Extracting More Analytes from Complex Samples using Agilent's GC/TQ and GC/Q-TOF

> GC/TQ (Triple Quad): Chin-Kai (Kai) Meng, PhD Senior Application Chemist

GC/Q-TOF (Quad-Time-of-Flight):

Terry L. Sheehan, PhD GC/MS Marketing Manager

Agilent Technologies

Extracting More Analytes from Complex Samples using Agilent's Pesticide GC/TQ Analyzer

-- "Ready to Go" Analyzer based on the most comprehensive MRM database

Ready to use Fast Track Analyzers ... no on-site <u>break-in</u> needed, ready for injections

Why Do We Need Backflush?

- With the selectivity of MS/MS, users cannot see "dirty matrix"
- MS/MS users want the LOWEST detection limits inject more with large volume injection
- Many late eluting peaks are <u>not</u> "chromatographically ideal" and leave a residue throughout the column
- Heavy matrix contaminates the source faster --- performance is LOST!

Backflush ensures the highest data quality with GC/MS/MS! The trade-off is 10-20% decrease in sensitivity.

10% Fish Oil In Acetone: Retention Time Shifts Eliminated With Backflushing

Milk Extract - Using Bakeout To Remove High Boilers

Backflush: Many Advantages for GC/MS(/MS) Analysis of Complex Samples ('Dirty Matrices')

- Provides more consistent GC retention times
- Provides better, more consistent MS spectra through sequence
 - Reduces chemical noise that due to small carryover of matrix
 - Higher quality quantitation without increase in interfering ions
- Reduces contamination for the source
- <u>Reduces analysis time</u>
- Increases lifetime of analytical column

Benefits of Agilent GC/MS/MS Pesticide Analyzer

Retention Time	 No need to update the time segment RTs after a
Locking	column maintenance
Multimode inlet (MMI)	 injector adds flexibility by including standard, cold split/splitless, solvent vent (LVI) capabilities.
Capillary Flow	 Shorter analysis time, more consistent retention
Technology (CFT) and	times and spectra, longer column life, and less
backflush	frequent source cleaning improve uptime.
MS/MS MRM	 Optimized and flexible MRM database of
Database	hundreds of compounds
Pre-config. and factory setup analyzer	 Factory setup and checked out on pesticide mixture - ready to generate results on Day One

But...

How does the Analyzer work with the list of target pesticides in my lab?

Agilent's New Comprehensive MRM database with Extensive Flexibility

Contains 7000 optimized MRMs for 1000 pesticides

-- over 3000 injections on \$70,000 worth of chemical standards

Extensive flexibility allows method optimization

- average of 7 MRM transitions with relative intensity for each compound
 - -- provides alternatives to avoid matrix interference
- compound classification, CAS number etc. in excel format
 - -- allows easy searching and sorting for method customization
- three chromatographic methods (constant flow or pressure) with Retention Time and Retention Index
 - -- allows maximum freedom to follow customer's workflow
- absolute intensity for each MRM transition
 - -- allows semi-quantitation without standards

The Flexibility: 7 transitions; classifications; 3 RTs and RIs

G		9 - (* - 🛕 🔠) =								- ¤ X					
-	Hor	me Insert Page Layou	it Formulas I	Data Review	View Dev	eloper Add-Ins	Data		DT.	(and			a		×
- 224	å ⊂	Calibri	- 11 - A A	= = = >	• Wrap	Text General	Data	oase r	nas KIS	(and	RIS) to	o be u	sed	with	
Paste	420	opy B Z U	-) (= -) (-) - A -		E Merg	e & Center + \$ + %		~~		ìop	~~ [′]				、 I
*	Clipbo	ard G	Font 5		lianment	5 Nun	three	GCm	nethods	(CP.	C⊦. ar	וd C⊦-	-scre	enino	I). 👘
<u> </u>	B2	- (* f	Acephate							<u> </u>	,				×
1	Δ	R	C	D	F	F	G	н	I I		K	1-	M	N	
	~	U	C	U		•	0			1	K	L	IVI	IN I	
					Molecular										
			CAS # (format	Molecular	Weight	Molecular Weight	CAS # (format 2	((T - 0502 screening (40.5 min), BTI =		RT - 0501 (41.67 min). RTI = 16.593		RT - 0502 (19.75 min). RTI = 9.143	=
1	-	Common Name 💽	-	Formu	(average 💌	(mono-isotopic) 🔽	for sortin	Classification -	Classification	18.111 min 🔽	RI - 0502 screenir 💌	min 💌	RI - 0501 💌	min 💌	RI - 0502 💌 Co
2	1	Acephate	30560-19-1	C4H10NO3PS	183.2	183.0119004	30560191	insecticide	Organophosphorus	6.234		7.610		5.651	Aci
3	1	Acephate	30560-19-1	C4H10NO3PS	183.2	183.0119004	30560191	insecticide	Organophosphorus	6.234		7.610		5.651	Aci
4	1	Acephate	30560-19-1	C4H10NO3PS	183.2	183.0119004	30560191	insecticide	Organophosphorus	6.234		7.610		5.651	Aci
5	1	Acephate	30560-19-1	C4H10NO3PS	Δ		30560191	insecticide	Organophosphorus	6.234		7.610		5.651	Aci
6	1	Acephate	30560-19-1	C4H10NO3PS		erage	30560191	insecticide	Organophosphorus	6.234		7.610		5.651	Aci
7	2	Etridiazole (Terrazole	2593-15-9	C5H5Cl3N2OS			2593159	fungicide	Thiadiazole	9.265		7.928		5.843	itr
8	2	Etridiazole (Terrazole	2593-15-9	C5H5Cl3N2OS		l exact	2593159	fungicide	Thiadiazole	9.265		7.928		5.843	itr
9	2	Etridiazole (Terrazole	2593-15-9	C5H5Cl3N2OS	N/-		2593159	fungicide	Thiadiazole	9.265		7.928		5.843	itr
10	2	Etridiazole (Terrazole	2593-15-9	C5H5Cl3N2OS		iecular	2593159	fungicide	Thiadiazole	9.265		7.928		5.843	itr
11	2	Etridiazole (Terrazole	2593-15-9	C5H5Cl3N2OS	10/0	t este t	2593159	fungicide	Thiadiazole	9.265		7.928		5.843	itr
12	2	Etridiazole (Terrazole	2593-15-9	C5H5Cl3N2OS		light	2593159	fungicide	Thiadiazole	9.265		7.928		5.843	itr
13	2	Etridiazole (Terrazole	2593-15-9	C5H5Cl3N2OS		–	2593159	fungicide	Thiadiazole	9.265		7.928		5.843	itr
14	3	Methabenzthiazuron	18691-97-9	C10H11N3OS	221.0	221.0622827	18691979	herbicide	Urea	13.461		11.176		7.269	Λe
15	3	Methabenzthiazuron	18691-97-9	C10H11N3OS	221.0	221.0622827	18691979	herbicide	Urea	13.461		11.176		7.269	VIE
16	3	Methabenzthiazuron	18691-97-9	C10H11N3OS	221.0	221.0622827	18691979	herbicide	Urea	13.461		11.176		7.269	Me
17	3	Methabenzthiazuron	18691-97-9	C10H11N3OS	221.0	221.0622827	18691979	herbicide	Urea	13.461		11.176		7.269	Me
18	3	Methabenzthiazuron	18691-97-9	C10H11N3OS	221.0	221.0622827	18691979	herbicide	Urea	13.461		11.176		7.269	VIE
19	3	Methabenzthiazuron	18691-97-9	C10H11N3OS	221.0	221.0622827	18691979	herbicide	Urea	13.461		11.176		7.269	VIE
20	3	Wethabenzthiazuron	18691-97-9	CIUHIINBUS	221.0	221.0622827	18691979	herbicide	Urea	13.461		11.176		7.269	VIE
21	3	The second	18691-97-9		221.0	221.0622827	18091979	nerbicide	Orea	13.461		11.1/6		7.269	VIE
22	4	Ethoxyquin	91-53-2	C14H19NO	217.3	217.1400642	91532	fungicide, plant	Quinoline	15.234		12.800		7.795	etr
25	4	Ethoxyquin	91-53-2	C14H19NO	217.3	217.1400042	91032	fungicide, plant	Quinoline	15.254		12,000		7.795	.UT
24	4	Ethoxyquin	91-53-2	C14H19NO	217.3	217.1400042	91032	fungicide plant	Quinoline	15.234		12.000		7 705	tr tr
25	4	Ethoxyquin	01-52-2	C14H19NO	217.5	217.1400042	01523	fungicide plant	Quinoline	15.234		12.806		7 795	the second se
27	4	Ethoxyquin	91-53-2	C14H19NO	217.3	217.1466642	91532	fungicide, plant	Quinoline	15.234		12.806		7,795	Et k
28	5	Dicloran (Dichloran)	99-30-9	C6H4Cl2N2O2	207.0	205.9649828	99300	fungicide	Substituted benzen	14,775		12.536		7,798	Dic
29	5	Dicloran (Dichloran)	99-30-9	C6H4Cl2N2O2	207.0	205.9649828	99309	fungicide	Substituted benzen	4.775		12.536		7,798	Dic
30	5	Dicloran (Dichloran)	99-30-9	C6H4Cl2N2O2				0		1 14.775		12,536		7,798	Dic
database / database-WORKING / 0501 Method / 0502 Method /							sticido	ie clas	seifiad						► I
Ready						ach pes		13 0143	SSIIICU				H	114% —	Ū 🕀
					in	two oo									
						two ca	wo categories								

