Analysis of Environmental Contaminants in Surface Water and Wastewater Effluents Using GC/Q-TOF

Sofia Nieto Agilent Technologies, Inc.

sofia.nieto@agilent.com





DE6667592593

#### Growing Interests in Broad Scope Screening of Contaminants



- 1000+ pesticides in use or remain in environment
- Other environmental pollutants are also of concern
- High sensitivity and selectivity needed to meet MRLs in "dirty" matrices
- Growing interests in broadest scope and even non-targeted screening for risk assessment







GC/Q-TOF Acquisition Modes Used in the Study

- Standard EI (70 eV)
- Negative CI (Methane reagent gas)
- Positive CI (Methane reagent gas)
- Low Energy EI (12 eV)
- MS/MS (Accurate Mass Product Ion Spectra)





#### GC Configuration with Backflush



- ✓ Reduced run times
- ✓ Enhanced RT stability
- ✓ Longer column lifetime
- ✓ Less ion source contamination

#### Outline of the Workflow for Screening with GC/Q-TOF





#### FDA/09/24/15 Guidelines for Identity Confirmation





#### SANTE/12682/2019 Guidelines for Identity Confirmation

| MS detector                  | r/Characteristics                                                        |                                                                                                                            | Requi                                                             | rements for identification                                                                                                                                           |
|------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resolution                   | Typical systems<br>(examples)                                            | Acquisition                                                                                                                | minimum<br>number of<br>ions                                      | other                                                                                                                                                                |
| Accurate mass<br>measurement | High resolution MS:<br>(Q-)TOF<br>(Q-)Orbitrap<br>FT-ICR-MS<br>sector MS | full scan, limited m/z range, SIM,<br>fragmentation with or without<br>precursor-ion selection, or<br>combinations thereof | 2 ions with<br>mass<br>accuracy<br>≤ 5 ppm <sup>a, b.</sup><br>₀) | S/N ≥ 3 <sup>d)</sup><br>Analyte peaks from precursor<br>and/or product ion(s) in the<br>extracted ion<br>chromatograms must fully<br>overlap.<br>Ion ratio: see D12 |

<sup>o)</sup> preferably including the molecular ion, (de)protonated molecule or adduct ion

including at least one fragment ion

 $\sim < 1 \text{ mDa for m/z} < 200$ 

<sup>d)</sup> in case noise is absent, a signal should be present in at least 5 subsequent scans



## Accurate Mass Library of Pesticides and Environmental Contaminants (EI)

#### 1,000+ compounds

| 💾 Massi      | Hunter PCD            | L Manager - C:\N               | 1 | Compound I          | Results:       | 1020 ł           | its       |                                         |                                    |                   |                                                                                                                                                            |
|--------------|-----------------------|--------------------------------|---|---------------------|----------------|------------------|-----------|-----------------------------------------|------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Find (  | View PCE<br>Compounds | DL Configurat<br>s 🗋 <i> 🗃</i> |   |                     | Name           |                  |           | Formula                                 | Retention<br>Time                  | CAS               |                                                                                                                                                            |
| Comp         | ounds                 | Spectra                        |   | Cyanazine (Fortrol) |                |                  |           | C9H13CIN6                               | 9.9139                             | 21725-46-2        | 2-{[4-Chlor                                                                                                                                                |
| Compour      | nds search cri        | iteria                         |   | Anthraquinone       |                |                  |           | C14H8O2                                 | 9.917                              | <u>84-65-1</u>    | 53代: アルマン<br>9,10-Anthr 50pendx A: Extremely Hazardous Chemicals<br>nal Food Safety Standard: Maximum Residue Limits for Pesticides in food (GB 2763-2014) |
|              |                       |                                |   | Dimethylvinphos     |                |                  |           | C10H10Cl3O4P                            | 9.923                              | <u>2274-67-1</u>  | 2-Chloro-1                                                                                                                                                 |
|              |                       |                                |   | Aldrin              |                |                  |           | C12H8Cl6                                | 9.937                              | <u>309-00-2</u>   | (1R.2R.3F CI                                                                                                                                               |
| Searce       | ch only visible       | columns ()                     |   | Isomethiozin        |                |                  |           | C12H20N4OS                              | 9.9395                             | <u>57052-04-7</u> | 6-(2-Methy                                                                                                                                                 |
| (            | Compoun               | d Results: 1                   |   | DMEP / Dimethoxyet  | thyl phthalate |                  |           | C14H18O6                                | 9.941                              | <u>117-82-8</u>   | Bis(2-meth                                                                                                                                                 |
|              |                       | Name                           |   | Carbetamide         |                |                  |           | C12H16N2O3                              | 9.953                              | <u>16118-49-3</u> | 1-(Ethylam                                                                                                                                                 |
| Cyar<br>Anth | nazine (Fortro        | l)                             |   | Chlorpyrifos        |                |                  |           | C9H11Cl3NO3PS                           | 9.954                              | <u>2921-88-2</u>  | 0,0-Die                                                                                                                                                    |
| Dime         | ethylvinphos          |                                |   | C10H10Cl3O4P        | 9.923          | <u>2274-67-1</u> | 2-Chl     | oro-1-(2,4-dichlorophenyl)vinyl dimethy | /l phosphate                       |                   |                                                                                                                                                            |
| Aldrin       | in                    |                                |   | C12H8Cl6            | 9.937          | <u>309-00-2</u>  | (1R.2     | PR 3R 6S 7S 8S)-1 8 9 10 11 11-Heya     | achlomtetracyclo16 2 1 13 6 02 7ld |                   |                                                                                                                                                            |
| Isom         | nethiozin             |                                |   | C12H20N4OS          | 9.9395         | <u>57052-04</u>  | +ELMS1 0  | <b>QTOF</b>                             |                                    |                   |                                                                                                                                                            |
| DME          | EP / Dimetho          | xyethyl phthalate              |   | C14H18O6            | 9.941          | <u>117-82-8</u>  | 8 100     | 66.04640                                |                                    |                   | 262,85641                                                                                                                                                  |
| Carb         | petamide              |                                |   | C12H16N2O3          | 9.953          | <u>16118-49-</u> | ₩<br>₩ 80 | 71.77 91 05423                          |                                    |                   | 100.00                                                                                                                                                     |
| Chlo         | orpyrifos             |                                |   | C9H11CI3NO3PS       | 9.954          | <u>2921-88-2</u> | ਤੂ 60     | 47.08                                   |                                    | 100.00000         | 292.92676                                                                                                                                                  |
| Flufe        | enacet                |                                |   | C14H13F4N3O2S       | 9.965          | 142459-5         | ₽ 40      |                                         | 152.06206                          | 16.99             | 18 25                                                                                                                                                      |
| Para         | athion                |                                |   | C10H14NO5PS         | 9.967          | <u>56-38-2</u>   | 20        |                                         | 7.54                               |                   |                                                                                                                                                            |
| Triac        | dimefon               | Ν.                             |   | C14H16CIN3O2        | 9.999          | <u>43121-43-</u> | 0         | 60 80 100                               | 120 140 160                        | 180 200           | 220 240 260 280 300 320 340 360                                                                                                                            |
| Rab          | enzazole              | $\sum$                         |   | C12H12N4            | 10.005         | <u>40341-04</u>  |           | m/z                                     |                                    |                   |                                                                                                                                                            |
| Meth         | hfuroxam              | 5                              | _ | C14H15NO2           | 10.016         | 28730-17-        | 245       | - Lrimethyl-N-ohenyl-3-turamide         |                                    | _                 |                                                                                                                                                            |

#### Accurate Mass Library of Environmental Contaminants for Negative CI

#### 100+ compounds

|   | Compound Results: 118 hits  |              |           |             |                |        |       |                   | 1   |     |        |       |     |     |     |           |     |     |
|---|-----------------------------|--------------|-----------|-------------|----------------|--------|-------|-------------------|-----|-----|--------|-------|-----|-----|-----|-----------|-----|-----|
|   | Name                        | Formula      | Mass      | Rete<br>Tir | ntion<br>ne    | Cation | Anion | CAS               |     |     |        |       |     |     |     |           |     |     |
|   | Trifluralin NCI             | C13H16F3N3O4 | 335.10929 | 7.27        |                |        |       | <u>1582-09-8</u>  | 1   |     |        |       |     |     |     |           |     |     |
|   | Benfluralin NCI             | C13H16F3N3O4 | 335.10929 | 7.303       |                |        |       | <u>1861-40-1</u>  | L   |     |        |       |     |     |     |           |     |     |
| • | Cadusafos NCI               | C10H23O2PS2  | 270.08771 | 7.449       |                |        |       | <u>95465-99-9</u> |     |     |        |       |     |     |     |           |     |     |
|   | Phorate (Isothioate) NCI    | C7H17O2PS3   | 260.01283 | 7.529       |                |        |       | <u>298-02-2</u>   | 1   |     |        |       |     |     |     |           |     |     |
|   | BHC-alpha NCI               | C6H6Cl6      | 287.86007 | 7.663       |                |        |       | <u>319-84-6</u>   |     |     |        |       |     |     |     |           |     |     |
|   | Hexachlorobenzene (HCB) NCI | C6CI6        | 281.81312 | 7.795       | -CI MS1 Q      | TOF FV | /=155 |                   |     |     |        |       |     |     |     |           |     |     |
|   | Dicloran (Dichloran) NCI    | C6H4Cl2N2O2  | 205.96498 | 7.83        | g 100-         | -      |       |                   |     |     |        |       |     |     |     | 213.01784 |     |     |
|   | Dimethoate NCI              | C5H12NO3PS2  | 228.99962 | 7.837       | 문 /5·<br>밑 50· |        |       | 0.00001           |     |     |        |       |     |     |     | 100.00    |     |     |
|   | BHC-beta NCI                | C6H6Cl6      | 287.86007 | 8.055       | 4 25           |        | 3     | 7.98              |     |     |        |       |     |     | _   |           |     |     |
|   | BHC-gamma (Lindane) NCI     | C6H6Cl6      | 287.86007 | 8.173       | 0              | 70     | 80 9  |                   | 130 | 140 | 150 16 | 0 170 | 180 | 190 | 200 | 210 220   | 230 | 240 |
|   | Terbufos NCI                | C9H21O2PS3   | 288.04413 | 8.185       |                | m/z    |       | 00 100 110 120    | 100 | 140 | 100 10 |       | 100 | 100 | 200 | 210 220   | 200 | 210 |
|   | Fonofos NCI                 | C10H15OPS2   | 246.03019 | 8.276       |                |        |       | <u>944-22-9</u>   |     |     |        |       |     |     |     |           |     |     |
|   | Diazinon (Dimpylate) NCI    | C12H21N2O3PS | 304.10105 | 8.318       |                |        |       | <u>333-41-5</u>   |     |     |        |       |     |     |     |           |     |     |
|   | Tefluthrin NCI              | C17H14CIF7O2 | 418.05705 | 8.451       |                |        |       | <u>79538-32-2</u> |     |     |        |       |     |     |     |           |     |     |



