Thermo Fisher S C I E N T I F I C

Analysis of PAHs and PCBs in multiple matrices using GC-MS and GC-MS/MS

Andy Fornadel, PhD

Product Marketing Manager – Americas November 15th, 2022

The world leader in serving science

Agenda

Introduction to polycyclic hydrocarbons

² Challenges in GC-MS analysis using EPA method 8270E

Analysis of PAHs in water and soil

Conclusions

Introduction – Polycyclic Aromatic Hydrocarbons (PAHs)

- Organic compounds consisting of 2 or more aromatic rings
- Sources:
 - Naturally occurring in fossil fuels
 - Anthropogenically produced form the incomplete combustion of organic matter (i.e., fossil fuels, wood, garbage)
- Over 100 PAH compounds identified in environmental samples

ThermoFis

Polycyclic Aromatic Hydrocarbons (PAHs)

Wide environmental distribution

- Physical/Chemical properties allow for partitioning between various environmental media (air, water, soil)
- Bioaccumulate in living organisms
 - Exposure increases up the food chain
- Toxic
 - Carcinogenic
 - Genotoxicity
 - Endocrine disruptors

Gas Chromatography Mass spectrometry (GC-MS)

Semi-volatile nature of PAHs makes GC-MS an ideal tool for sample introduction and analysis

Sufficient chromatographic
 separation between PAH
 isomers needed to avoid
 isobaric interferences

Challenges

Thermo Fig

- Compounds with high boiling points prone to peak broadening and carryover between injections
- Multiple calibration curves
 needed to accurately quantify
 concentration range present
 in various sample matrices

Additional challenges with EPA Method 8270E

 In sequence MS tuning with 50 ng decafluorotriphenylphosphine (DFTPP) required after every 12 hours of analysis

Thermo Fi

Analytical configuration

Т	he	e	'n	nc	þ	Í	sł	16	ər
S	С	I	Е	Ν	Т	I	F	I	С

Injection parameters	
Inlet module and mode	SSL, split
Liner	<u>P/N 453A1925-UI</u>
Liner type and size	Thermo Scientific™ LinerGOLD™, 4 mm i.d. × 78.5 mm
Injection volume (µL)	1
Inlet temperature (°C)	300
Split flow (mL/min)	15
Carrier gas, carrier flow (mL/min), carrier mode	He, 1.5, constant flow
Split ratio	10:1
Purge flow (mL/min)	5
Pre-injection needle wash	5 times, with DCM
Post-injection needle wash	10 times with DCM, 10 times with MeOH

Chromatographic column	
Thermo Scientific™	

Column dimensions

TraceGOLD[™] TG-PAH

<u>P/N 26055-0470</u> 30 m × 0.25 mm i.d. × 0.10 μm

Oven temperature program

Temperature 1 (°C)	40
Hold time (min)	1
Temperature 2 (°C)	285
Rate (°C/min)	35
Temperature 3 (°C)	295
Rate (°C/min)	3
Temperature 4 (°C)	350
Rate (°C/min)	30
Hold time (min)	2
Total GC run time (min):	15.2

MS parameters	
lon source	ExtractaBrite
Transfer line temperature (°C)	350
lon source temperature (°C)	350
Ionization type	El
Electron energy (eV)	70
Emission current (µA)	10
Acquisition mode	SIM, 2 ions/compound

Compound name	Rt (min)	MS quantifier ion (<i>m/z</i>)	MS confirmatory ion (<i>m/z</i>)
Naphthalene-d ₈	4.7	136	108
Naphthalene	4.8	128	129
2 - methyl Naphthalene	5.2	142	141
1 - methyl Naphthalene	5.3	142	141
Acenaphthylene	5.9	152	151
Acenaphthene	6.0	153	154
Acenaphthene-d ₁₀	6.0	162	164
Dibenzofuran	6.1	168	139
Fluorene	6.4	165	166
Phenanthrene-d ₁₀	7.2	188	184
Phenanthrene	7.2	178	176
Anthracene	7.2	178	176
Fluoranthene	8.1	202	200
Terphenyl-d ₁₄	8.3	244	122
Pyrene	8.4	202	200
Benz[a]anthracene	9.5	228	226
Chrysene-d ₁₂	9.7	240	236
Chrysene	9.7	228	226
Benzo[b]fluoranthene	11.3	252	250
Benzo[k]fluoranthene	11.4	252	250
Benzo[a]pyrene	12.1	252	250
Perylene-d ₁₂	12.2	264	260
Dibenzo[a, h]anthracene	13.5	278	139
Indeno[1,2,3-cd]pyrene	13.5	276	138
Benzo[g,h,i]perylene	13.9	276	138