The Flexibility: Excel format, relative and absolute Transition intensity

Past	Home Home Cut Copy Format Clipboard	Insert Page Layout Formu Calibri + 11 - Mas B 工业 - 田 - 3 - 五 - 三 Font 5	unter 루 루 코 Mer Alignment	Form	at s % s	The inte	The absolute and relative ntensities of transitions (Color Scales): Red denotes strong intensity and										
	B2	A Acephate									donoto		intensity		ALL transitions		*
4	0	Р	Q	R	S	Т	U	V	W	Х	denote	s weak	intensity	among	ALL transitions	AE	
		6 N		Precursor	MS1	Product	MS2	Dwell Time	65.46	Intensity Scale within the	Tranisition Relative	Quant	oking New C	China GB Method	N		=
1	RI - 0502 💌	Common Name		126.0	Resolution -	04.0	Resolutio -	(ms) -		Datar Fev	Intensit	(QU) /QU -	フ 融田腔球	Group	Japanese Name	▼ Notes ▼	- 1
2		Acephate	EALSE	142.1	Wide	94.0	Wide	20	10	130	21%	01	乙酰甲胺醚	Ē	アヤフェート		-8
3		Acephate	FALSE	95.0	Wide	78.0	Wide	20	10	20	10%	02	乙酰甲胺醚	F	アヤフェート		
5		Acephate	FALSE	95.0	Wide	79.9	Wide	20	10	20	17%	03	乙酰甲胺磷	F	アセフェート		
6		Acephate	FALSE	142.1	Wide	65.0	Wide	20	25	20	16%	04	乙酰甲胺磷	F	アセフェート		
7		Etridiazole (Terrazole, Echlomezol)	FALSE	183.0	Wide	140.0	Wide	20	15	2440	100%	QO	土菌灵	A	エトリジアゾール		
8		Etridiazole (Terrazole, Echlomezol)	FALSE	211.1	Wide	183.0	Wide	20	15	2150	88%	Q1	土菌灵	Α	エトリジアゾール		
9		Etridiazole (Terrazole, Echlomezol)	FALSE	185.0	Wide	142.1	Wide	20	15	1680	69%	Q2	土菌灵	Α	エトリジアゾール		
10		Etridiazole (Terrazole, Echlomezol)	FALSE	211.1	Wide	140.0	Wide	20	15	1590	65%	Q3	土菌灵	Α	エトリジアゾール		
11		Etridiazole (Terrazole, Echlomezol)	FALSE	213.1	Wide	185.0	Wide	20	15	1460	60%	Q4	土菌灵	Α	エトリジアゾール		
12		Etridiazole (Terrazole, Echlomezol)	FALSE	213.1	Wide	142.1	Wide	20	15	1080	44%	Q5	土菌灵	Α	エトリジアゾール		
13		Etridiazole (Terrazole, Echlomezol)	FALSE	183.0	Wide	108.0	Wide	20	45	500	20%	Q6	土菌灵	Α	エトリジアゾール		
14		Methabenzthiazuron	FALSE	164.0	Wide	136.0	Wide	20	5	310	100%	Q0	甲基苯噻隆	D	メタベンズチアズロ	/	
15		Methabenzthiazuron	FALSE	163.1	Wide	136.0	Wide	20	15	190	60%	Q1	甲基苯噻隆	D	メタベンズチアズロ、	/	
16		Methabenzthiazuron	FALSE	134.9	Wide	90.9	Wide	20	15	150	49%	Q2	甲基苯噻隆	D	メタベンズチアズロ:	/	
17		Methabenzthiazuron	FALSE	134.9	Wide	108.0	Wide	20	15	100	32%	Q3	甲基苯噻隆	D	メタベンズチアズロ:	/	
18		Methabenzthiazuron	FALSE	135.9	Wide	109.0	Wide	20	25	90	31%	Q4	甲基苯噻隆	D	メタベンズチアズロ:	/	- 8
19		Methabenzthiazuron	FALSE	135.9	Wide	64.9	Wide	20	35	80	25%	Q5	甲基苯噻隆	D	メタベンズチアズロ:	/	- 8
20		Methabenzthiazuron	FALSE	163.1	Wide	109.0	Wide	20	15	80	24%	Q6	甲基苯噻隆	D	メタベンズチアズロ、	/	_
21		Methabenzthiazuron	FALSE	164.0	Wide	108.0	Wide	20	30	50	16%	Q7	甲基苯噻隆	D	メタベンズチアズロ、	/	- 8
22		Ethoxyquin	FALSE	202.1	Wide	174.0	Wide	20	15	2890	100%	Q0	乙氧喹啉				- 8
23		Ethoxyquin	FALSE	202.1	Wide	145.1	Wide	20	25	360	12%	Q1	乙氧喹啉				- 8
24		Ethoxyquin	FALSE	203.0	Wide	175.0	Wide	20	15	360	12%	Q2	乙氧喹啉				-8
25		Ethoxyquin	FALSE	217.0	Wide	202.0	Wide	20	10	360	12%	Q3	乙氧喹啉				-8
26		Ethoxyquin	FALSE	1/4.0	Wide	146.1	Wide	20	10	310	11%		△ 乳喹啉				
27		Etnoxyquin Dialaran (Diaklaran)	FALSE	202.1	Wide	159.0	Wide	20	30	260	9%		ム乳壁桝	D	いりロラン		
28		Dicioran (Dichloran)	FALSE	206.0	Wide	176.0	Wide	20	15	2480	100%		剥哨 <u>胶</u> 气站吃	В	ジクロラン		
29		Dicioran (Dichloran)	FALSE	124.0	Wide	1/8.0	Wide	20	15	1360	570		剥哨 <u>政</u> 信 砧 睦	B	ジクロラン		
14 4	databa	ase database-WORKING 0501 Method	0502 Meth	iod / 0502 S	creening Method	/3.1	wide	20	1 15	× 1410		u		B	576,0	•	
Ready						One Q	uant a	and se	everal (Qualif	ication	% 🕘 📃 🗸	•				