#### Accurate Mass Library of Environmental Contaminants for Negative CI

#### 100+ compounds

|   | Compound results. The mis     |                |               |                   |        |       |                    |
|---|-------------------------------|----------------|---------------|-------------------|--------|-------|--------------------|
|   | Name                          | Formula        | Mass          | Retention<br>Time | Cation | Anion | CAS                |
|   | Fipronil sulfone NCI          | C12H4Cl2F6N4O  | 451.93362     | 11.634            |        |       | <u>120068-36-2</u> |
| ► | Fipronil NCI                  | C12H4Cl2F6N4OS | 435.93871     | 10.537            |        |       | <u>120068-37-3</u> |
|   | Chlorothalonil NCI            | C8CI4N2        | 263.88156     | 8.291             |        |       | 1897-45-6          |
|   | Chlorpyrifos NCI              | C9H11CI3NO3PS  | 348.92628     | 9.743             |        |       | <u>2921-88-2</u>   |
|   | Bioallethrin (Esbiothrin) NCI | C19H26O3       | 302.18819     | 10.545            |        |       | <u>28434-00-6</u>  |
|   | Prallethrin NCI               | C19H24O3       | 300.17254     | 10.707            |        |       | <u>23031-36-9</u>  |
|   | Tetramethrin NCI              | C19H25NO4      | 331.17836     | 13.8657           |        |       | <u>7696-12-0</u>   |
|   | Bifenthrin NCI                | C23H22CIF3O2   | 422.12604     | 13.8189           |        |       | <u>82657-04-3</u>  |
|   | Cyphenothrin (I) NCI          | C24H25NO3      | 375.18344     | 15.271            |        |       | <u>39515-40-7</u>  |
|   | Cyphenothrin (II) NCI         | C24H25NO3      | 3 -CI MS1 QTC | DF FV=170         |        |       |                    |
|   | Esfenvalerate NCI             | C25H22CINO3    | 4 8 100-      |                   | 330    | 96738 |                    |





# Simultaneous Targeted Quantification and Suspect Screening Workflow GC/Q-TOF Screener





## **Target Quantitation Window**





## Screening Window: Results Review

#### Summary in Screening window



## Screening and Target Quantitation Report

| Sample | e name: GC                              | _D3_C4_0316 |           | Good  | <u>e</u>      | 56    | Warning            | 24                | Error                | 1           |                |        |               |       |            |               |                        |
|--------|-----------------------------------------|-------------|-----------|-------|---------------|-------|--------------------|-------------------|----------------------|-------------|----------------|--------|---------------|-------|------------|---------------|------------------------|
| Status | Pesticide Screening Report              | CAS#        | Formula   | R.T.  | R.T.<br>Diff. | Match | Target Ion M       | ass Accuracy #    | of Qualified<br>Ions |             |                |        |               |       |            |               |                        |
| +      | Benzaldehyde                            | 100-52-7    | C7H6O     | 3.381 | 0.013         | 99.9  | 105.0335           | -2.10 PPM         | 5                    |             |                |        |               |       |            |               |                        |
|        | Phenol                                  | 108-95-2    | C6H6O     | 3.457 | 0.049         | 97.4  | 94.0413            | -1.50 PPM         | 6                    |             | -              |        |               |       |            |               |                        |
|        | 1,3-Dichlorobenzene (M-Dichlorobenzene) | 541-73-1    | C6H4Cl2   | 3.625 | 0.024         | 9!    | Status Pesticide S | creening Repor    | t                    | CAS#        | Formula        | R.T.   | R.T.<br>Diff. | Score | Target Ion | Mass Accuracy | # of Qualified<br>Ions |
|        | 1,4-Dichlorobenzene (P-Dichlorobenzene) | 106-46-7    | C6H4Cl2   | 3.625 | 0.008         | 99    | + Trifluralin      |                   |                      | 1582-09-8   | C13H16F3N3O4   | 7.236  | 0.011         | 96.1  | 264.0227   | -1.38 PPM     | 4                      |
|        | Benzylalcohol                           | 100-51-6    | C7H8O     | 3.717 | 0.017         | 9!    | + HCB / Hexad      | hlorobenzene      |                      | 118-74-1    | C6Cl6          | 7.761  | 0.022         | 95.2  | 283,8096   | -2.64 PPM     | 5                      |
|        | 2-Methylphenol                          | 95-48-7     | C7H8O     | 3,794 | 0.032         | 84    | + Dimethoate       |                   |                      | 60-51-5     | C5H12NO3PS2    | 7.779  | 0.012         | 98.2  | 124.9821   | -0.25 PPM     | 5                      |
| +      | Acetophenone                            | 98-86-2     | C8H8O     | 3.868 | 0.002         | 9;    | + Clomazone        |                   |                      | 81777-89-1  | C12H14CINO2    | 7.972  | 0.013         | 99.8  | 204.1019   | -0.78 PPM     | 3                      |
| +      | o-Toluidine                             | 95-53-4     | C7H9N     | 3,899 | 0.000         | 8     | + Diazinon (Di     | mpylate)          |                      | 333-41-5    | C12H21N2O3PS   | 8.277  | 0.009         | 98.6  | 179.1179   | -4.08 PPM     | 5                      |
|        |                                         |             | criticit. |       |               |       | + Phenanthrer      | ie                |                      | 85-01-8     | C14H10         | 8.326  | 0.021         | 99.6  | 178.0777   | -0.58 PPM     | 5                      |
|        | Hexachloroethane                        | 67-72-1     | C2Cl6     | 3.922 | 0.016         | 99    | + Chlorothalor     | đl                |                      | 1897-45-6   | C8Cl4N2        | 8.574  | 0.018         | 94.1  | 265.8781   | -0.96 PPM     | 3                      |
|        | 2,4-Dimethylphenol (2,4-Xylenol)        | 105-67-9    | C8H10O    | 4.204 | 0.015         | 89    | + Bromacil         |                   |                      | 314-40-9    | C9H13BrN2O2    | 9.592  | 0.014         | 99.8  | 204.9607   | -0.87 PPM     | 4                      |
|        | 2,4-Dichlorophenol                      | 120-83-2    | C6H4Cl2O  | 4.354 | 0.003         | 9:    | + DBP / Dibut      | /I phthalate      |                      | 84-74-2     | C16H22O4       | 9.604  | 0.008         | 97.8  | 149.0233   | -0.23 PPM     | 4                      |
|        | Naphthalene                             | 91-20-3     | C10H8     | 4.457 | 0.017         | 91    | + Malathion        |                   |                      | 121-75-5    | C10H19O6PS2    | 9.722  | 0.007         | 93.0  | 127.0390   | -0.89 PPM     | 3                      |
|        | 4-Chloroaniline                         | 106-47-8    | C6H6CIN   | 4.499 | 0.011         | 9     |                    |                   |                      | 21222       |                |        | 1.2.3.        |       |            |               |                        |
|        | Hexachlorobutadiene                     | 87-68-3     | C4Cl6     | 4.573 | 0.016         | 9!    | + Metolachlor      |                   |                      | 51218-45-2  | C15H22CINO2    | 9.884  | 0.010         | 97.8  | 162.1277   | -0.16 PPM     | 6                      |
|        | Caprolactam                             | 105-60-2    | C6H11NO   | 4 724 | 0.000         | 0(    | + Chlorpyrifos     |                   |                      | 2921-88-2   | C9H11Cl3NO3PS  | 9.941  | 0.013         | 99.9  | 313.9569   | 0.78 PPM      | 5                      |
|        | Caprolactain                            | 105 00 2    | contino   | 1.721 | 0.000         | 5.    | + DCPA / Chlo      | rthal-dimethyl    |                      | 1861-32-1   | C10H6Cl4O4     | 10.041 | 0.014         | 99.9  | 300.8802   | 0.73 PPM      | 6                      |
|        | 4-Chloro-3-methylphenol                 | 59-50-7     | C7H7ClO   | 4.848 | 0.011         | 9;    | + Pendimethal      | in (Penovalin)    |                      | 40487-42-1  | C13H10N3O4     | 10 507 | 0.013         | 00.0  | 252 0070   | 1.23 PPM      | 6                      |
|        | 2-Methylnaphthalene                     | 91-57-6     | C11H10    | 4.995 | 0.018         | 95    | i chumouru         | in (renovaliny    |                      | 10107 12 1  | 015/115/1501   | 10.507 | 0.015         | 55.5  | 232.0375   | 1.25 1111     | v                      |
|        | 1-Methylnaphthalene                     | 90-12-0     | C11H10    | 5.092 | 0.020         | 91    | + Fluoranthen      | e                 |                      | 206-44-0    | C16H10         | 10.701 | 0.025         | 99.8  | 202.0777   | -0.91 PPM     | 3                      |
|        | Biphenyl                                | 92-52-4     | C12H10    | 5.423 | 0.019         | 99    |                    |                   |                      |             |                |        |               |       |            |               |                        |
|        | Diphenylether                           | 101-84-8    | C12H100   | 5.534 | 0.014         | 89    | + Tetrachlorvii    | nphos (Dietreen T | )                    | 22248-79-9  | C10H9Cl4O4P    | 11.139 | 0.007         | 89.6  | 328.9298   | -0.69 PPM     | 2                      |
|        | 1,4-Naphthalenedione                    | 130-15-4    | C10H6O2   | 5,626 | 0.020         | 92    | + Pyrene           |                   |                      | 129-00-0    | C16H10         | 11.171 | 0.023         | 98.5  | 202.0777   | -0.65 PPM     | 4                      |
|        | Dimothylabthalata                       | 101.11.0    | C10U1004  | E 700 | 0.010         | 0.    | + p,p-DDE          |                   |                      | 72-55-9     | C14H8C14       | 11,603 | 0.009         | 90.3  | 245.9998   | -0.95 PPM     | 4                      |
|        | Dimetryiphulaiate                       | 151-11-5    | CIUNIOU   | 5.760 | 0.019         | 91    | + Myclobutani      | 1                 |                      | 88671-89-0  | C15H17CIN4     | 11.719 | 0.002         | 87.2  | 179.0245   | -0.41 PPM     | 3                      |
|        | Phthalimide                             | 85-41-6     | C8H5NO2   | 5.843 | 0.018         | 9;    | + p,p'-DDD         |                   |                      | 72-54-8     | C14H10Cl4      | 12.355 | 0.003         | 76.5  | 235.0076   | -0.19 PPM     | 2                      |
|        | Acenaphthene                            | 83-32-9     | C12H10    | 6.116 | 0.022         | 9;    |                    |                   |                      |             |                |        |               |       |            |               |                        |
|        | Dibenzofuran                            | 132-64-9    | C12H8O    | 6.313 | 0.020         | 91    | + BBP / Benzy      | i butyl phthalate |                      | 85-68-7     | C19H20O4       | 12.919 | 0.000         | 97.2  | 149.0233   | -0.66 PPM     | 6                      |
|        | Pentachlorobenzene                      | 608-93-5    | C6HCl5    | 6.344 | 0.019         | 81    | (Butylbenzyl       | phthalate)        |                      | 102 22 1    | 000114004      | 12.100 | 0.025         | 00.7  | 100 0546   | 0.04 004      |                        |
|        | Diothy/Dhthalato                        | 04 66 3     | C12U1404  | 6 670 | 0.015         | ~     | + Bis(2-ethyin     | axyi jadipate     |                      | 103-23-1    | C22H42O4       | 13,190 | 0.035         | 90.7  | 129.0540   | -0.94 PPM     | 2                      |
|        | Dieutyirtu lalate                       | 04-00-2     | C12H1404  | 0.079 | 0.015         | 93    | + TPPA / Triph     | enyl phosphate    |                      | 115-86-6    | C18H15O4P      | 13.357 | 0.003         | 100.0 | 325.0624   | -0.42 PPM     | 6                      |
| +      | Fluorene                                | 86-73-7     | C13H10    | 6.780 | 0.019         | 91    | + Piperonyl bu     | toxide            |                      | 51-03-6     | C19H30O5       | 13.368 | 0.004         | 94.9  | 176.0832   | -2.06 PPM     | 3                      |
|        |                                         |             |           |       |               |       | + Chlorantrani     | liprole           |                      | 500008-45-7 | C18H14BrCl2N5O | 14.135 | 0.001         | 90.7  | 278.0008   | -0.25 PPM     | 3                      |
|        |                                         |             |           |       |               |       | # Bis(2-ethylh     | exyl)phthalate    |                      | 117-81-7    | 2<br>C24H38O4  | 14.397 | 0.006         | 98.7  | 149.0233   | -0.50 PPM     | 6                      |



## Identification of Toxic Contaminants in the Wastewater Effluent Samples



## Sampling

#### Day # of sample collection



- The wastewater effluent samples were collected on days 1, 2, 4, and 5 of a five-day series
- The samples from days 1 and 2 displayed acute toxicity towards *Ceriodaphnia dubia* (shown by whole effluent toxicity testing)



#### **Extractions**



Combined extract

- Samples were filtered through a 0.45 µm GF/F filter and passed over a hydrophilic reversed-phase SPE cartridge.
- Dried cartridges were eluted with ethyl acetate and methanol.
- Dried filters were extracted in a sonicating bath with hexane/acetone 1:1.
- Both extracts were combined and spiked with dibromooctafluorobisphenol (DBOFB) as an internal standard.