Chromatographic separation and isomer resolution

8 andy.fornadel@thermofisher.com | 15-November-2022

Chromatographic separation and isomer resolution

9 andy.fornadel@thermofisher.com | 15-November-2022

Thermo Fisher s c I E N T I F I C

Chromatography

EPA Method 8270E criteria – Peak broadening

Response linearity

Calibration range: 2.5 – 20,000 ng/ml

- Average relative response factor (AvRF) calibration variation below EPA Method 8270E criteria (%RSD < 15%)
- Quantitation possible at trace levels and high contamination levels with single calibration curve

Performance towards PAH analysis in water and soil

Repeatability in sample matrices

2

Instrument robustness using EPA method 8270E

3

In sequencing tune and calibration checks

Repeatability

• 20 ng/mL spiked in blank water and soil QC matrices (n = 10)

Reproducibility – Water analysis

Water QC sample at 10 ng/ml

<u>%RSD < 10%</u> after 133 consecutive injections (52 hours) without any GC or MS maintenance:

- Liner change
- Column trimming
- MS cleaning

Injection #

Thermo Fisher SCIENTIFIC

Reproducibility – Soil analysis

Soil QC sample at 1.0 mg/L

<u>%RSD < 10%</u> after 133 consecutive injections (52 hours) without any GC or MS maintenance:

- Liner change
- Column trimming
- MS cleaning

In sequence tuning, calibration and QC checks

#	TIC ▶ Na	me	Туре	Position	Instrument Method	Status	*Analysis_Type
1	5	DCM	Unknown	54	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
2		tuning mix 1	Unknown	53	PAHs SIM - 10uA - SPLIT 10to1 - FS	Finished	Field Sample
3	2	QC low water	Unknown	1	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
4	2	QC low soil	Unknown	2	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
5	2	QC middle water	Unknown	3	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
6	2	QC middle soil	Unknown	4	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
7	2	QC high water	Unknown	5	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
8	8	QC high soil	Unknown	6	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
9	2	Cali check 0.0025	Unknown	10	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
10	2	s1	Unknown	55	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
11	1	s2	Unknown	56	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
12	1	s3	Unknown	57	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
13		s4	Unknown	58	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
14	2	s5	Unknown	59	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
15	2	s6	Unknown	60	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
16	. 2	s7	Unknown	61	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
17	1	s8	Unknown	62	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
18	10	cQ	Unknown	63	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
19		tuning mix 2	Unknown	53	PAHs SIM - 10uA - SPLIT 10to1 - FS	Finished	Field Sample
20	3	Call check 0.005	Unknown		PAHS SIM - TOUA - SPLIT 10001	Finishea	Field Sample
21	2	QC low water 2	Unknown	1	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
22	3	QC low soil 2	Unknown	2	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
23	2	QC middle water 2	Unknown	3	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
24	2	QC middle soil 2	Unknown	4	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
25	1	QC high water 2	Unknown	5	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
26	3	QC high soil 2	Unknown	6	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
21	2	s10	Unknown	04	AHS SIM - TOUA - SPLIT 10toT	Finished	Fiero Sample
28	3	c11	Linknown	85	AHCSIM - 1004 - SPLIT 10to1	Finishod	Field Sample

Thermo Fi

Routine calibration and sample QC checks at different concentrations to ensure analysis accuracy

- Calibration accuracy: ± 10%
- Spiked recovery: 80 120 %

Conclusions - PAHs

Efficient chromatographic separation within 14.5 min with minimal peak broadening by late eluting compounds and isobaric interferences avoided 7

Linear dynamic range over 4 orders of magnitude allowing multiple sample types to be analyzed on a single calibration curve.

Robust analysis of PAHs was demonstrated with %RSD < 10% for sample QCs after 133 consecutive injections with no GC or MS maintenance

Spike recoveries of sample QC range from 80-120% with method detection limits ranging from 0.5 – 7.6 pg on column

In sequence tuning and report generation automatically provides compliance requirements for EPA method 8270E and allowing for maximum instrument up time Content

Introduction to analysis of PCBs

2 GC-MS/MS for targeted analysis of PCBs

3 Example of PCB analysis using GC-MS/MS

Conclusions

Introduction

Polychlorinated biphenyls (PCBs) are a group of industrial organic chemicals characterized by:

- non-flammability
- chemical stability
- high boiling point
- electrical insulating properties
- persistence in environment

Many of these properties make PCBs historically useful in electrical insulators, hydraulic equipment, paints, rubbers, and other industrial applications