ions for each compound

Click on the sorting button to show/hide Quant and Qualifier lons

Ca	MRM Databasexkix - Microsoft Excel																		
	Home	Insert Page Layout Formulas Data	Review	View De	veloper Add-	Ins													a x
100	🔏 Cut	Calibri • 11 • 🗛 🔭 🚍	= - 8	Wra	n Text	General			Norm	al 2	Nor	mal	Bad	Good	1	B 1	Σ AutoSum - A	7 A	
Pact	Сору					e ov	+.0 .00 Cond	itional For	nat Nout	tral	Calo	ulation	Chock Coll	Evalapatan	Incert	t Delete Format	Fill + Z	t & Find &	
7	💙 Format	Painter		A Ser Mer	ge & Center *	\$ %,	.00 .0 Forma	atting * as Tal	ble *	rai	Carc	ulation	Check Cell	Explanatory	··· - +	* *		er* Select*	
	Clipboard	Font S		Alignment	G [Number	R.					Styles				Cells	Editing		
	B2				N 9.44	P										N			*
	0	Р	Q	R	S	Т	U	V	W		X	Y	Z	AA	AB	AC	C A	D P	AE 🔺
								Duinill		Inte	insity	T			China CD				
				Deserves	MCA	Duralizat	1400	Dweil		Scale	within	Deletion	0.0	7	China GB				-
1	DI 0500	Common Nama	ICTD 2	Precursor	IVIS1	Product	IVI5Z	(me)	CENE	T	ne	Relative		Chinese Name		lananasa Na	ma 🔲 Nat		
1	KI - 0502 -	Common Name		126.0	Mido	04.0	Mide	(ms) -	10	AI	Sort A to	7		7 社 田 腔 迷	Group	Japanese Na	me Moti	35	_
2		Acephate	FALSE	142.1	Wide	94.0	Wide	20	10		Sort 7 to	Δ		乙酰甲胺碘乙酰甲胺碘	F	7 + 7 =			_
2		Acephate	EALSE	142.1	Wide	790.0	Wide	20	10	A*	Sort by C	olor		乙酰甲胺苯	E	アセフチート			_
4		Acephate	FALSE	95.0	Wide	70.9	Wide	20	10	- w	Clear Filt	er From "Ouan!	LIOOU/Qual"	乙酰甲胺糖	r c	7+7=			
5		Acephate	EALSE	1/2 1	Wide	65.0	Wide	20	25		Filter by	Color	· (seer) second	乙酰甲胺磷	E	7+7			_
7		Etridiazole (Terrazole Echlomezol)	EALSE	192.1	Wide	140.0	Wide	20	15		Text <u>F</u> ilte	rs	•	上南記	Δ	エトリッアソ	'→µ		
8		Etridiazole (Terrazole, Echlomezol)	FALSE	211.1	Wide	183.0	Wide	20	15			elect All)		上面灭	Δ	エトリジアソ	بالا ب		- 1
0		Etridiazole (Terrazole, Echlomezol)	FALSE	185.0	Wide	142.1	Wide	20	15		Q)		上面尺	Δ	エトリッアソ	· سالا		_
10		Etridiazole (Terrazole, Echlomezol)	FALSE	211.1	Wide	140.0	Wide	20	15			1		上面火	Δ	エトリジアソ	بال		- 1
11		Etridiazole (Terrazole, Echlomezol)	FALSE	211.1	Wide	185.0	Wide	20	15		Q	3		土菌灵	Δ	エトリジアソ	'⊷ ال		_
12		Etridiazole (Terrazole, Echlomezol)	FALSE	213.1	Wide	142.1	Wide	20	15			4		上面尺	Δ	エトリジアソ	بال		_
13		Etridiazole (Terrazole, Echlomezol)	FALSE	183.0	Wide	108.0	Wide	20	45			5		土菌灵	Δ	エトリジアソ	بار ــــــــــــــــــــــــــــــــــــ		
14		Methabenzthiazuron	FALSE	164.0	Wide	136.0	Wide	20	5			7 Innika)		甲基苯噻降	D	メタベンズチ	アズロン		
15		Methabenzthiazuron	FALSE	163.1	Wide	136.0	Wide	20	15			driks)		甲基苯噻降	D	メタベンズチ	アズロン		
16		Methabenzthiazuron	FALSE	134.9	Wide	90.9	Wide	20	15			OK	Cancel	甲基苯噻隆	D	メタベンズチ	アズロン		
17		Methabenzthiazuron	FALSE	134.9	Wide	108.0	Wide	20	15		1001	3/70	0.5	甲基苯噻降	D	メタベンズチ	アズロン		
18		Methabenzthiazuron	FALSE	135.9	Wide	109.0	Wide	20	25		90	31%	04	甲基苯噻降	D	メタベンズチ	アズロン		
19		Methabenzthiazuron	FALSE	135.9	Wide	64.9	Wide	20	35		80	25%	Q5	甲基苯噻降	D	メタベンズチ	アズロン		
20		Methabenzthiazuron	FALSE	163.1	Wide	109.0	Wide	20	15		80	24%	Q6	甲基苯噻隆	D	メタベンズチ	アズロン		
21		Methabenzthiazuron	FALSE	164.0	Wide	108.0	Wide	20	30		50	16%	Q7	甲基苯噻隆	D	メタベンズチ	アズロン		
22		Ethoxyguin	FALSE	202.1	Wide	174.0	Wide	20	15		2890	100%	QO	乙氧喹啉					
23		Ethoxyquin	FALSE	202.1	Wide	145.1	Wide	20	25		360	12%	Q1	乙氧喹啉					
24		Ethoxyquin	FALSE	203.0	Wide	175.0	Wide	20	15		360	12%	Q2	乙氧喹啉					
25		Ethoxyquin	FALSE	217.0	Wide	202.0	Wide	20	10		360	12%	Q3	乙氧喹啉					
26		Ethoxyquin	FALSE	174.0	Wide	146.1	Wide	20	10		310	11%	Q4	乙氧喹啉					
27		Ethoxyquin	FALSE	202.1	Wide	159.0	Wide	20	30		260	9%	Q5	乙氧喹啉					
28		Dicloran (Dichloran)	FALSE	206.0	Wide	176.0	Wide	20	15		2480	100%	QO	氯硝胺	В	ジクロラン			
29		Dicloran (Dichloran)	FALSE	207.9	Wide	178.0	Wide	20	15		1560	63%	Q1	氯硝胺	В	ジクロラン			
30		Dicloran (Dichloran)	FALSE	124.0	Wide	73.1	Wide	20	15		1410	57%	Q2	氯硝胺	В	ジクロラン			-
14 4	► ► datab	ase database-WORKING 0501 Method	0502 Meth	od 📈 0502 S	creening Method	/@/					1								
Kead																			