#### El Screening Results Over 90 contaminants were identified in each sample

|           |                                |                 |                  |                      |                          |                   |            | Screenin | ng - [Resu | It Review | w]     |                       |        |         |                        |                                 |                          |                    |     | -               |                | ×     |
|-----------|--------------------------------|-----------------|------------------|----------------------|--------------------------|-------------------|------------|----------|------------|-----------|--------|-----------------------|--------|---------|------------------------|---------------------------------|--------------------------|--------------------|-----|-----------------|----------------|-------|
| 11        | X A Previous Sa                | ample LD        | 94940-1_1        | ul-2                 | • •                      | V Next            | Sample     | 192      | 1 5        | 9         | 82     | 8 Total:              | 979    |         |                        |                                 |                          |                    |     |                 |                |       |
| Status    | Compound Name                  |                 |                  |                      | CAS#                     |                   | Formula    |          | R.T. 🔺     | R.T. Dif  | ff.    | Match Score           | Tar    | get lon | Mass Ac                | curacy                          | # of Ver                 | ified lons         | 1   |                 |                | ^     |
| ≙         | Cafenstrole                    |                 |                  |                      | 125306-                  | 83-4              | C16H22N4C  | 035      | 16.131     | 0.01      | 17     | 47.1                  | 10     | 0.0757  |                        | 1.4782                          |                          | 2                  |     |                 |                |       |
| ~         | Boscalid (Nicobifen            | )               |                  |                      | 188425-                  | 85-6              | C18H12CI2N | N2O      | 16.639     | 0.05      | 59     | 99.6                  | 34     | 2.0321  |                        | 1.2872                          |                          | 6                  |     |                 |                |       |
| ~         | Fluridone                      |                 |                  |                      | 59756-6                  | 0-4               | C19H14F3N  | 0        | 17.190     | 0.06      | 65     | 99.6                  | 32     | 8.0944  | 1                      | 2.4012                          |                          | 4                  |     |                 |                |       |
| 1         | DNP / Dinonyl phth             | alate           |                  |                      | 84-76-4                  |                   | C26H42O4   |          | 17.201     | 0.06      | 66     | 98.6                  | 14     | 9.0233  |                        | 1.9625                          |                          | 5                  |     |                 |                |       |
| 1         | Praziquantel                   |                 |                  |                      | 55268-7                  | 4-1               | C19H24N2C  | 02       | 17.673     | 0.04      | 46     | 99.2                  | 20     | 1.1022  | 1                      | 2.1573                          |                          | 2                  |     |                 |                |       |
| ~         | Azoxystrobin                   |                 |                  |                      | 131860-                  | 33-8              | C22H17N3C  | 05       | 18.481     | 0.07      | 73     | 99.0                  | 34     | 4.1030  | 1                      | 1.8716                          |                          | 6                  |     |                 |                |       |
| A         | Dimethomorph (E)               |                 |                  |                      | 110488-                  | 70-5              | C21H22CIN  | 04       | 18.534     | 0.08      | 80     | 85.6                  | 30     | 1.0626  | 1.00                   | 0.4426                          | 1                        | 1                  | 1.  |                 |                | ~     |
| <         |                                |                 |                  |                      |                          |                   |            |          |            |           |        |                       |        |         | -                      | -                               |                          |                    |     |                 |                | >     |
| 0<br>-500 | 47.04                          | 178             | 89.038           | 3.1089<br>36 116.0   | 1495                     | 156.04            | 44 1       | 91.0689  | 216.0655   | 25        | 53.060 | 2/3,1846<br>g273,0659 | 300.07 | 14.0924 | 344.10                 | 37                              | 2.0979                   | 403,116            | 3   |                 |                |       |
| + Deconvo | 20 40<br>oluted Scan (18.481 r | 60<br>min) LD94 | 80<br>940-1_1ul- | 100 1<br>2.D (Target | 120 140<br>/Qualifier ic | 0 16<br>ons only) | 50 180     | 200      | 220        | 240       | 26     | 0 280                 | 300    | 320     | 340<br>344,10<br>(1.87 | 360<br>36<br>360.0982<br>(0.91) | 380<br>2 388.0<br>2 (1.0 | 400<br>0934<br>66) | 420 | 440<br>Mass-to- | 460<br>-Charge | (m/z) |
| -500      | 20 40                          | 50 8            | 50 10            | 0 120                | 140                      | 160               | 180        | 200      | 220        | 240       | 260    | 280                   | 300    | 320     | 340                    | 360                             | 380                      | 400                | 420 | 440<br>Mass-to- | 460<br>-Charge | (m/z) |



## **NCI Screening Results**

| ~                                 | Triadimefon NCI                |                    |                  |                   | 4                 | 43121-43-3      | C14   | H16CIN3C | 02   | 9.882  | 0.14 | 14  | 93.1 | 12                 | 6.9956             | 8                       | 1.8779  |                           | 3   |     |           |                 |                   |
|-----------------------------------|--------------------------------|--------------------|------------------|-------------------|-------------------|-----------------|-------|----------|------|--------|------|-----|------|--------------------|--------------------|-------------------------|---------|---------------------------|-----|-----|-----------|-----------------|-------------------|
| 1                                 | Chlorthal-dimethyl (D          | acthal or DCPA     | A) NCI           |                   | đ                 | 1861-32-1       | C10   | H6CI4O4  |      | 9.924  | 0.16 | 51  | 91.6 | 33                 | 1.8997             | -                       | 1.9129  |                           | 4   |     |           |                 | -                 |
| 1                                 | Fipronil-sulfide NCI           |                    |                  |                   | i i               | 120067-83-6     | C12   | H4CI2F6N | 14S  | 10.391 | 0.00 | 01  | 99.9 | 38                 | 3.9677             |                         | 1.6695  |                           | 2   |     |           |                 |                   |
| ~                                 | Fipronil NCI                   |                    |                  |                   | 4                 | 120068-37-3     | C12   | H4CI2F6N | 14OS | 10.531 | 0.00 | 05  | 99.4 | 36                 | 5.9362             |                         | 2.5318  |                           | 6   | 8.  |           |                 |                   |
| ~                                 | Prallethrin NCI                |                    |                  |                   |                   | 23031-36-9      | C19   | H24O3    |      | 10.694 | 0.01 | L3  | 85.5 | 5 16               | 7.1078             |                         | 2.3838  |                           | 2   | -   |           |                 | ~                 |
| <                                 |                                |                    |                  |                   |                   |                 |       |          |      |        |      |     |      |                    |                    |                         |         |                           |     |     |           |                 | >                 |
| - Deconvol<br>500-<br>0-<br>-500  | uted Scan (10,530 min          | ) 94940-1_N        | CI-ILD           | 132.05            | 568               |                 | 192.5 | 9966     |      |        |      |     |      | 330.               | 9680               | 365.93                  | 383.967 | 399.9633<br>              |     |     |           |                 |                   |
| - Deconvol<br>sting<br>500<br>500 | 40 60<br>uted Scan (10.530 min | 80<br>) 94940-1_N( | 100<br>CI-1.D (T | 120<br>arget/Qual | 140<br>lifier ior | 160<br>ns only) | 180   | 200      | 220  | 240    | 260  | 280 | 300  | 320<br>330.<br>(2. | 340<br>9680<br>01) | 360<br>365.93<br>(2.53) | 380     | 400<br>399.9633<br>(1.83) | 420 | 440 | 460<br>Ma | 480<br>ss-to-Ch | 500<br>arge (m/z) |
| -500                              | 40 60                          | 80                 | 100              | 120               | 140               | 160             | 180   | 200      | 220  | 240    | 260  | 280 | 300  | 320                | 340                | 360                     | 380     | 400                       | 420 | 440 | 460<br>Ma | 480<br>ss-to-Ch | 500<br>arge (m/z) |



#### Summary of Suspect Screening Results Compounds correlated with effluent toxicity

|                                    |          |               | 80 % M                    | ortality |               |                           |          |               | 20 % M                    | lortality |               |                           |          |               | 0%M                       | ortality |               |                           |
|------------------------------------|----------|---------------|---------------------------|----------|---------------|---------------------------|----------|---------------|---------------------------|-----------|---------------|---------------------------|----------|---------------|---------------------------|----------|---------------|---------------------------|
| Sample                             | LDS      | 4940-1        |                           | LDS      | 94940-2       |                           | LDS      | 94941-1       |                           | LDS       | 4941-2        | -                         | LD9      | 4943-1        |                           | LD       | 94943-2       |                           |
| Compound Name                      | Response | Mass<br>Error | Library<br>Match<br>score | Response | Mass<br>Error | Library<br>Match<br>score | Response | Mass<br>Error | Library<br>Match<br>score | Response  | Mass<br>Error | Library<br>Match<br>score | Response | Mass<br>Error | Library<br>Match<br>score | Response | Mass<br>Error | Library<br>Match<br>score |
| TBEP/Tris(2-butoxyethyl) Phosphate | 2013504  | 2.8           | 99.9                      | 1502528  | 3.9           | 99.9                      | 1289372  | 2.5           | 99.9                      | 1559301   | 3.8           | 99.9                      | 787113   | 3.1           | 99.9                      | 784473   | 3.8           | 99.9                      |
| tert-Butylphenyldiphenylphosphate  | 16799    | 2.1           | 92.9                      | 4948     | 3.2           | 74.6                      | 2828     | 1.1           | 82.5                      | 10468     | 0.8           | 91.9                      | 2950     | 1.3           | 70.6                      | 2766     | 0.8           | 91.9                      |
| Chlorantraniliprole                | 6298     | 0.2           | 76.8                      | 5330     | 2.0           | 79.4                      | 3572     | 1.7           | 63.2                      | 3494      | 1.8           | 66.4                      | 3458     | 1.1           | 52.4                      | 2710     | 1.8           | 66.4                      |
| Flurprimidol                       | 16518    | 1.3           | 80.4                      | 15240    | 0.5           | 76.4                      | 10698    | 2.6           | 73.7                      | 12065     | 2.1           | 80.2                      | 6038     | 2.0           | 74.2                      | 4976     | 2.1           | 80.2                      |
| Paclobutrazol                      | 16985    | 0.9           | 96.8                      | 15763    | 1.6           | 98.7                      | 10725    | 0.9           | 92.4                      | 12090     | 2.1           | 94.9                      | 9106     | 1.8           | 79.1                      | 8448     | 2.1           | 94.9                      |
| TBZ/Thiabendazole                  | 1570235  | 1.4           | 99.7                      | 1536170  | 2.4           | 99.7                      | 1282402  | 0.6           | 99.7                      | 1368732   | 2.2           | 99.8                      | 774093   | 0.6           | 99.7                      | 675439   | 2.2           | 99.8                      |
| Azoxystrobin                       | 134463   | 1.8           | 99.1                      | 139960   | 3.0           | 98.9                      | 109579   | 1.4           | 98.9                      | 119004    | 1.7           | 98.8                      | 104804   | 1.7           | 89.9                      | 94511    | 1.7           | 98.8                      |