PCB congeners

Currently 209 known PCBs congeners that can be divided into two groups according to their structural and toxicological characteristics: Thermo Fi

- non-dioxin like PCBs (non-DL-PCB):
 - majority of the PCB congeners
 - lower degree of toxicity

- dioxin-like PCBs (DL-PCBs):
 - the 12 most toxic congeners
 - classified as POPs
 - regulated under the Stockholm Convention for POPs since 2001

GC-MS/MS for analysis of PCBs

- EPA developed Method 1668 using GC-HRMS
- Advances in GC-MS/MS allows for reliable application to PCB analysis.
 - Different extraction and clean-up processes
 - More sensitive/selective mass analyzers and column phases
 - Re-evaluation of performance metrics
- Important parameters to consider:
 - Working range, particularly on the low-end
 - Linearity, reproducibility, robustness
 - Applicability for routine analysis.

Traditional challenges

Challenges

 Complicated sample preparation

 Sufficient chromatographic separation between PCBs needed to avoid isobaric interferences

 Long run times for sufficient separations. Low throughput and high costs.

Analytical parameters

AI/AS 1610 auto	sampler parameters
Injection type	Standard
Sample mode	Standard
Fill strokes	10
Sample depth	Bottom
Injection mode	Fast
Pre-injection delay time (s)	0
Post-injection delay time (s)	0
Pre-injection wash cycles	0
Post-injection wash cycles	4
Post-injection solvent wash volume (µL)	6.0
Sample wash cycles	1
Sample wash volume (µL)	1.0
Injection volume (µL)	1.0

SSL parameters					
Injection temperature (°C)	280				
Liner	Thermo Scientifc [™] LinerGOLD [™] splitless/split liner single taper with wool (P/N 453A1925-UI)				
Inlet module and mode	SSL, splitless				
Split flow (mL/min)	75				
Splitless time (min)	1.2				
Septum purge flow (mL/min)	5, constant				
Carrier gas, flow (mL/min)	He, 1.2				

TRACE 1610 GC parameters						
Oven temperature program						
Temperature (°C)	90					
Hold time (min)	1.00					
Rate (°C/min)	25					
Temperature 2 (°C)	270					
Rate 2 (°C/min)	4					
Temperature 3 (°C)	330					
Hold time (min)	2					
GC run time (min)	25.20					
Column						
TRACE TR-PCB 8 MS	50 m, 0.25 mm, 0.25 μm (P/N 26AJ148P)					

TSQ 9610 mass spectrometer parameters					
Transfer line temperature (°C)	280				
lon source type and temperature (°C)	NeverVent AEI, 300				
lonization type	El				
Emission current (µA)	50				
Aquisition mode	timed-SRM				
Q1 and Q3 resolution	Normal (0.7 amu)				
Tuning parameters	AEI SmartTune				
Collision gas and pressure (psi)	Argon at 70				
Detector gain	X 7				