Use the sorting function to quickly select a Quant (Q0) and top three Qualifier ions (to build a method)!

Image: Not the second of t	E	Image: Second														X				
	9	Home	Insert Page Layout Formulas Data	Review	View De	veloper Add-	ins											۲)	×
Control Contro Control Control		& Cut		= = 3	≫- TWra	p Text	eneral	-		Norm	al 2 Nor	mal E	Bad	Good		🔁 🛅	Σ AutoSum	A7 1	23	
Contract First Appart Name Production Contract Co	Paste	е Сору	B 7 11 - 3 - A -	= = =	E E Mer	ne & Center *	\$ - % .	+.0 .00 Condi	itional Form	nat Neut	ral Cale	ulation	Check Cell	Explanatory .	Insert	Delete Format	Fill *	Sort & Fi	ind &	
P2 * Acaptate P Q R S T U V W X V Z AA	*	Format I	Painter		Alignment	ge of center []	Number	Forma	tting * as Tab	ole -		Chilar				e e calle	Clear *	Filter * Se	elect *	
2 0 P 0 R S T U V W X Y Z AA AB AC AD AE 1 B.002 ⁺ Common Name SID1 ⁺ Kc Resolution Kc		P2	The Acenhate		Finginistic		Humber					Styles				cens	E.	ming		×
Common Name C 1502 C 1502 <thc 1502<="" th=""> <thc 1502<="" th=""> <thc 1<="" td=""><td>1</td><td>0</td><td>D</td><td>0</td><td>P</td><td>c</td><td>т</td><td>II.</td><td>V</td><td>10/</td><td>Y</td><td>v</td><td>7</td><td>۸۸</td><td>٨R</td><td>AC</td><td></td><td>AD</td><td>AE</td><td>-</td></thc></thc></thc>	1	0	D	0	P	c	т	II.	V	10/	Y	v	7	۸۸	٨R	AC		AD	AE	-
I Br. edc. Common Name STDT 5 Note (c) Precury (c) Precury (c) <td>-</td> <td>0</td> <td></td> <td>u</td> <td>K</td> <td></td> <td></td> <td>0</td> <td>· · ·</td> <td></td> <td>Intensity</td> <td></td> <td>L</td> <td></td> <td>AD</td> <td>AC</td> <td></td> <td>AU</td> <td>AL</td> <td>n</td>	-	0		u	K			0	· · ·		Intensity		L		AD	AC		AU	AL	n
n n n n n N									Dwell		Scale within	Tranisition			China GB					
1 μ = x = 2 Common Name C Note = 1 C Resolution (m = k Resolution Resolution <th< td=""><td></td><td></td><td></td><td></td><td>Precursor</td><td>MS1</td><td>Product</td><td>MS2</td><td>Time</td><td></td><td>the</td><td>Relative</td><td>Quant</td><td></td><td>Method</td><td></td><td></td><td></td><td></td><td></td></th<>					Precursor	MS1	Product	MS2	Time		the	Relative	Quant		Method					
2 Acephate FASE 13.60 Wide 9.00 Vide 100 100 20 Zmmtik F 7<73 4 Acephate FASE 9.50 Wide 7.89 Wide 20 10 30 100 30 20 Zmmtikk F 7<73	1	RI - 0502 -	Common Name	ISTD? -	IC-	Resolutio	10-	Resolutio	(ms) -	CE (V -	Database -	Intensit	(Q0) /Qu	Chinese Name 🗸	Group	Japanese Nam	ne 💌	Notes		
3 Acephate FALSE 142.1 Wide 900 100 30 21.6 01 2.7 7	2		Acephate	FALSE	136.0	Wide	94.0	Wide	20	10	130	100%	QO	乙酰甲胺磷	F	アセフェート				
4 Acephate FASE 95.0 Wide 78.9 Wide 20 10 20 19% 0.2 Zill Higks F 7.7 2 - 1 - 1 100 5 Acephate FASE 95.0 Wide 140 Wide 20 15 2440 100% 00 ±ätt A × h 9 07 7 - h I I A × h 9 07 7 - h I I A × h 9 07 7 - h I I I A × h 9 07 7 - h I I I A × h 9 07 7 - h I I I A × h 9 07 7 - h I I I I Mithaben(Thiazon) F X A × h 9 07 7 - h I I I I I I Mithaben(Thiazon) F X A X h 9 07 7 - h I I I X A X H 9 07 7 - h I I I I X A X H 9 07 7 - h I I X A X H 9 07 X X F X X X Y X X Y X X X X X X X X X X	3		Acephate	FALSE	142.1	Wide	96.0	Wide	20	10	30	21%	Q1	乙酰甲胺磷	F	アセフエート				
S Acephate FASE 9.50 Wide 799 Wide 20 10 20 17% 6.23 ZK#mgkg F F < F < F < h C 8 Etridiazole (Terrazole, Echlomezol) FALSE 211.1 Wide 183.0 Wide 20 15 2150 88% 01 ± BT A > > hy 0 7 7 - h 1 9 Etridiazole (Terrazole, Echlomezol) FALSE 211.1 Wide 142.1 Wide 20 15 1680 69% 0.2 ± BT A > hy 0 7 7 - h 1 14 Methaberxthiazoron FALSE 164.0 Wide 130.0 Wide 20 15 100 00 # BT A > hy 0 7 7 - h 1 1 14 Methaberxthiazoron FALSE 164.0 Wide 130.0 1006 00 1# # # # # # D > > > > > > > > > > > > > > > > > > >	4		Acephate	FALSE	95.0	Wide	78.9	Wide	20	10	20	19%	Q2	乙酰甲胺磷	F	アセフエート				
P Endiabole Clerrazole, Echlomezol) FALSE 183.0 Wide 140.0 Wide 20 15 2440 100% 0.0 ±ERT A A = b # 07 7-m A 8 Etridiazole (Terrazole, Echlomezol) FALSE 11.1 Wide 142.0 Wide 20 15 1550 65% 0.2 ±ERT A A b # 07 7-m A	5		Acephate	FALSE	95.0	Wide	79.9	Wide	20	10	20	17%	Q3	乙酰甲胺磷	F	アセフェート				
8 Etridiazole (Terrazole, Echlomezo) FALSE 2111 Wide 183.0 Wide 20 15 2150 388 0.1 土竜茂 A S トリッアゾール 9 Etridiazole (Terrazole, Echlomezo) FALSE 185.0 Wide 142.1 Wide 140.0 Wide 20 15 1590 658 0.0 ±龍茂 A S トリッアゾール Image: State	7		Etridiazole (Terrazole, Echlomezol)	FALSE	183.0	Wide	140.0	Wide	20	15	2440	100%	Q0	土菌灵	Α	エトリジアゾー	ール			
9 Endiazole (Terrazole, Echlomezol) FALSE 135.0 135 1360 66% 0.2 ± μ̄ 𝔅 A × h y 0 7 7 - μ I 14 Methabenzhiazuron FALSE 121.1 Wide 140.0 Wide 20 5 150 65% 0.3 ± μ̄ 𝔅 A × h y 0 7 7 - μ I 15 Methabenzhiazuron FALSE 164.0 Wide 136.0 Wide 20 15 190 66% 0.1 甲基苯噻酸 D × J * * V × X * J × X * X * J × X * X * Z * X * X * Z * X * X * Z * X * X	8		Etridiazole (Terrazole, Echlomezol)	FALSE	211.1	Wide	183.0	Wide	20	15	2150	88%	Q1	土菌灵	Α	エトリジアゾー	- JL			