#### **Non-Targeted Analysis**



## Principle Component Analysis Confirmed Separation Between the Groups



- Compounds were imported to Mass Profiler Professional (MPP)
- Principle Component Analysis (PCA) was performed to visualize the separation of the three groups of the samples



## Volcano Plot: Comparison of 80% Mortality vs 0% Mortality



Compounds found at higher levels in the 80% mortality group

Compounds found at higher levels in the 0% mortality group



## **Correlation Analysis**





## **Tentative Hits Confirmation Using Accurate Mass**





## Another Tentative Hit From Correlation Analysis





## **Tentative Hits Confirmation Using Accurate Mass**





## Identification of an Unknown Compound





## Profiling of Environmental Contaminants in Surface Water



## Surface Water Study Site and Sampling



#### Sampling

- Sampling was carried out at locations throughout the Cache Slough Complex, located in the Sacramento-San Joaquin River Delta in Northern California
- The main input of point-source micropollutants as well as diffuse pollutants is expected to be via Ulatis Creek.
- All samples were cooled during transport and stored in the dark at 4 °C until extraction

#### Extraction for GC/Q-TOF Analysis

- Surface waters (1L) were passed through a GF/F filter
- The filtrate were passed through a polymeric solid phase extraction (SPE) cartridge
- After drying for one hour, the cartridges were eluted with 10 mL of ethyl acetate.



# Distribution of the Contaminants between Water and Filter Extracts from UB Site



**UB water UB Filter** 

Compounds uniquely identified in the UB filter extract:

Diphenylamine (DFA) Hexachlorobenzene Pentachloroaniline Fluoranthene Pyrene Nonachlor-trans p,p'-DDD Dihexylphthalate

Bifenthrin Chrysene cis-Permethrin trans-Permethrin Benzo[b]fluoranthene Benzo[a]pyrene Dinonylphthalate Indeno[1,2,3-cd]pyrene



#### **Geographic Distribution of the Pollutants**

C2 C2 C2 C4 UB

Comparison of the identified contaminants between UB, C2 and C4 sites

Sampling map showing the number of identified pollutants as well as the new contaminants added to the flow stream from each site



### **Geographic Distribution of the Pollutants**





#### **Geographic Distribution of the Pollutants**





#### Examples of Contaminants Identified in Non-Targeted Screening



#### Tentative hit: Bis(3-chloro-1-propyl)(1-chloro-2-propyl)phosphate (C9H18Cl3O4P)

- Example of tentatively identified contaminants from UB site, using Unknowns Analysis and NIST17.L library.
- Low mass error for the fragments in the deconvoluted spectrum provides additional point for confirmation of the molecular formula of the hit.



## Examples of Contaminants Identified in Non-Targeted Screening



#### Tentative hit: Bumetrizole (C27H18CIN3O)

- Example of tentatively identified contaminants from UB site, using Unknowns Analysis and NIST17.L library.
- Low mass error for the fragments in the deconvoluted spectrum provides additional point for confirmation of the molecular formula of the hit.



## Examples of Contaminants Identified in Non-Targeted Screening



#### Tentative hit: Methoxsalen (C12H8O4)

- Example of tentatively identified contaminants from UB site, using Unknowns Analysis and NIST17.L library.
- Low mass error for the fragments in the deconvoluted spectrum provides additional point for confirmation of the molecular formula of the hit.



#### **Unknowns Structure Elucidation**



#### Tentative NIST17 hit: 1,3,7-trichloronaphthalene (C10H5Cl3)

- Identity confirmation and structure elucidation of one of the tentative hits
- Significant mass error suggested incorrect identity of the compound

**UB** site



#### **Unknowns Structure Elucidation**



Most likely: **2,4,5-Trichloroisophthalonitrile**. A degradation product of Chlorothalonil

The compound was identified using Molecular Structure Correlator tool with accurate mass product ion spectrum as an input

#### **UB** site



#### **Unknowns Structure Elucidation**





Most likely: **2,4,5-Trichloroisophthalonitrile**. A degradation product of Chlorothalonil





## Summary

- The EI and NCI suspect screening approach combined with nontargeted screening were used to identify environmental contaminants in surface water and wastewater effluents using a high-resolution GC/Q-TOF.
- A few compounds, including pesticides such as flurprimidol, paclobutrazol, azoxystrobin, and chlorantraniliprole, were identified predominantly in the wastewater effluent samples associated with some degree of toxicity.
- When using the nontargeted approach, that is unlikely to detect minor differences in the levels of trace compounds, it was able to identify additional potential contaminants outside of the accurate mass library.
- Low energy EI and accurate mass MS/MS facilitated structure elucidation of unknowns

## Acknowledgements & References

#### Thomas Young

Department of Civil and Environmental Engineering University of California, Davis

#### Kai Chen

Agilent Technologies, Inc.

Application Note Aailent Environmental Analysis of Wastewater Effluent

Samples to Identify Toxic Chemicals Using the High-Resolution Agilent 7250 GC/Q-TOF

#### Abstract

Sofia Nieto and Kai Chen Agilent Technologies, Inc. Thomas Young Department of Civil and Environmental Engineering, University of California Davis, CA, USA

Authors

This study used a workflow for broad scope suspect screening to identify toxic chemicals in wastewater effluents. The comprehensive approach combined targeted and untargeted methods using a high-resolution accurate mass Agilent 7250 GC/Q-TOF in multiple ionization modes, the GC/Q-TOF screening workflow in Agilent MassHunter Quantitative Analysis software 10.1, and the GC/Q-TOF accurate mass library of pesticides and environmental contaminants

Authors Application Note: 5994-1345EN Sofia Nieto and Kai Chen Agilent Technologies, Inc. Santa Clara, CA, USA Chris Alaimo and Thomas Young Department of Civil and Environmental Engineering,

CA, USA

University of California Davis,

Aailent

Comprehensive Profiling of Environmental Contaminants in Surface Water Using High-Resolution GC/O-TOF

#### Abstract

Monitoring of environmental pollutants in surface water is a challenging task due to large number of contaminants, continuous change of their relevance in the environment, and toxicity at low concentration (for example, for pyrethroids and some organophosphate pesticides) requiring methods with low detection limits.1 The use of accurate mass high-resolution MS (HRMS) techniques to characterize known and unknown pollutants in a sample is gaining in popularity. However, several environmental contaminants are low molecular weight, volatile, or nonpolar, making them much more amenable to analysis by GC rather than LC.

Therefore, to achieve high sensitivity together with an expanded analysis scope, a comprehensive workflow including targeted quantitation, suspect screening, and a nontargeted approach with a high-resolution accurate mass GC/Q-TOF was applied to screen for environmental pollutants in water samples

Application Note: 5994-1371EN



# High Resolution GC/Q-TOF for Routine Analysis of Dioxins

#### Roberto Riccio



r.riccio@biochemielab.it Tel.: +39 3441627929







#### www.biochemielab.it





#### **Contract Lab in Florence**

- Environmental
- Food
- Microbiology
- Food Contact
- Ecotoxicology
- Molecular Biology
- Asbestos and Fiber
- Field Sampling
- Mobile Labs

Via di Limite 27G 50013 Campi Bisenzio (FI) - Italy



🔅 Agilent

## The BioChemie Project

Dioxin, PCB Dioxin Like and PCB Markers analysis by different high-resolution technology in food and environmental matrices

The magnetic sector is used for the analysis of classes of compounds, mainly dioxins, furans and PCBs, only to specific congeners. And not in multi-residual and multi-class areas such as Pesticides, micropollutants in food and Persistent Organic Pollutants, chemicals that are very resistant to decomposition and that have some toxic properties. Due to their persistence and toxicity characteristics, they are particularly harmful to human health and the environment.

Prerequisite in the identification and quantification in high resolution is that each ion extracted / acquired has a maximum deviation of 5 ppm vs. the exact mass and that the Mass Spectrometer Resolution is  $\geq$  10,000 at 10% valley (Resolving Power).





#### **The BioChemie Project**

Dioxin, PCB Dioxin Like and PCB Markers analysis by different high-resolution technology in food and environmental matrices



The analysis of Poly Chlorine Dibenzo Dioxins (PCDD), Poly Chlorine Dibenzo Furans (PCDF) and Poly Chlorine Biphenyls (PCB) in food and environmental matrices are usually performed with magnetic sector mass spectrometers.

The magnetic sector mass spectrometer normally is not used for untarget and target analysis (Pesticides) where the identification and quantification scope is required on a large number of compounds at the same time in different classes; in fact, its main focus is the analysis of compounds that have the same characteristics to be monitored (Dioxins, Furans and PCBs).

Using a technology like the Q-TOF (Time of Flight) allows to respect these conditions not only in the narrow intervals of the SICP (Selected Ion Current Profile of the Magnetic Sector; the line described by a signal at its exact value of mass charge ratio [m/z]), but in the whole scan interval in high resolution from 20 m/z to 1200 m/z. Its high speed allows it to acquire the entire spectral range in Profile without signal loss with a "Mass Drift" within 5ppm.



