (Advanced)</u>
- <u>GC PCB Aroclor Workflow (Advanced)</u> #--!

GC-MSD Quant Workflows

o GC-MSD Target Deconvolution Wizard (Starter) 4-1

GC-MSD EnviroQuant Workflows

- o Total Petroleum Hydrocarbons (TPH) (Starter)
- o GC-MSD EnviroQuant Tune Evaluation enhancements (Starter) #---
- o Peak Annotation Addin Manual Integration Reasons (Advanced)

QQQ Workflows

o <u>GC-QQQ Dioxin PCBs (Advanced)</u> #...! o LC-QQQ StreamSelect (Starter) #...!

LIMs Integration

- SQL Direct Insert using Python (Advanced) #...!
- <u>SQL Direct Insert using Python Technical walkthough (Expert)</u>

Publication Part Number: G6845-90031

http://www.chem.agilent.com/Library/user manuals/Public/EQ_ChemStation.pdf

30 min. to 1 hr. Technical Webinars

Agilent lechnologies	Premier Lab	oratory Partner World	ABOUT A	GILENT * CONTA
PRODUCTS & SERVICES	CROSSLAB	SOLUTIONS	SUPPORT	LIBRARY
Home > Training & Events > eSeminars > Laborate	ory Informatics MassHur	ter		
eSeminar: MassHunter Workstation				
MassHunter Workstation Recorded eSeminars - View at your com	venience			
MassHunter Workstation Recorded e Seminars - View at your com Live e-Seminars - view at a scheduled ti Title	venience ime Date	Time	Presenter	
MassHunter Workstation Recorded eSeminars - View at your com Live e-Seminars - view at a scheduled ti Title Better Data Faster with MassHunter Quart Analysis	venience ime Date July 29, 2015	Time 10.00am ET (Americas) 4.00pm CET (Europe)	Presenter Jade Byrd, MassHu Manager, Agilent Technologie	unter Software Produ es, Inc.
MassHunter Workstation Recorded eSeminars - View at your com Live e-Seminars - view at a scheduled ti Title Beter Data Faster with MassHunter Quart Analysis Recorded eSeminars - View at your com	venience ime itative July 29, 2015 venience	Time 10:00am ET (Americas) 4:00pm CET (Europe)	Presenter Jade Byrd, MassHu Manager, Aglient Technologie	unter Software Produ as, Inc.
MassHunter Workstation Recorded eSeminars - View at your com Live e-Seminars - view at a scheduled ti Title Better Data Faster with MassHunter Quark Analysis Recorded eSeminars - View at your com Title	venience ime Italive July 29, 2015 venience	Time 10.00am ET (Americas) 4.00pm CET (Europe)	Presenter Jade Byrd, Massi-Hu Manager, Agilent Technologie	unter Software Produ 55, Inc.
MassHunter Workstation Recorded eSeminars - View at your com Live e-Seminars - view at a scheduled ti Title Exter Data Faster with MassHunter Quart Analysis Recorded eSeminars - View at your com Title Expanding Access to LCMS for Everyone Download Presention SMB 65	venience ime istative 2015 venience	Time 10.00am ET (Americas) 4.00pm CET (Europe)	Presenter Jade Byrd, MassHu Manager, Agilent Technologie	unter Software Produ es, Inc.
MassHunter Workstation Recorded eSeminars - View at your com Live e-Seminars - view at a scheduled ti Title Better Data Faster with MassHunter Quart Analysis Recorded eSeminars - View at your com Title Expanding Access to LCMS for Everyone Download Presention SMB 658 LCMS 0-TOP-Based Structure Elucidate Download Presention SMB 658	venience interime July 29, 2015 venience n and Profiling in For	Time 10.00am ET (Americas) 4.00pm CET (Europe) od and Agricultural Science	Presenter Jade Byrd, MassHt Manager, Aglient Technologie	unter Software Produ 28, Inc.
MassHunter Workstation Recorded eSeminars - View at your com Live e-Seminars - view at a scheduled ti Title Exter Data Faster with MassHunter Quart Analysis Recorded eSeminars - View at your com Title Expanding Access to LCMS for Everyone Download Presention Side Set Comp Deeper into Your Data with MassHu Comp Deeper Into Your D	venience inter itative July 29, 2015 venience n and Profiling in For- nter Qualitative Worl	Time 10:00am ET (Americas) 4:00pm CET (Europe) d and Agricultural Science cflows	Presenter Jade Byrd, MassHk Manager, Aglent Technologie	unter Software Produ ss, Inc.

www.chem.agilent.com/en-US/Training-Events/eSeminars/236E/Pages/default.aspx

Feedback about MassHunter Quantitative Analysis

"We work with QC analyses that involves tracking 40 parameters, looking at a sequence of 10 samples at a time... before, we had to go sample by sample, data file by data file to evaluate the sequence... Now, with MassHunter, we have created one customized overview screen that enables us to scroll parameter by parameter all the QCs for the full sequence very quickly." DR. ARMAND VERBUEKEN, GC/MS USER, BAYER, ANTWERP, BELGIUM ENVIRONMENTAL **TESTING LAB**

"At the American games in Mexico, having an option like Compounds-at-a-Glance made it very easy to detect which compounds are positive. Also, having the capability to customize our reporting is very important because we are continuously adding new compounds to the methods and we need to incorporate them into the reporting template." DR. JOSEP MARCOS, LC/MS USER, THE HOSPITAL DEL MAR IN BARCELONA