10 Etridizabe (Terrazole, Echlomezol) FALSE 211.1 Wide 140.0 Wide 20 15 1590 65% 0.3 二首京 A 本 ト り の ア / 14 Methabenzthiazuron FALSE 164.0 Wide 136.0 Wide 20 15 190 60% 0.1 甲基苯噻酸 D 3 か べ ジ メ ケ ブ メ ケ ブ メ ケ ブ 0 3 か べ ジ メ ケ ブ メ ケ ブ 0 3 か べ ジ メ ケ ブ × ブ × ブ × ブ × ブ × ブ × ブ × ブ × ブ × ブ	9		Etridiazole (Terrazole, Echlomezol)	FALSE	185.0	Wide	142.1	Wide	20	15	1680	69%	Q2	土菌灵	Α	エトリジアゾー	- JL			
14 Methabenzthiazuron FALSE 164.0 Wide 136.0 Wide 20 5 310 100% 0.0 甲基苯噻% D 3 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10		Etridiazole (Terrazole, Echlomezol)	FALSE	211.1	Wide	140.0	Wide	20	15	1590	65%	Q3	土菌灵	Α	エトリジアゾー	- JL			
15 Methabenzthiazuron FALSE 163.1 Wide 136.0 Wide 20 15 190 60% 0.1 H#k#e@ D 3 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	14		Methabenzthiazuron	FALSE	164.0	Wide	136.0	Wide	20	5	310	100%	Q0	甲基苯噻隆	D	メタベンズチョ	マズロン			
16 Methabenzthiazuron FALSE 134.9 Wide 90.9 Wide 20 15 150 49% 0.2 H 基本電磁 D A p < > 2 ≠ 7 ≠ 7 ≠ 2 > 17 Methabenzthiazuron FALSE 134.9 Wide 108.0 Wide 20 15 100 32% 0.3 H 基本電磁 D A p <> > 2 ≠ 7 ≠ 7 ≠ 2 > Image: Second	15		Methabenzthiazuron	FALSE	163.1	Wide	136.0	Wide	20	15	190	60%	Q1	甲基苯噻隆	D	メタベンズチョ	マズロン			
17 Methabenzthiazuron FALSE 134.9 Wide 100 32% 0.3 ###æ@ D λ / ~ × / × / × / × / × / × / × / × / × /	16		Methabenzthiazuron	FALSE	134.9	Wide	90.9	Wide	20	15	150	49%	Q2	甲基苯噻隆	D	メタベンズチョ	マズロン			
22 Ethoxyquin FALSE 202.1 Wide 174.0 Wide 20 15 2890 100% 0.0 Zärett Zärett 23 Ethoxyquin FALSE 202.1 Wide 175.0 Wide 20 15 360 12% 0.1 Zärett	17		Methabenzthiazuron	FALSE	134.9	Wide	108.0	Wide	20	15	100	32%	Q3	甲基苯噻隆	D	メタベンズチョ	マズロン			=
23 Ethoxyquin FALSE 202.1 Wide 145.1 Wide 20 25 360 12% 0.1 Zāperk Caperk 24 Ethoxyquin FALSE 203.0 Wide 175.0 Wide 20 15 360 12% 0.2 Zāperk Caperk <	22		Ethoxyquin	FALSE	202.1	Wide	174.0	Wide	20	15	2890	100%	Q0	乙氧喹啉						
24 Ethoxyquin FALSE 203.0 Wide 175.0 Wide 20 15 360 12% 02 Zāyew Zayew	23		Ethoxyquin	FALSE	202.1	Wide	145.1	Wide	20	25	360	12%	Q1	乙氧喹啉						
25 Ethoxyquin FALSE 217.0 Wide 202.0 Wide 20 10 360 12% 0.3 C series Including Including <thincluding< th=""> In</thincluding<>	24		Ethoxyquin	FALSE	203.0	Wide	175.0	Wide	20	15	360	12%	Q2	乙氧喹啉						
28 Dicloran (Dichloran) FALSE 206.0 Wide 176.0 Wide 20 15 2480 100% Q0 \$\vec{Ambuar MB}{MB} 9 / 0 \vec{5} \vec{5} 29 Dicloran (Dichloran) FALSE 207.9 Wide 178.0 Wide 20 15 1560 63% Q1 \$\vec{Ambuar MB}{Ambuar MB} 9 / 0 \vec{5} \vec{5} 1 30 Dicloran (Dichloran) FALSE 207.9 Wide 73.1 Wide 20 15 1410 57% Q2 \$\vec{3mbuar MB}{3mbuar MB} 9 / 0 \vec{5} \vec{5} 1 1 1 \$\vec{3mbuar MB}{3mbuar MB} 9 / 0 \vec{5} \vec{5} 1	25		Ethoxyquin	FALSE	217.0	Wide	202.0	Wide	20	10	360	12%	Q3	乙氧喹啉						
29 Dicloran (Dichloran) FALSE 207.9 Wide 178.0 Wide 20 15 1560 63% Q1 第 9 <	28		Dicloran (Dichloran)	FALSE	206.0	Wide	176.0	Wide	20	15	2480	100%	QO	氯硝胺	В	ジクロラン				
30 Dicloran (Dichloran) FALSE 124.0 Wide 73.1 Wide 20 15 1410 57% Q2 第前胺 B 97 @ 5 ½ 31 Dicloran (Dichloran) FALSE 176.1 Wide 148.0 Wide 20 15 1100 44% Q3 第前胺 B 97 @ 5 ½ 280 Image: Control (Dichloran) FALSE 176.1 Wide 148.0 Vide 20 15 1100 44% Q3 第前胺 B 97 @ 5 ½ Image: Control (Dichloran) FALSE 176.1 Wide 148.0 Vide 20 15 1100 44% Q3 第前胺 B 97 @ 5 ½ Image: Control (Dichloran) Image: Control (Dichloran) 15 100 44% Q3 第前胺 B 97 @ 5 ½ Image: Control (Dichloran) 15 100 44% Q3 第前版 B 97 @ 5 ½ Image: Control (Dichloran) Image: Controlan) Image: Control (Dichlo	29		Dicloran (Dichloran)	FALSE	207.9	Wide	178.0	Wide	20	15	1560	63%	Q1	氯硝胺	В	ジクロラン				
31 Dicloran (Dichloran) FALSE 176.1 Wide 148.0 Wide 20 15 1100 44% Q3 第硝胺 B 9 / 2 9 2 281	30		Dicloran (Dichloran)	FALSE	124.0	Wide	73.1	Wide	20	15	1410	57%	Q2	氯硝胺	В	ジクロラン				
280 Image: Constraint of the constra	31		Dicloran (Dichloran)	FALSE	176.1	Wide	148.0	Wide	20	15	1100	44%	Q3	氯硝胺	В	ジクロラン				
281 Image: Constraint of the constra	280																			
282 Image: Constraint of the constra	281																			
283 284 284 285 286 286 286 286 286 287 286 287 287 287 287 287 287 287 287 287 287 287 287 287 287 287 287 287 287 297 <td>282</td> <td></td>	282																			
284 Image: Constraint of the constra	283																			
285 Image: Constraint of the constr	284																			
280 287 288 288 288 288 288 288 288 290 200 </td <td>285</td> <td></td>	285																			
28/ 288 288 288 288 288 288 288 288 288	286																			
288 H 4 → M database database-WORKING / 0501 Method / 0502 Screening Method / 20 Ready 20 of 278 records found 20 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	287																			
	288	databa	se database-WORKING 0501 Method	0502 Meth	od 0502 S	creening Method					. i 4									
	Ready	20 of 278 re	cords found	0002 metri	100 X 0002 0	a coning meetiou											III 114% ()		Ð