#### **EPA Method Requirement**

#### Method 1613

#### Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS

15.2 MS Resolution—A static resolving power of at least 10,000 (10% valley definition) must be demonstrated at the appropriate m/z before any analysis is performed. Static resolving power checks must be performed at the beginning and at the end of each 12hour shift according to procedures in Section 10.1.2. Corrective actions must be implemented whenever the resolving power does not meet the requirement.

| Enabled  | Target Mass | Actual Mass | Accuracy (ppm) | Abundance   | Resolution | Time of Flight (ns) |
|----------|-------------|-------------|----------------|-------------|------------|---------------------|
| selected | 68.9947     | 68.9947     | -0.14          | 1,023,948.1 | 18267      | 25249.99            |
| selected | 130.9915    | 130.9914    | -0.28          | 780,087.0   | 26184      | 34324.14            |
| selected | 218.9851    | 218.9851    | -0.05          | 486,046,9   | 32399      | 44017.34            |
| selected | 263.9866    | 263.9866    | 0.00           | 197,091.4   | 33649      | 48207.76            |
| selected | 413.9770    | 413.9770    | 0.12           | 40,158.1    | 35983      | 60056.87            |
| selected | 463.9738    | 463.9736    | -0.38          | 18,996.9    | 36395      | 63507.51            |
| selected | 501.9706    | 501.9706    | 0.01           | 39,350.9    | 37849      | 66007.14            |
| selected | 613,9642    | 613,9643    | 0.26           | 7,524,6     | 37665      | 72868.98            |



#### GC/Q-TOF System Verification - Tune

| Instrument Name  | GCQTOF 7250 / US1919E302      | MS Model                   | 7250          |  |
|------------------|-------------------------------|----------------------------|---------------|--|
| Tune Date & Time | 11/30/2019 07:28:13 PM        | Source                     | LE-EI         |  |
| Software Version | 10.0.368                      | Firmware Version           | G.7250.02.02R |  |
| Fune File        | D:\MassHunter\GCMS\1\7250\atu | nes.eihs.tune.xml Modified |               |  |
|                  |                               |                            |               |  |



| Enabled    | Target Mass         | Actual Mass       | Accuracy (ppm) | Abundance   | Resolution | Time of Flight (ns) |            |
|------------|---------------------|-------------------|----------------|-------------|------------|---------------------|------------|
| selected   | 68.9947             | 68.9947           | -0.14          | 1,023,948.1 | 18267      | 25249.99            |            |
| selected   | 130.9915            | 130.9914          | -0.28          | 780,087.0   | 26184      | 34324.14            |            |
| selected   | 218.9851            | 218,9851          | -0.05          | 486,046.9   | 32399      | 44017.34            |            |
| selected   | 263,9866            | 263.9866          | 0.00           | 197,091.4   | 33649      | 48207.76            |            |
| selected   | 413,9770            | 413.9770          | 0.12           | 40,158.1    | 35983      | 60056.87            |            |
| selected   | 463.9738            | 463.9736          | -0.38          | 18,996.9    | 36395      | 63507.51            |            |
| selected   | 501.9706            | 501.9706          | 0.01           | 39,350.9    | 37849      | 66007.14            |            |
| selected   | 613.9642            | 613.9643          | 0.26           | 7.524.6     | 37665      | 72868.98            |            |
| Mass acc   | uracy < 1.0 ppm     |                   |                |             |            |                     |            |
| Maximun    | n mass accuracy e   | rror is -0.4 ppm  |                |             |            | OK                  |            |
| Base pea   | k should be 69.00   | or 131.00         |                |             |            |                     |            |
| Base pea   | k is 68.9947        |                   |                |             |            | ок                  |            |
| Base pea   | k abundance shou    | d be > 100000     |                |             |            |                     |            |
| Base pea   | k abundance = 10    | 23948.1           |                |             |            | OK                  |            |
| Resolutio  | n should be > 250   | 00 for peaks > 10 | 0 amu          |             |            |                     |            |
| Lowest r   | esolution for peaks | > 100 amu = 261   | .84            |             |            | OK                  |            |
| Anilen     | I mathematic        |                   |                |             |            |                     |            |
| Mr. Lidney |                     |                   |                | Page 1 of 3 |            | 11/30/2019 0        | /:55:18 PM |

## Verify Mass Accuracy (Drift) and Resolving Power



10.1.2.3 Using a PFK molecular leak, tune the instrument to meet the minimum required resolving power of 10,000 (10% valley) at m/z 304.9824 (PFK) or any other reference signal close to m/z 304 (from TCDF). For each descriptor (Table 8), monitor and record the resolution and exact m/z's of three to five reference peaks covering the mass range of the descriptor. The resolution must be greater than or equal to 10,000, and the deviation between the exact m/z and the theoretical m/z (Table 8) for each exact m/z



## Verified Mass Accuracy (Drift) and Resolving Power

using MassHunter Qual by Caliper Measurement Tool



In the spectrum window after appropriate zoom of the ion 305.3987, use the "Delta Mass Caliper" in "Profile Point to Point" mode for the intervals where at least one of the points is not a maximum of an ion peak (valley point), and in "Profile Peak to Peak" to select a maximum of an ions peak. Tools are marked in red in the Spectrum Figure.

| + + d I 4           |                 | • III (**)           | иї <u>ти</u> 30 % .% |                                          |          |        |               |                              |                               |                                 |     |
|---------------------|-----------------|----------------------|----------------------|------------------------------------------|----------|--------|---------------|------------------------------|-------------------------------|---------------------------------|-----|
| ofile Peak to Peak  | - Ⅲ № ×         | đ                    |                      |                                          |          |        |               |                              |                               |                                 |     |
| file Point to Point | 🚽 min, 22 scans | s) Frag=70.0V L1_2.D |                      |                                          |          |        | Reso<br>(305. | lving Power<br>8987 + 0.0121 | (neighboring<br>) / (305.9243 | lons) =<br>- 305.8987) = 11.942 | -   |
| 4.5-                |                 |                      |                      |                                          |          | m/z i2 | Reso          | lving Power                  | (PW 10%) = 3                  | 05.8987 / 0.0218 = 14.0         | 032 |
| 4.25-               |                 |                      |                      | m/z i2                                   | - m/z i1 | 64     | Reso          | lving Power                  | (PW 5%) = 30                  | 5.8987 / 0.0266 = 11.49         | 99  |
| 4-                  |                 |                      |                      | 0.                                       | 0256     | 92     |               | g                            |                               |                                 |     |
| 25.75-              |                 |                      |                      |                                          |          | 306    |               |                              |                               |                                 |     |
| 3.0-                |                 |                      |                      |                                          |          | A      |               |                              |                               |                                 |     |
| 20-                 |                 |                      | PW 5%                | 0.0040                                   |          |        |               |                              |                               |                                 |     |
| 75                  |                 |                      |                      | 0.0266                                   |          |        |               |                              |                               |                                 |     |
| 75-                 |                 |                      |                      |                                          |          |        |               |                              |                               |                                 |     |
| 25                  |                 |                      |                      | 1. I I I I I I I I I I I I I I I I I I I |          |        |               |                              |                               |                                 |     |
| 2.5                 |                 |                      | PW 1                 | 0%                                       |          | /      |               |                              |                               |                                 |     |
| 75                  |                 |                      |                      |                                          |          | /      |               |                              |                               |                                 |     |
| 15                  |                 |                      |                      | 88                                       | /        |        | 1             |                              |                               |                                 |     |
| 25                  |                 |                      |                      | 0.0121                                   | /        |        | 1             |                              |                               |                                 |     |
| .20-                |                 |                      |                      | 30                                       |          |        |               |                              |                               |                                 |     |
| 75                  |                 |                      |                      | maria                                    |          |        |               | R                            |                               |                                 |     |
| 0.5                 | 616             | 713                  | /                    | IIVZ II                                  |          |        |               | 5.94                         |                               |                                 |     |
| 0.0-                | 20              | 00                   |                      |                                          | $\nabla$ |        |               | 305                          |                               |                                 |     |
| 1.25-               | 30              | 8                    |                      | m/:                                      | Z pv     |        |               |                              |                               |                                 | -   |



#### 2,3,7,8-TCDD at 10ppt and 2ppt New column and filament



🔆 🔆 Agilent



#### The Soil Ring Test, on the good way



| Parametro     | Totall | Action | Warning | Adeguati<br>% | Blunder | misura | assegnato<br>X <sub>pl</sub> | Robusta<br>(Tutti I dati)<br>X* | scano tipo<br>assegnato<br>relativo<br>σ <sub>pt</sub> % | Scano Tipo<br>Robusto<br>relativo<br>(Tutti I dati)<br>S*% |
|---------------|--------|--------|---------|---------------|---------|--------|------------------------------|---------------------------------|----------------------------------------------------------|------------------------------------------------------------|
| 2378TCDD      | 48     | 2      | 3       | 90            | 0       | ng/kg  | 3,8                          | 3,9                             | 35                                                       | 27,3                                                       |
| 2378TCDF      | 54     | 2      | 2       | 93            | 0       | ng/kg  | 483,3                        | 463,4                           | 30                                                       | 19,5                                                       |
| 12378PeCDD    | 55     | 0      | 2       | 96            | 0       | ng/kg  | 110,5                        | 105,3                           | 30                                                       | 22,4                                                       |
| 12378PeCDF    | 53     | 1      | 2       | 94            | 0       | ng/kg  | 314,5                        | 310,9                           | 30                                                       | 18,1                                                       |
| 23478PeCDF    | 56     | 1      | 3       | 93            | 0       | ng/kg  | 492,0                        | 462,4                           | 30                                                       | 28,6                                                       |
| 123478HxCDD   | 56     | 3      | 2       | 91            | 1       | ng/kg  | 275,8                        | 272,8                           | 30                                                       | 23,5                                                       |
| 123478HxCDF   | 56     | 2      | 4       | 89            | 0       | ng/kg  | 1012,3                       | 1007,8                          | 25                                                       | 18,0                                                       |
| 123678HxCDD   | 58     | 0      | 5       | 91            | 0       | ng/kg  | 2416,4                       | 2251,3                          | 30                                                       | 29,3                                                       |
| 123678HxCDF   | 55     | 2      | 4       | 89            | 1       | ng/kg  | 222,4                        | 219,6                           | 30                                                       | 22,1                                                       |
| 123789HxCDD   | 56     | 0      | 6       | 89            | 0       | ng/kg  | 1115,5                       | 1071,9                          | 25                                                       | 23,8                                                       |
| 234678HxCDF   | 55     | 2      | 3       | 91            | 0       | ng/kg  | 132,3                        | 133,6                           | 30                                                       | 26,5                                                       |
| 1234678HpCDD  | 59     | 2      | 4       | 90            | 0       | ng/kg  | 11849,6                      | 11173,9                         | 25                                                       | 19,4                                                       |
| 1234678HpCDF  | 58     | 2      | 5       | 88            | 0       | ng/kg  | 598,3                        | 566,9                           | 25                                                       | 21,0                                                       |
| 1234789HpCDF  | 54     | 3      | 0       | 94            | 0       | ng/kg  | 149,0                        | 143,4                           | 25                                                       | 31,0                                                       |
| OCDD          | 58     | 3      | 7       | 83            | 0       | ng/kg  | 11959,6                      | 11127,5                         | 25                                                       | 23,5                                                       |
| OCDF          | 57     | 4      | 4       | 86            | 2       | ng/kg  | 354,5                        | 353,4                           | 25                                                       | 24,1                                                       |
| PCDD/DF - TEQ | 53     | 1      | 3       | 92            | 0       | ng/kg  | 1044,3                       | 1017,9                          | 20                                                       | 16,2                                                       |

| Parametro     | Materiale | Unità di misura | XI      | Z-SCOIP | z/z | Segnale |
|---------------|-----------|-----------------|---------|---------|-----|---------|
| 2378TCDD      | SU/2-2-19 | ng/kg           | 3,6     | -0,12   | Z   | -       |
| 2378TCDF      | SU/2-2-19 | ng/kg           | 573,4   | 0,62    | z   | -       |
| 12378PeCDD    | SU/2-2-19 | ng/kg           | 86,6    | -0,72   | Z   | -       |
| 12378PeCDF    | SU/2-2-19 | ng/kg           | 337     | 0,24    | z   | -       |
| 23478PeCDF    | SU/2-2-19 | ng/kg           | 312     | -1,22   | Z   | -       |
| 123478HxCDD   | SU/2-2-19 | ng/kg           | 240,3   | -0,43   | Z   | ~       |
| 123478HxCDF   | SU/2-2-19 | ng/kg           | 865     | -0,58   | Z   | -       |
| 123678HxCDD   | SU/2-2-19 | ng/kg           | 2146,8  | -0,37   | Z   | ÷       |
| 123678HxCDF   | SU/2-2-19 | ng/kg           | 247,9   | 0,38    | Z   | -       |
| 123789HxCDD   | SU/2-2-19 | ng/kg           | 1212,5  | 0,35    | Z   | -       |
| 234678HxCDF   | SU/2-2-19 | ng/kg           | 75,4    | -1,43   | z   | -       |
| 1234678HpCDD  | SU/2-2-19 | ng/kg           | 11116,8 | -0,25   | Z   | -       |
| 1234678HpCDF  | SU/2-2-19 | ng/kg           | 510,9   | -0,58   | Z   |         |
| 1234789HpCDF  | SU/2-2-19 | ng/kg           | 168,6   | 0,53    | Z   | -       |
| OCDD          | SU/2-2-19 | ng/kg           | 12106,5 | 0,05    | Z   | -       |
| OCDF          | SU/2-2-19 | ng/kg           | 325,9   | -0,32   | z   | -       |
| PCDD/DF - TEQ | SU/2-2-19 | ng/kg           | 849.3   | -0,93   | Z   |         |

#### Metodi di prova utilizzati

HRMS: EPA 1613, (26 laboratori); UNI EN 16190 (3 laboratori) altro metodo (1 laboratorio)
LRMS: EPA 8280 (19 laboratori); UNI 11199 (7 laboratori) altro metodo (4 laboratori).