t-SRM for improved selectivity

Compound	Retention	Precursor lon	Product Ion	Collision Energy	Compound	Retention	Precursor Ion	Product Ion	Collision Energy
Compound	time (min)	(Da)	(Da)	(V)	Compound	time (min)	(Da)	(Da)	(V)
PCB-1	8.5	188.04	153.04	22	PCB-118	14.05	323.90	253.95	22
PCB-1	8.5	190.04	153.04	22	PCB-118	14.05	325.90	255.95	22
PCB-1L13C	8.5	200.08	165.10	22	PCB-118L13C	14.05	335.92	265.99	22
PCB-1L13C	8.5	202.08	165.10	22	PCB-118L13C	14.05	337.92	267.99	22
PCB-3	9.03	188.04	153.04	22	PCB-114	14.28	323.90	253.95	22
PCB-3	9.03	190.04	153.04	22	PCB-114	14.28	325.90	255.95	22
PCB-3L13C	9.03	200.08	165.10	22	PCB-114L13C	14.28	335.92	265.99	22
PCB-3L13C	9.03	202.08	165.10	22	PCB-114L13C	14.28	337.92	267.99	22
PCB-4	9.19	222.00	152.06	22	PCB-105	14.75	323.90	253.95	22
PCB-4	9.19	224.00	152.06	22	PCB-105	14.75	325.90	255.95	22
PCB-4L13C	9.19	234.04	164.10	22	PCB-105L13C	14.75	335.92	265.99	22
PCB-4L13C	9.19	236.04	164.10	22	PCB-105L13C	14.75	337.92	267.99	22
PCB-19	9.88	255.96	186.02	22	PCB-126	15.64	323.90	253.95	22
PCB-19	9.88	257.96	186.02	22	PCB-126	15.64	325.90	255.95	22
PCB-19L13C	9.88	268.00	198.02	22	PCB-126L13C	15.64	335.92	265.99	22
PCB-19L13C	9.88	270.00	198.02	22	PCB-126L13C	15.64	337.92	267.99	22
PCB-15	10.36	222.00	152.06	22	PCB-202	15.68	427.80	357.80	25
PCB-15	10.36	224.00	152.06	22	PCB-202	15.68	429.80	357.80	25
PCB-15L13C	10.36	234.04	164.10	22	PCB-202L13C	15.68	439.80	369.90	25
PCB-15L13C	10.36	236.04	164.10	22	PCB-202L13C	15.68	441.80	369.90	25
PCB-54	10.54	289.92	219.98	22	PCB-167	16	357.80	287.90	24
PCB-54	10.54	291.92	219.98	22	PCB-167	16	359.80	289.95	24
PCB-54L13C	10.54	301.96	232.02	22	PCB-167L13C	16	369.90	299.51	24
PCB-54L13C	10.54	303.96	232.02	22	PCB-167L13C	16	371.90	301.95	24
PCB-104	11.34	323.90	253.95	22	PCB-156	16.6	357.80	287.90	24
PCB-104	11.34	325.90	255.95	22	PCB-156	16.6	359.80	289.95	24
PCB-104L13C	11.34	335.92	265.99	22	PCB-156L13C	16.6	369.90	299.51	24
PCB-104L13C	11.34	337.92	267.99	22	PCB-156L13C	16.6	371.90	301.95	24
PCB-37	11.84	255.96	186.02	22	PCB-157	16.82	357.80	287.90	24
PCB-37	11.84	257.96	186.02	22	PCB-157	16.82	359.80	289.95	24
PCB-37L13C	11.84	268.00	198.02	22	PCB-157L13C	16.82	369.90	299.51	24
PCB-37L13C	11.84	270.00	198.02	22	PCB-157L13C	16.82	371.90	301.95	24
PCB-155	12.2	357.80	287.90	24	PCB-169	17.86	357.80	287.90	24
PCB-155	12.2	359.80	289.95	24	PCB-169	17.86	359.80	289.95	24
PCB-155L13C	12.2	369.90	299.51	24	PCB-169L13C	17.86	369.90	299.51	24
PCB-155L13C	12.2	371.90	301.95	24	PCB-169L13C	17.86	371.90	301.95	24
PCB-101L13C	12.59	335.92	265.99	22	PCB-208	18.18	461.70	391.80	25
PCB-101L13C	12.59	337.92	267.99	22	PCB-208	18.18	463.70	393.80	25
PCB-111L13C	13.13	335.92	265.99	22	PCB-208L13C	18.18	473.80	403.80	25
PCB-111L13C	13.13	337.92	267.99	22	PCB-208L13C	18.18	475.80	405.80	25
PCB-77	13.42	289.92	219.98	22	PCB-189	18.92	391.80	321.90	25
PCB-77	13.42	291.92	219.98	22	PCB-189	18.92	393.80	323.90	25
PCB-77L13C	13.42	301.96	232.02	22	PCB-189L13C	18.92	403.80	333.90	25
PCB-77L13C	13.42	303.96	232.02	22	PCB-189L13C	18.92	405.80	335.90	25
PCB-81	13.69	289.92	219.98	22	PCB-205	20.04	427.80	357.80	25
PCB-81	13.69	291.92	219.98	22	PCB-205	20.04	429.80	357.80	25
PCB-81L13C	13.69	301.96	232.02	22	PCB-205L13C	20.04	439.80	369.90	25
PCB-81L13C	13.69	303.96	232.02	22	PCB-205L13C	20.04	441.80	369.90	25
PCB-188	13.8	391.80	321.90	25	PCB-206	20.6	461.70	391.80	25
PCB-188	13.8	393.80	323.90	25	PCB-206	20.6	463.70	393.80	25
PCB-188L13C	13.8	403.80	333.90	25	PCB-206L13C	20.6	473.80	403.80	25
PCB-188L13C	13.8	405.80	335.90	25	PCB-206L13C	20.6	475.80	405.80	25
PCB-123	13.97	323.90	253.95	22	PCB-209	21.03	495.70	425.80	25
PCB-123	13.97	325.90	255.95	22	PCB-209	21.03	497.70	427.80	25
PCB-123L13C	13.97	335.92	265.99	22	PCB-209L13C	21.03	507.70	437.80	25
PCB-123L13C	13.97	337.92	267.99	22	PCB-209L13C	21.03	509.70	439.80	25