Click on the sorting button to select/show the compounds to be added into the acquisition method

	MRM Database.xlsx - Microsoft Excel																	
9	Home	Insert Page Layout Formulas Data	Review	View Dev	eloper Add-	Ins											0	- 🗝 🗙
	🔏 Cut		= - 8	wrat	Text	General		8 11	Norma	al 2 No	rmal	Bad	Good	-	- 式 🎫	Σ AutoSum -	A7 .0	Â
Paste	Copy				a di Cambra a	¢ _ 0/ •	+.0 .00 Condi	tional Form	at Nout		culation	Chock Coll	Explanatory	Inser	t Delete Format	😺 Fill 🔻	Sort & Ein	ad &
*	I Format	Painter		- The Merg	e a center *	\$ % ,	100 3.0 Forma	tting * as Tab	ile*		culation	check cen	Explanatory .	······································	* *	Clear *	Filter * Sele	ect *
	Clipboard	Font F		Alignment	6	Number	я				Styles				Cells	Edit	ing	
-	Z286					1		- 314-5 - 1									947205 M	*
	0	P	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB	AC		AD	AE _
								Dunall		Intensity	Transference			China CD				
		L J		Dreauraar	MACI	Draduat	MCD	Time		Scale within	Deletive	Quest		Mathad				
1	PL 0502 -	Common Name		Precursor	IVIST Recolution -	Product	IVISZ Recolutio	(mc) -		Database	Intensiti -		Chinasa Namo -	Group	- Japanece Nar		otor	
2	KI - 0502 V	Acept 21 Sort A to 7	EALSE	136.0	Wide	94.0	Wide	20	10	120	100%	00	ノ酸田胺酸	Group	Tapanese Nai		otes	
2		Acept Z1 Sort Z to A	EALSE	1/2 1	Wide	96.0	Wide	20	10	30	2106	01	乙酸甲胺酸	E	アヤフエート			
-		Acept Sort by Color	EALSE	95.0	Wide	79.0	Wide	20	10	20	10%	02	乙酰甲胺酰	Ē	アナフェート			
5		Acept Clear Filter From "Common Nome"	FALSE	95.0	Wide	70.0	Wide	20	10	20	17%	03	乙酸田胺酸	Ē	アヤフェート			
7		Etridia Filter by Color	FALSE	183.0	Wide	140.0	Wide	20	15	2440	100%	00	十萬灵	Δ	エトリジアゾ	JL		
8		Etridia Tast Filter	FALSE	211.1	Wide	183.0	Wide	20	15	2110	88%	01	土菌灵	Δ	エトリジアゾ			
9		Etridia (Select All)	FALSE	185.0	Wide	142.1	Wide	20	15	1680	69%	02	土面尺 十菌灵	Δ	エトリジアプ			
10		Etridia Acephate	FALSE	211.1	Wide	140.0	Wide	20	15	1590	65%	03	土菌灵	A	エトリジアゾ			
14		✓ Dicloran (Dichloran)	FALSE	164.0	Wide	136.0	Wide	20	5	310	100%	00	田其苯噻隆	D	メタベンズチ	アズロン		
15		Meth:	FALSE	163.1	Wide	136.0	Wide	20	15	190	60%	01	甲基苯噻降	D	メタベンズチ	アズロン		
16		Metha Metha	FALSE	134.9	Wide	90.9	Wide	20	15	150	49%	02	甲基苯噻隆	D	メタベンズチ	アズロン		
17		Meth	FALSE	134.9	Wide	108.0	Wide	20	15	100	32%	03	甲其苯噻降	D	メタベンズチ	アズロン		
22		Ethox	FALSE	202.1	Wide	174.0	Wide	20	15	2890	100%	00	乙氧喹啉					=
23		Ethox	FALSE	202.1	Wide	145.1	Wide	20	25	360	12%	01	乙氧喹啉					
24		Ethox OK Cancel	FALSE	203.0	Wide	175.0	Wide	20	15	360	12%	Q2	乙氧喹啉					
25		Ethoxygum .::	FALSE	217.0	Wide	202.0	Wide	20	10	360	12%	Q3	乙氧喹啉					
28		Dicloran (Dichloran)	FALSE	206.0	Wide	176.0	Wide	20	15	2480	100%	QO	氯硝胺	В	ジクロラン			
29		Dicloran (Dichloran)	FALSE	207.9	Wide	178.0	Wide	20	15	1560	63%	Q1	氯硝胺	В	ジクロラン			
30		Dicloran (Dichloran)	FALSE	124.0	Wide	73.1	Wide	20	15	1410	57%	Q2	氯硝胺	В	ジクロラン			
31		Dicloran (Dichloran)	FALSE	176.1	Wide	148.0	Wide	20	15	1100	44%	Q3	氯硝胺	В	ジクロラン			
280																		
281																		
282							1							111				
283		It is easy t	0 a	dd a	COLU	imn	to as	SOC	clate	eac	n co	mpc	ound w	vith a	alab			
284																		
285		method or	sti	idv t	o allo		n antic	k so	ort t	o hu	ild ai	n ac	a me	thod				
286			on	any t	o une		quic			0.00		1 40	9. 110		•			
287																		
288			500 Mail	.d. (0505 5	and the second second								L					•
Ready	20 of 278 r	pase / database-WORKING / 0501 Method / 0	1502 Meth	oa 🔬 0502 Sc	reening Method	<u> </u>												