#### Accreditation Body: Water and Soil



| BIOCHEMIE LAB S.F.I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Numero di accreditan                                                                                                                                   | nento: 0195 L                                                   | Sede A          |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------|------|
| Via di Limite 27/G<br>50013 Campi Bisenzio FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Revisione: 56                                                                                                                                          | Data                                                            | a: 19/03/2020   | )    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pag. 12 di 48                                                                                                                                          | UNI CEI EN I                                                    | SO/IEC 17025:   | 2018 |
| caue. Suoli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                        |                                                                 |                 |      |
| Denominazione della prova / Campi di prova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Metodo di prova                                                                                                                                        | 7                                                               | ecnica di prova | 05   |
| PCDD e PCDF:<br>Policlorodibenzodiossine (PCDD) sostituite in 2,3,7,8:<br>2,3,7,8-Tetraclorodibenzodiossina (TCDD);<br>1,2,3,7,8-Pentaclorodibenzodiossina (PeCDD);<br>1,2,3,4,7,8-Esaclorodibenzodiossina (PeCDD);<br>1,2,3,6,7,8-Esaclorodibenzodiossina (HxCDD);<br>1,2,3,7,8,9-Esaclorodibenzodiossina (HxCDD);<br>1,2,3,4,6,7,8-Eptaclorodibenzodiossina (HxCDD);<br>1,2,3,4,6,7,8-Eptaclorodibenzodiossina (HxCDD);<br>0ctaclorodibenzofurani (PCDF) sostituiti in 2,3,7,8:<br>2,3,7,8-Tetraclorodibenzofurano (TCDF);<br>1,2,3,4,7,8-Pentaclorodibenzofurano (PeCDF);<br>2,3,4,7,8-Pentaclorodibenzofurano (PeCDF);<br>1,2,3,7,8-Pentaclorodibenzofurano (HxCDF);<br>1,2,3,6,7,8-Esaclorodibenzofurano (HxCDF);<br>1,2,3,4,6,7,8-Esaclorodibenzofurano (HyCDF); 1,2,3,4,7,8,9-Esaclorodibenzofurano (HyCDF) | EPA 16138 1994                                                                                                                                         | G                                                               | SC-HRMS         |      |
| Somma PCDD/PCDF I-TEQ (somma dei prodotti tra le concentrazio<br>dei 17 cogeneri PCDD/PCDF cloro sostituiti nelle posizioni 2,3,7,8 e<br>NATO CCMS TEF 1988)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ni EPA 1613B 1994 +<br>d i Report nº176 1988                                                                                                           | NATO CCMS d                                                     | alcolo          |      |
| Somma PCDD/PCDF WHO-TEQ (somma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EPA 1613B 1994 +<br>UNEP/POPS/COP.3/<br>11/04/2007 (somm<br>tra le concentrazion<br>cogeneri PCDD/PCD<br>sostituiti nelle posiz<br>ed i WHO-TEF - Rif. | INF/27<br>a dei prodotti<br>i dei 17<br>F cloro<br>ioni 2.3,7,8 | alcolo          |      |





In MassHunter Quant are available several Datafiles format to analyze Accurate Mass Data and possibility to choose different Mass Extraction windows for the acquired signal. Also Different Acquisition Rate are settable to balance ion statistic and peaks datapoints.

The final choices are:

- Profile: method requirement to calculate the Resolution at 10% valley
- Mass Extraction: 5 ppm should be the most common way. 25 ppm can be used too. It is possible to work on a double approach, with a first screening batch at 5ppm to check the mass drift and a second quantitation batch at 25 ppm to quantitate the samples.
- Acquisition Rate: 2 spectra/s



#### **Dioxins in Profile**

#### 2 scans/s Acq Rate and 5 ppm Mass Extraction - Calibration CS1-CS5





#### **Dioxins in Profile**

#### 2 scans/s Acq Rate and 25 ppm Mass Extraction - Calibration CS1-CS5



## **Dioxin in Profile**

#### 2 scans/s Acq Rate and 25 ppm Mass Extraction - Reproducibility CS1



57





#### **Dioxin in Profile** 2 scans/s Acq Rate and 25 ppm Mass Extraction - Reproducibility CS1



🔆 Agilent

#### (ppt) CS1 Tetra 50 - Penta Hexa Hepta 250 - Octa 500

| Compound Me   | thod       |        | CS_1a       | Qualifi | ISTD R | ISTD   | CS_1b       | Qualifi | ISTD R | ISTD   | CS_1c       | Qualifi | ISTD R | ISTD   | CS_1d       | Qualifi | ISTD R | ISTD   | CS_1e       | Qualifi | ISTD R | ISTD   | CS_1f       | Qualifi | ISTD R | ISTD   |
|---------------|------------|--------|-------------|---------|--------|--------|-------------|---------|--------|--------|-------------|---------|--------|--------|-------------|---------|--------|--------|-------------|---------|--------|--------|-------------|---------|--------|--------|
| Name          | Transition | RT 🗠   | Final Conc. | Area    | Area   | Area   | Final Conc. | Area    | Area   | Area   | Final Conc. | Area    | Area   | Area   | Final Conc. | Area    | Area   | Area   | Final Conc. | Area    | Area   | Area   | Final Conc. | Area    | Area   | Area   |
| ▶ 2378-TCDD   | 321.8936   | 27.279 | 52.1543     | 663     | 165202 | 118924 | 56.0576     | 634     | 169520 | 124865 | 43.4254     | 653     | 179666 | 134474 | 43.4039     | 693     | 180876 | 127314 | 43.0536     | 696     | 175571 | 132947 | 49.2302     | 532     | 175135 | 121083 |
| 12378-PeCDD   | 355.8546   | 32.708 | 302.9143    | 3381    | 140137 | 86800  | 202.8719    | 2235    | 146923 | 96312  | 201.6435    | 2213    | 152777 | 98012  | 250.6058    | 2891    | 149925 | 100458 | 254.7759    | 2752    | 145873 | 95914  | 224.9952    | 2436    | 144496 | 85735  |
| 123478-HxCDD  | 389.8157   | 37.760 | 346.5083    | 3752    | 126203 | 93712  | 268.2883    | 2591    | 129305 | 96885  | 278.9580    | 3020    | 136659 | 99780  | 241.3882    | 2701    | 128142 | 103883 | 250.3892    | 2597    | 133559 | 103519 | 259.1539    | 3068    | 128267 | 95336  |
| 123678-HxCDD  | 389.8157   | 37.936 | 365.2158    | 4385    | 137178 | 100143 | 218.0835    | 3077    | 136419 | 111544 | 272.3659    | 3407    | 143314 | 119958 | 267.9914    | 3268    | 143430 | 115647 | 217.9321    | 2563    | 140002 | 107200 | 241.2093    | 2749    | 134612 | 104280 |
| 123789-HxCDD  | 389.8157   | 38.447 | 342.0160    | 3807    | 131691 |        | 235.1310    | 2472    | 132862 |        | 253.5199    | 2806    | 139986 |        | 193.3342    | 2278    | 142089 | 115277 | 234.7888    | 3241    | 136781 |        | 222.1199    | 2190    | 131439 |        |
| 1234678-HpCDD | 423.7766   | 43.234 | 460.8025    | 3930    | 78991  | 73158  | 274.8537    | 2790    | 87148  | 80398  | 250.2685    | 2535    | 92629  | 86724  | 226.3505    | 2207    | 90774  | 86534  | 219.6219    | 2252    | 86656  | 86468  | 242.3600    | 2384    | 84306  | 86360  |
| OCDD          | 459.7348   | 48.156 | 933.9701    | 7068    | 151211 | 124801 | 500.9108    | 3935    | 160898 | 148349 | 436.4790    | 3311    | 172539 | 149627 | 418.9746    | 3721    | 172723 | 151693 | 357.3865    | 3145    | 162961 | 150642 | 504.1717    | 4232    | 167429 | 140046 |

| CS1b-CS_1f | 2378-TCDD | 12378-PECDD | 123478-HxCDD | 123678-HxCDD | 123789-HxCDD | 1234678-HpCDD | OCDD |
|------------|-----------|-------------|--------------|--------------|--------------|---------------|------|
| RSD%       | 10.4      | 12.2        | 8.3          | 11.7         | 16.6         | 9.7           | 12.1 |



## Ion Ratio results in Profile

2 scans/s Acq Rate and 25 ppm Mass Extraction - Native Compound Dioxin





## **Calibration Range**



The Calibration Range is associated not only with the instrument sensitivity, but also with the capacity to detect a low concentration and at the same time satisfy the identification and quality requirement of the Method, but most important the Law Limits.

16.0 Qualitative Determination

A CDD, CDF, or labeled compound is identified in a standard, blank, or sample when all of the criteria in Sections 16.1 through 16.4 are met.

- 16.1 The signals for the two exact m/z's in Table 8 must be present and must maximize within the same two seconds.
- 16.2 The signal-to-noise ratio (S/N) for the GC peak at each exact m/z must be greater than or equal to 2.5 for each CDD or CDF detected in a sample extract, and greater than or equal to 10 for all CDDs/CDFs in the calibration standard (Sections 10.2.3 and 15.3.3).

±15% windows around the theoretical ion abundance ratios.

- 16.3 The ratio of the integrated areas of the two exact m/z's specified in Table 8 must be within the limit in Table 9, or within  $\pm 10\%$  of the ratio in the midpoint (CS3) calibration or calibration verification (VER), whichever is most recent.
- 16.4 The relative retention time of the peak for a 2,3,7,8-substituted CDD or CDF must be within the limit in Table 2. The retention time of peaks representing non-2,3,7,8-substituted CDDs/CDFs must be within the retention time windows established in Section 10.3.