Chromatographic resolution of critical pairs

Thermo Fisher

SCIEN

Linearity for accurate quantitative analyis

Compound	Retention Time (min)	Coefficient of determination (R ²)	AvCF %RSD		
PCB-1	8.49	0.99993	1.5		
PCB-3	9.03	0.99996	1.2		
PCB-4	9.19	0.99987	2.1		
PCB-19	9.88	0.99992	1.6		
PCB-15	10.35	0.99996	1.2		
PCB-54	10.53	0.99987	2.1		
PCB-104	11.34	0.99987	2.1		
PCB-37	11.83	0.99989	1.9		
PCB-155	12.21	0.99168	17.3		
PCB-77	13.40	0.99956	3.9		
PCB-81	13.68	0.99925	5.0		
PCB-188	13.80	0.99974	2.9		
PCB-123	13.96	0.99967	3.3		
PCB-118	14.04	0.99972	3.1		
PCB-114	14.27	0.99962	3.6		
PCB-105	14.74	0.99969	3.2		
PCB-126	15.62	0.99990	1.9		
PCB-202	15.67	0.99977	2.7		
PCB-167	15.93	0.99707	10.0		
PCB-156	16.62	0.99473	13.8		
PCB-157	16.80	0.99437	14.3		
PCB-169	17.84	0.99434	14.4		
PCB-208	18.16	0.99991	1.8		
PCB-189	18.90	0.99979	2.6		
PCB-205	20.00	0.99960	3.6		
PCB-206	20.57	0.99989	1.9		
PCB-209	21.02	0.99978	2.7		

Concentration [ng/mL]

26 andy.fornadel@thermofisher.com | 15-November-2022

Assessment of sensitivity

LOQ = 0.05 ng/mL				
(i) ion ratios within ± 15% the expected values				
(ii) absolute peak area RSD <15%				
(iii) the response factor (RF) RSD <15%				

(iii) the response factor (RF) RSD <15%			PCB-1	2.2	2.4	33	33	3	
				PCB-3	4.1	4.3	33	35	6
PCB-5	PCB-54	PCB-118	PCB-4	5.4	5.2	64	65	8	
			PCB-19	2.8	2.9	62	67	4	
			PCB-15	2.9	2.3	64	67	4	
			PCB-54	1.8	2.8	64	65	3	
			PCB-104	7.3	6.3	95	99	10	
			PCB-37	2.4	2.4	61	63	3	
			PCB-155	13.5	6.5	124	123	19	
			PCB-77	3.0	1.9	63	66	4	
			PCB-81	3.1	2.9	63	65	4	
			PCB-188	6.4	6.2	157	148	9	
			PCB-123	7.5	7.5	102	94	11	
	PCB-157	PCB-205	PCB-209	PCB-118	4.1	3.5	101	96	6
			PCB-114	4.9	4.1	96	97	7	
			PCB-105	4.8	5.7	95	93	7	
			PCB-126	13.0	11.6	90	83	18	
			PCB-202	5.4	6.6	64	66	8	
			PCB-167	4.8	5.3	123	119	7	
			PCB-156	10.5	8.2	123	130	15	
			PCB-157	9.1	5.4	122	128	13	
			PCB-169	5.9	10.4	129	132	8	
				PCB-208	9.9	6.6	98	98	14
				PCB-189	11.2	10.9	154	151	16
				PCB-205	8.0	6.4	64	64	11
Time [min]			PCB-206	8.8	6.2	97	98	12	
				PCB-209	8.8	6.6	110	111	12

ThermoFisher

SCIENTIFIC

Calculated

IDL (fg OC)

Average

Measured

IR (n=10)

Absolute

Peak Area

%RSD (n=10)

Compound

RF

%RSD

Expected

IR

Reproducibility

- The TRACE TR-PCB column ensured chromatographic separation of the target analytes in about 21 minutes with calculated resolution of the critical pair PCB-123 / PBDE-118 of 3%.
- The column thin film phase, high thermal stability, and low column bleed ensured elution of the high boiling point PCBs (e.g., PCB-209) with improved peak shapes.
- We demonstrated linearity over a concentration range of 0.10 to 2,000 ng/mL with coefficient of determination of R² >0.990 and AvCF %RSDs <20.
- IDLs ranged from 3 fg to 19 fg OC (corresponding to 0.15 pg/L to 0.95 pg/L in water samples and to 0.015 to 0.095 ng/kg in soil samples) and LOQ set at 0.05 ng/mL.
- Extended robustness demonstrated over 100 injections without need for maintenance or re-tuning.

Thank you

30 andy.fornadel@thermofisher.com | 4-August-2022