riculay	20 0. 2701																	J

Why Do We Need More than 2 MRM Transitions?

MRM Transitions are not Universal, Should Choose them According to Matrices

Summary: Pesticide GC/MS/MS Analyzer

The Pesticide GC/MS/MS Analyzer is **tested as a unit** in the factory to ensure a quick and successful installation

New <u>flexible and comprehensive</u> Pesticide MRM Database expands the target compound list to 1000 to meet users' need

The MRM Database

- allows users to build acquisition methods without acquiring expensive or hard-to-get pesticide standards (saves time and money)
- applies to either constant flow or constant pressure method (<u>adapts to</u> <u>user's preference</u> or analytical method)
- has multiple MRM transitions (average 7) for each compound (<u>helps to</u> provide alternatives to work around matrix interference)
- shows relative intensity of each MRM transition (<u>facilitates transition</u> <u>selection and acquisition method creation</u>)

ASMS 2011 Introduction: 7200 High Resolution, Accurate Mass GC/Q-TOF

Many ASMS Conferees Asked: How Would a GC/Q-TOF Benefit My Lab?

Other ASMS Conferees Asked: Why Q-TOF and Not Just TOF?

For This e-Seminar, You Might Ask: How Can a Q-TOF Extract More from Complex Samples?

Fundamental Benefits (Agilent 7200 Q-TOF)

- High resolution (> 10K, typically > 13K FWHM)
 - Increased detector selectivity (few interferences)

TOF Accurate Mass to Eliminate Matrix Interferants

'MSD' resolution + EIC(150.00000) Scan Okra 10RL STD 3.d x10 **Okra QuEChERS Extract** 17,9981 Matrix interferant ion (b-Tocopherol) Indoxacarb * 18,0758 b-Tocopherol 150.06839 Da Analyte Indoxacarb ion (100pg) +/-0.5 amu (~ 300ppm) 3 150.01195 Da (fragment ion) 2 18.3138 17.4859 17.5520 17.6264 17,7386 17,8863 ∆m = 0.0564 Da. 17.45 17.5 17.55 17.6 17.65 17.7 17.75 17.8 17.85 17.9 17.95 18 18.05 18.1 18.15 18.2 18.25 18.3 18.35

TOF high resolution

TOF Accurate Mass to Eliminate Matrix Interferants

TOF high resolution

If even more selectivity is needed, option of MS/MS MS/MS with high resolution and accurate mass!

Resolving Power

Resolving Power

Spectral Presentation (Tune File)

Most users think in "centroid", but the MS operates in "profile"

Selectivity for Isobaric Ions

Accurate Mass Makes Mass Defect Important

			Integer	Exact		X+1	X+2	Mass
Туре	Element	Symbol	Mass	Mass	Abundance	Factor	Factor	Defect
Х	Hydrogen	Н	1	1.0078	99.99			0.0078
		D or ² H	2	2.0141	0.01			0.0141
X+1	Carbon	¹² C	12	12	98.91			0
		¹³ C	13	13.0034	1.1	1.1n _C	0.0060n _C ²	0.0034
X+1	Nitrogen	¹⁴ N	14	14.0031	99.6			0.0031
		¹⁵ N	15	15.0001	0.4	0.37n _N		0.0001
X+2	Oxygen	¹⁶ O	16	15.9949	99.76			-0.0051
		¹⁷ 0	17	16.9991	0.04	0.04n ₀		-0.0009
		¹⁸ O	18	17.9992	0.2		0.20n ₀	-0.0008
Х	Fluorine	F	19	18.9984	100			-0.0016
X+2	Silicon	²⁸ Si	28	27.9769	92.2			-0.0231
		²⁹ Si	29	28.9765	4.7	5.1n _{Si}		-0.0235
		³⁰ Si	30	29.9738	3.1		3.4n _{Si}	-0.0262
Х	Phosphorus	Р	31	30.9738	100			-0.0262
X+2	Sulfur	³² S	32	31.9721	95.02			-0.0279
		³³ S	33	32.9715	0.76	0.8n _S		-0.0285
		³⁴ S	34	33.9679	4.22		4.4n _s	-0.0321
X+2	Chlorine	³⁵ Cl	35	34.9689	75.77			-0.0311
		³⁷ Cl	37	36.9659	24.23	32.5n _{Cl}		-0.0341
X+2	Bromine	⁷⁹ Br	79	78.9183	50.5			-0.0817
		⁸¹ Br	81	80.9163	49.5		98.0n _{Br}	-0.0837
Х	lodine		127	126.9045	100			-0.0955