#### **Calibration Range: Standard**

| NATIVE PCDDs & PCDFs     (ng/mt)     (ng/mt) <th></th> <th>1613CSL</th> <th>1613C50.5</th> <th>1613CS1</th> <th>1613C52</th> <th>1613C53</th> <th>1613C54</th> <th>1613C55</th> |                                                                        | 1613CSL | 1613C50.5 | 1613CS1 | 1613C52 | 1613C53 | 1613C54 | 1613C55 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------|-----------|---------|---------|---------|---------|---------|
| 2,37,8-Tetrachlorodibenzop-dioxin     0.1     0.25     0.5     2     10     40     200       1,23,17,8-Tetrachlorodibenzop-dioxin     0.5     1.25     2.5     10     50     200     1000       2,3,7,8-Tetrachlorodibenzohran     0.5     1.25     2.5     10     40     200       1,23,17,8-Tetrachlorodibenzohran     0.5     1.25     2.5     10     50     200     1000       1,23,17,8-Tetrachlorodibenzohran     0.5     1.25     2.5     10     50     200     1000       1,23,47,8-Hetachlorodibenzohran     0.5     1.25     2.5     10     50     200     1000       1,23,46,7,8-Hetachlorodibenzohran     0.5     1.25                                                                                                                                                                                                             | NATIVE PCDDs & PCDFs                                                   | (ng/ml) | (ng/ml)   | (ng/ml) | (ng/ml) | (ng/ml) | (ng/ml) | (ng/ml) |
| 1,23,28-Pentachlorodiberzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     1,23,47,8-Hexachlorodiberzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     1,23,46,78-Hexachlorodiberzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     1,23,46,78-Hexachlorodiberzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     2,34,78-Hexachlorodiberzo-p-dioxin   1.0   2.5   5.0   20   100   400   2000     2,34,78-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     2,34,78-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1,23,47,8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1,23,47,8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1,23,46,78-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000 <td< td=""><td>2,3,7,8-Tetrachlorodibenzo-p-dioxin</td><td>0.1</td><td>0.25</td><td>0.5</td><td>2</td><td>10</td><td>40</td><td>200</td></td<>                                                                                                                                                                        | 2,3,7,8-Tetrachlorodibenzo-p-dioxin                                    | 0.1     | 0.25      | 0.5     | 2       | 10      | 40      | 200     |
| 1,23,47,8-Heachlorodiberzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     1,23,47,8-Heachlorodiberzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     1,23,47,8-Heachlorodiberzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     1,23,47,8-Hestachlorodiberzo-p-dioxin   0.5   1.25   2.5   10   400   2000     2,3,7,8-Tetrachlorodiberzo-p-dioxin   0.1   0.25   5.0   20   100   400   2000     2,3,7,8-Tetrachlorodiberzo-furan   0.5   1.25   2.5   10   50   200   1000     2,3,4,7,8-Heachlorodiberzo-furan   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Heachlorodiberzo-furan   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Heachlorodiberzo-furan   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Heachlorodiberzo-furan   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7                                                                                                                                                                                                                                                                                                      | 1,2,3,7,8-Pentachlorodibenzo-p-dioxin                                  | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 1,23,6,7,8-Heachlorodibenzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     1,23,4,6,7,8-Heptachlorodibenzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     2,37,8,8-Heptachlorodibenzo-p-dioxin   0.5   1.25   2.5   10   50   200   1000     2,37,8-Fetrachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     2,3,7,8-Pentachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,7,8-Pentachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Pentachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Heptachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Heptachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Heptachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000   100                                                                                                                                                                                                                                                                                                       | 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin                                 | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 1,2,3,2,8,9.4Heachlorodibenzo-p-dioxin   0.5   1,25   2.5   10   50   200   1000     0.23,4,6,7,8.4Heptachlorodibenzo-p-dioxin   0.5   1,25   5.0   20   100   400   2000     2,3,7,8-Tetrachlorodibenzofuran   0.5   1,25   5.0   20   100   400   2000     2,3,7,8-Tetrachlorodibenzofuran   0.5   1,25   2.5   10   50   200   1000     1,2,3,7,8-Tetrachlorodibenzofuran   0.5   1,25   2.5   10   50   200   1000     1,2,3,4,7,8-Heachlorodibenzofuran   0.5   1,25   2.5   10   50   200   1000     1,2,3,4,7,8-Heachlorodibenzofuran   0.5   1,25   2.5   10   50   200   1000     1,2,3,4,6,7,8-Heptachlorodibenzofuran   0.5   1,25   2.5   10   50   200   1000     1,2,3,4,7,8-Heptachlorodibenzofuran   0.5   1,25   2.5   10   50   200   1000     1,2,3,4,7,8-Heptachlorodibenzofuran   1.0   2.5   5.0   20   1000   100   100   100 </td <td>1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin</td> <td>0.5</td> <td>1.25</td> <td>2.5</td> <td>10</td> <td>50</td> <td>200</td> <td>1000</td>                                                                                                                                                    | 1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin                                 | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 1,2,3,4,6,7,8-Heptachlorodibenzop-dioxin   0.5   1,25   2.5   10   50   200   1000     2,3,7,8-Tetrachlorodibenzofuran   0.1   0.25   5.0   20   100   400   2000     2,3,7,8-Tetrachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,7,8-Pentachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,7,8-Pentachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,7,8-Hexachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Hexachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Hexachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Heptachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Heptachlorodibenzofuran   0.5   1.25   5.0   20   100   100   100   100                                                                                                                                                                                                                                                                                                              | 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin                                 | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| Octachlorodibenzop-dioxin     1.0     2.5     5.0     20     100     400     2000       2,3,7,8-Tetrachlorodibenzofuran     0.5     1.25     2.5     10     50     200     1000       1,2,3,7,8-Pentachlorodibenzofuran     0.5     1.25     2.5     10     50     200     1000       1,2,3,7,8-Hexachlorodibenzofuran     0.5     1.25     2.5     10     50     200     1000       1,2,3,6,7,8-Hexachlorodibenzofuran     0.5     1.25     2.5     10     50     200     1000       1,2,3,4,7,8-Hexachlorodibenzofuran     0.5     1.25     2.5     10     50     200     1000       1,2,3,4,7,8-Hexachlorodibenzofuran     0.5     1.25     2.5     10     50     200     1000       1,2,3,4,7,8-Hexachlorodifenzofuran     0.5     1.25     2.5     10     50     200     1000       1,2,3,4,7,8-Heptachlorodifenzofuran     1.0     2.5     5.0     20     100     400     2000       L2,3,7,8-Tetrachloroff*C, Jdibenzo-p-dioxin     100                                                                                                                                                                                                          | 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin                              | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 2,3,7,8-Tetrachlorodibenzofuran     0,1     0.25     0.5     2     10     40     200       1,2,3,7,8-Pentachlorodibenzofuran     0.5     1,25     2.5     10     50     200     1000       2,3,4,7,8-Pentachlorodibenzofuran     0.5     1,25     2.5     10     50     200     1000       1,23,4,7,8-Pentachlorodibenzofuran     0.5     1,25     2.5     10     50     200     1000       1,23,4,7,8-Hexachlorodibenzofuran     0.5     1,25     2.5     10     50     200     1000       1,23,4,7,8-Hexachlorodibenzofuran     0.5     1,25     2.5     10     50     200     1000       1,23,4,7,8,9-Heptachlorodibenzofuran     0.5     1,25     2.5     10     50     200     1000       0ctachlorodibenzofuran     0.5     1,25     2.5     10     50     200     1000       0ctachlorodifenzofuran     0.5     1,25     5.0     20     100     400     2000       0ctachlorodifenzofuran     10.0     100     100                                                                                                                                                                                                                               | Octachlorodibenzo-p-dioxin                                             | 1.0     | 2.5       | 5.0     | 20      | 100     | 400     | 2000    |
| 1,2,3,7,8-Pentachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     2,3,4,7,8-Pentachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8-Pentachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     Qat,6,7,8-Heptachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     Qatachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     Qatachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                                                                                                                                                             | 2,3,7,8-Tetrachlorodibenzofuran                                        | 0.1     | 0.25      | 0.5     | 2       | 10      | 40      | 200     |
| 2.3.4.7.8-Pentachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1.2.3.4.7.8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1.2.3.6.7.8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1.2.3.6.7.8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1.2.3.4.6.7.8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1.2.3.4.6.7.8-Heptachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1.2.3.4.6.7.8-Heptachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1.2.3.4.7.8.4-HeptachlorodifC., Jdiberzo-p-dioxin   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   <                                                                                                                                                                                                                                                                                                                             | 1,2,3,7,8-Pentachlorodibenzofuran                                      | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 1,23,4,7,8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1,23,6,7,8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1,23,6,7,8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     2,3,4,6,7,8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1,23,4,6,7,8-Heptachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     2,3,4,6,7,8-Heptachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     2,3,4,7,8-Heptachlorodiberzofuran   1.0   2.5   5.0   20   100   400   2000     Catablorodiberzofuran   1.0   2.5   5.0   20   100   400   200     Catablorodiberzofuran   1.0   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                                                                                                                                                                        | 2,3,4,7,8-Pentachlorodibenzofuran                                      | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 1,2.3,6,7,8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1,2.3,4,8,9-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1,2.3,4,6,7,8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     1,2.3,4,6,7,8-Hexachlorodiberzofuran   0.5   1.25   2.5   10   50   200   1000     0.5   1.25   2.5   10   50   200   1000   2000   2000     Octachlorodiberzofuran   1.0   2.5   5.0   20   100   400   2000     LABELLED PCDDs & PCDFs   =   =   2.3,7,8-Tetrachlorof <sup>10</sup> C, Jdibenzo-p-dioxin   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 </td <td>1,2,3,4,7,8-Hexachlorodibenzofuran</td> <td>0.5</td> <td>1.25</td> <td>2.5</td> <td>10</td> <td>50</td> <td>200</td> <td>1000</td>                                                                                                                                                                                                               | 1,2,3,4,7,8-Hexachlorodibenzofuran                                     | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 1,23,7,8,9-Hexachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     2,3,4,6,7,8-Hexachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,23,4,6,7,8-Hexachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,23,4,7,8-Heptachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     0.ctachlorodibenzofuran   1.0   2.5   5.0   20   100   400   2000     LABELLED PCDDs & PCDFs   2,3,7,8-Tetrachlorol <sup>14</sup> C, Jdibenzo-p-dioxin   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 <td>1,2,3,6,7,8-Hexachlorodibenzofuran</td> <td>0.5</td> <td>1.25</td> <td>2.5</td> <td>10</td> <td>50</td> <td>200</td> <td>1000</td>                                                                                                                                                                                                                 | 1,2,3,6,7,8-Hexachlorodibenzofuran                                     | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 2,3,4,6,7,8-Hexachlorodibenzofuran     0.5     1.25     2.5     10     50     200     1000       1,2,3,4,6,7,8-Heptachlorodibenzofuran     0.5     1.25     2.5     10     50     200     1000       Octablorodibenzofuran     0.5     1.25     2.5     10     50     200     1000       Catablorodibenzofuran     1.0     2.5     5.0     20     100     400     2000       LABELLED PCDDs & PCDFs     2,3,7,8-Tetrachloro["C, Jdibenzo-p-dioxin     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100<                                                                                                                                                                                                                                                                      | 1,2,3,7,8,9-Hexachlorodibenzofuran                                     | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 1,2,3,4,6,7,8-Heptachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     1,2,3,4,7,8,9-Heptachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     Octachlorodibenzofuran   1.0   2.5   5.0   20   100   400   2000     LABELLED PCDDs & PCDFs   2,3,7,8-Tetrachloro(PC, Jdibenzo-p-dioxin   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                                                                                                                                                                                                                     | 2,3,4,6,7,8-Hexachlorodibenzofuran                                     | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| 1,2,3,4,7,8,9-Heptachlorodibenzofuran   0.5   1.25   2.5   10   50   200   1000     Cotachlorodibenzofuran   1.0   2.5   5.0   20   100   400   2000     LABELLED PCDDs & PCDFs     2,3,7,8-Tetrachlorol <sup>IV</sup> C_1,1dibenzo-p-dioxin   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,3,4,6,7,8-Heptachlorodibenzofuran                                  | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| Octachlorodibenzofuran     1.0     2.5     5.0     20     100     400     2000       LABELLED PCDDs & PCDFs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,2,3,4,7,8,9-Heptachlorodibenzofuran                                  | 0.5     | 1.25      | 2.5     | 10      | 50      | 200     | 1000    |
| LABELLED PCDDs & PCDFs       2,3,7,8-Tetrachloro["C,,]dibenzo-p-dioxin     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100                                                                                                                                                                                                                                                                                                                          | Octachlorodibenzofuran                                                 | 1.0     | 2.5       | 5.0     | 20      | 100     | 400     | 2000    |
| 2,3,7,8-Tetrachloro[ <sup>IIC</sup> , Jdibenzo-p-dioxin   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 <t< td=""><td>LABELLED PCDDs &amp; PCDFs</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                     | LABELLED PCDDs & PCDFs                                                 |         |           |         |         |         |         |         |
| 1,2,3,7,8-Pentachloro["C, Jdibenzo-p-dioxin   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 <td< td=""><td>2,3,7,8-Tetrachloro[12C,,]dibenzo-p-dioxin</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td></td<>                                                                                                                                                                                                                                                                                                          | 2,3,7,8-Tetrachloro[12C,,]dibenzo-p-dioxin                             | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,3,7,8-Pentachloro[ <sup>10</sup> C, ]dibenzo-p-dioxin              | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,3,4,7,8-Hexachloro["C,,]dibenzo-p-dioxin                           | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,2,3,6,7,8-Hexachloro[14C,,]dibenzo-p-dioxin                          | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| Octachloro["C <sub>u</sub> ]dibenzofuran     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     200     20                                                                                                                                                                                                                                                                                                                         | 1,2,3,4,6,7,8-Heptachloro[9C,,]dibenzo-p-dioxir                        | 1 100   | 100       | 100     | 100     | 100     | 100     | 100     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Octachloro[ <sup>11</sup> C <sub>12</sub> ]dibenzo-p-dioxin            | 200     | 200       | 200     | 200     | 200     | 200     | 200     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,3,7,8-Tetrachloro(PC,.]dibenzofuran                                  | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| 2,3,4,7,8-Pentachloro[PC_j]dibenzofuran   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2,3,7,8-Pentachloro[ <sup>10</sup> C,.]dibenzofuran                  | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,3,4,7,8-Pentachloro[PC,]dibenzofuran                                 | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| 1,2,3,6,7,8-Hexachloro[ <sup>NC</sup> C <sub>0</sub> ]dibenzofuran   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 <t< td=""><td>1,2,3,4,7,8-Hexachloro[PC,,]dibenzofuran</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td></t<>                                                                                                                                                                                                                                                                                       | 1,2,3,4,7,8-Hexachloro[PC,,]dibenzofuran                               | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| 1,2,3,7,8,9-Hexachloro[ <sup>14</sup> C <sub>0</sub> ]dibenzofuran   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 <t< td=""><td>1,2,3,6,7,8-Hexachloro[PC,,]dibenzofuran</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td></t<>                                                                                                                                                                                                                                                                                       | 1,2,3,6,7,8-Hexachloro[PC,,]dibenzofuran                               | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| 2,3,4,6,7,8-Hexachloro["C <sub>u</sub> ]dibenzofuran   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2,3,7,8,9-Hexachloro[PC,,]dibenzofuran                               | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| 1,2,3,4,6,7,8-Heptachloro[ <sup>TC</sup> C <sub>u</sub> ]dibenzofuran   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,3,4,6,7,8-Hexachloro[ <sup>10</sup> C,,]dibenzofuran                 | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| 1,2,3,4,7,8,9-Heptachloro["C <sub>u</sub> ]dibenzofuran   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100 <t< td=""><td>1,2,3,4,6,7,8-Heptachloro[PC,,]dibenzofuran</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td><td>100</td></t<>                                                                                                                                                                                                                                                                                               | 1,2,3,4,6,7,8-Heptachloro[PC,,]dibenzofuran                            | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| CLEANUP STANDARD     0.1     0.25     0.5     2     10     40     200       INTERNAL STANDARDS       1,2,3,7,8-Hexachlorof <sup>11</sup> C., Jdibenzo-p-dioxin     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100     100                                                                                                                                                                                                                                                                                                                  | 1,2,3,4,7,8,9-Heptachloro[ <sup>11</sup> C <sub>12</sub> ]dibenzofuran | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
| 2,3,7,8-["O <sub>4</sub> ]-Tetrachlorodibenzo-p-dioxin 0.1 0.25 0.5 2 10 40 200<br>INTERNAL STANDARDS<br>1,2,3,4-Tetrachlorof <sup>11</sup> C <sub>4</sub> ]dibenzo-p-dioxin 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CLEANUP STANDARD                                                       |         |           |         |         |         |         |         |
| INTERNAL STANDARDS<br>1,2,3,4-Tetrachloro("C,,]dibenzo-p-dioxin 100 100 100 100 100 100 100<br>1,2,3,7,8,9-Hexachloro("C,,]dibenzo-p-dioxin 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2,3,7,8-[ <sup>10</sup> O <sub>4</sub> ]-Tetrachlorodibenzo-p-dioxin   | 0.1     | 0.25      | 0.5     | 2       | 10      | 40      | 200     |
| 1,2,3,4-Tetrachloro( <sup>11</sup> C, )dibenzo-p-dioxin 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INTERNAL STANDARDS                                                     |         |           |         |         |         |         |         |
| 1,2,3,7,8,9-Hexachloro[ <sup>10</sup> C,]dibenzo-p-dioxin 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1234 Tetrachloro Laberzo-p-dioxin                                      | 100     | 100       | 100     | 100     | 100     | 100     | 100     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2,3,7,8,9-Hexachloro["C,,]dibenzo-p-dioxin                           | 100     | 100       | 100     | 100     | 100     | 100     | 100     |