Selectivity for Isobaric Ions

Fundamental Benefits (Agilent 7200 Q-TOF)

- High resolution (> 10K, typically > 13K FWHM)
 - Increased detector selectivity (few interferences)
- Accurate mass measurements (low to sub-ppm)
 - < 5 ppm in TOF (typically < 2 ppm)</p>
 - < 10 ppm in Q-TOF (typically < 5 ppm)</p>
 - Valuable qualitative information about each ion

Many possible formulas with an MSD or IT But only a few with TOF

Accurate mass reduces risk of investing effort on the wrong molecule

Fragment ion mass with high mass accuracy

Helps unambiguously identify corresponding formula and hence

exact mass of a fragment

Most probable fragment ion

	Mol	ocularion		Fragment lons												
	IVIOI			1		2		3		4						
Pesticide	m/z	Formula	∆ ppm	Formula	∆ ppm	Formula	∆ ppm	Formula	∆ ppm	Formula						
Chlorpyrifos	320.8944	C7H7Cl3NO3PS	-0.7	C7 H7 CI [³⁷ CI] N O3 P S	0.0	C7 H7 Cl2 N O3 P S	0.0	C2 H6 O2 P S								
-meunyi			215.4	C6 H2 CI3 N O2 P S												
Dichlorvos	219 9454	C4H7Cl2O4P	1.6	C4H7CIO4P	-0.9	C2H6O3P	3.7	C4 H7[³⁷ Cl] O4 P								
Dicition vos							336.5	C3 H2 Cl2 O3 P								
Endosulfan	419 8112		-2.1	C9 H6 Cl4[³⁷ Cl] O4 S	-0.7	C5 CI5[³⁷ CI]	0.0	C5 Cl4[³⁷ Cl]2								
sulfate	410.0112						-220.9	C8 H3 CI5								
Propachlor	211 0758	C11 H14 CLN O	-1.0	C10 H11 CI N O	1.1	C11 H14 N O	1.8	C8 H8 CI N O	-3.9	C6 H5						
Порасню	211.0700								771.6	C2 H2 CI O						
Fluazifop-p-	383 1330	C10 H20 E3 N O4	-2.2	C19 H20 F2 N O4	-1.1	C14 H11 F3 N O2	-1.3	C12 H7 F3 N O	2.1	C6 H3 F3 N						
butyl	505.1555	0131120131004							-494.2	C7 H14 O3						
Triazonhos	313 0645	C12 H16 N3 O3 P	-1.4	C10 H12 N3 O3 P S	-2.7	C8 H8 N3 O3 P S	-0.6	C8 H7 N3 O	-1.9	C8 H8 N3 O						
	010.00+0	S	-47.7	C11 H14 N2 O3 P S	-54.1	C9 H10 N2 O3 P S										

Examples from building accurate mass pesticide library

NIST 2011 MS Interpreter with Accurate Mass

Fundamental Benefits (Agilent 7200 Q-TOF)

- High resolution (> 10K, typically > 13K FWHM)
 - Increased detector selectivity (few interferences)
- Accurate mass measurements (low to sub-ppm)
 - < 5 ppm in TOF (typically < 2 ppm)</p>
 - < 10 ppm in Q-TOF (typically < 5 ppm)</p>
 - Valuable qualitative information about each ion
- Structural elucidation with <u>Accurate Mass</u>MS/MS studies
 - High sensitivity tool to complement NMR

The Problem – Confirm Most Likely Structure

Kava Extract - Compound "B", $C_{16}H_{14}O_4$ (Rings + Double Bonds = 10)

For the 5 candidate structures, only one fit the losses identified by CID experiments on multiple precursor ions

Problem – confirm most likely structure

Problem – confirm most likely structure

Mass at 138 is consistent with loss of COCH=CH-C₆H₅ (131.04969) or $C_2H_4CH=CH-C_6H_5$ (131.086075) from 269.08020.

Problem – confirm most likely structure

Mass at 138 is consistent with loss of COCH=CH-C₆H₅ (131.04969) or C_2H_2CH =CH-C₆H₅ (131.086075) from 269.0802.

However, measured value of 269.0802 - 138.0310 = $\underline{131.04920}$ is consistent only with **COCH**=CH- C₆H₅.

Fundamental Benefits (Agilent 7200 Q-TOF)

- High resolution (> 10K, typically > 13K FWHM)
 - Increased detector selectivity (few interferences)
- Accurate mass measurements (low to sub-ppm)
 - < 5 ppm in TOF (typically < 2 ppm)</p>
 - < 10 ppm in Q-TOF (typically < 5 ppm)</p>
 - Valuable qualitative information about each ion
- Structural elucidation with <u>Accurate Mass</u>MS/MS studies
 - High sensitivity tool to complement NMR
- "Fast", full spectra acquisition with excellent sensitivity

What about TOF SPEED?

TOF always collects full mass range Q-TOF always display full product ion spectrum

- Acquisition Rate: transients (pulses) /second
 - 10,000 transients/second
- Sum of transients = Spectral Rate:
 - Typical max rate: 25-200 spectra/sec (**Hz**) to disk
 - Usable rate is limited by signal level (ion count)
- New analysis opportunities for GC/MS:
 - High Throughput: ~20 Hz
 - Ultra high resolution GC: ~ 40Hz
 - GCxGC: ~50-200 Hz

"Speed" Enhances Deconvolution

Deconvolution Requires Time Offset

High Data Rate = Better Deconvolution

Successful GC/MS Applications Require the Correct Combination of:

GC Resolution + MS Resolving Power

Successful GC/MS Applications Require the Correct Combination of:

GC Resolution + MS Resolving Power + AMass Defect (Mother Nature) + Relative Ion Intensities (Sample)

There is more to learn about these new apps

GC or MS: Relative intensity affects the result

Centroid view of mass peaks obscures this fact

What Are the Application Drivers for Q-TOF?

Thank You For Joining Us Today

Time For Q&A