BC. lab

For the Calibration Curve the Standard Solution for EPA Method 1613 CLS, CS0.5, CS1, CS2, CS3, CS4, CS5 and CS3WT, from Wellington Laboratories - Guelph, Ontario - Canada, are ready to use. We perform an additional dilution 1:10 with a solvent mix of Nonane/Toluene 95:5.

| C\$3WT                                                            | EPA Method                                   | 1613; Calibra | ition and Verification                                              |         |    |  |  |  |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------|---------------|---------------------------------------------------------------------|---------|----|--|--|--|--|--|--|
|                                                                   | Solution (CS3) combined with Window Defining |               |                                                                     |         |    |  |  |  |  |  |  |
|                                                                   | and 2378-TO                                  | DD Retolutio  | n Testing Congeners                                                 |         |    |  |  |  |  |  |  |
| QUANTITATIVE ANALYTES                                             |                                              | (ng/ml)       | SEMI-QUANTITATIVE ANALYTES                                          | (ng/ml) |    |  |  |  |  |  |  |
| 2378 Tetrachlorodibertro-p-dictrin                                |                                              | 10            | 1.3.6.8.Tetrachlorodibenzo-o-dictun                                 | 10      |    |  |  |  |  |  |  |
| 12378-Pentachioroditenso-to-dioxin                                |                                              | 50            | 1289 Tetrachlorodibento-p-dioxin                                    | 10      |    |  |  |  |  |  |  |
| 123478-Hexachlorodibenzo-p-diosir                                 | 1                                            | 50            | 1.2.4.7.9-Pentachlorodibenzo-p-dioxin                               | 50      |    |  |  |  |  |  |  |
| 1,2,3,6,7,8 Hesachlorodibenzo-p-diosir                            | 7                                            | 50            | 1.2.3.8.9 Pentachlorodibenzo-p-dioxin                               | 50      |    |  |  |  |  |  |  |
| 1,2,3,7,8,9-Hexachlorodibenzo-p-dioxir                            | 1                                            | 50            | 1.2,4,6,7,9-Hexachlorodibenzo-p-dioxin                              | 50      |    |  |  |  |  |  |  |
| 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dic                            | win (WD)                                     | 50            | 1,2,3,4,6,7,9-Heptachlorodibenzo-p-dioxin                           | 50      |    |  |  |  |  |  |  |
| Octachlorodibenzo-p-dioxin                                        |                                              | 100           |                                                                     |         |    |  |  |  |  |  |  |
| QUANTITATIVE ANALYTES                                             |                                              | (Imign)       | SEMI-QUANTITATIVE ANALYTES                                          | (ng/ml) |    |  |  |  |  |  |  |
|                                                                   |                                              |               | 1368-Tetrachlorodibenzofiaan                                        | 10      |    |  |  |  |  |  |  |
| 2.3.7.8-Tetrachlorodibenzofuran                                   |                                              | 10            | 1.2.8.9 Tetrachlorodibenzofuran                                     | 10      |    |  |  |  |  |  |  |
| 1.2.3.7.8-Pentachlorodibenzofuran                                 |                                              | 50            | 1.3.4.6.8-Pentachlorodibenzofuran                                   | 50      |    |  |  |  |  |  |  |
| 2,3,4,7,8-Pentachlorodibenzofuran                                 |                                              | 50            | 1,2,3,8,9 Pentachlorodibenzofuran                                   | 50      |    |  |  |  |  |  |  |
| 1,2,3,4,7,8-Hexachlorodibenzoturan                                |                                              | 50            | 1,2,3,4,6,8-Hexachlorodibenzoturan                                  | 50      |    |  |  |  |  |  |  |
| 1,2,3,6,7,8-Hexachlorodibenzofuran                                |                                              | 50            |                                                                     |         |    |  |  |  |  |  |  |
| 1,2,3,7,8,9-Hexachlorodibenzofuran                                |                                              | 50            | 2,3,7,8-TCDD RESOLUTION TESTING ISOMER                              | 15:     |    |  |  |  |  |  |  |
| 2,3,4,6,7,8-Hexachlorodibenzofuran                                |                                              | 50            | 1,2,3,4-Tetrachlorodibenzo-p-dioxin                                 | 5       |    |  |  |  |  |  |  |
| 1,2,3,4,6,7,8-Heptachlorodibenzofuran                             | (WD)                                         | 50            | 1,2,3,7/1,2,3,8-Tetrachlorodibenzo-p-dioxin mix                     | 5       |    |  |  |  |  |  |  |
| 1,2,3,4,7,8,9-Heptachlorodibenzofuran<br>Octachlorodibenzofuran   | (WD)                                         | 50<br>100     | 1,2,3,9-Tetrachlorodibenzo-p-dioxin                                 | 10      |    |  |  |  |  |  |  |
| LABELLED PCDDs & PCDFs:                                           |                                              |               |                                                                     |         |    |  |  |  |  |  |  |
| 2,3,7,8-Tetrachloro[°C, ]dibenzo-p-diox                           | ún                                           | 100           | 2.3.7.8-TetrachioroPC, idibenzofuran                                |         | 10 |  |  |  |  |  |  |
| 1,2,3,7,8-Pentachloro[ <sup>10</sup> C, ]dibenzo-p-di             | icxiri                                       | 100           | 1.2.3.7.8-Pentachlorol <sup>Th</sup> C. Idibenzofuran               |         | 10 |  |  |  |  |  |  |
| 1,2,3,4,7,8-Hexschlorol <sup>10</sup> C, Jdibenzo-p-              | nixoit                                       | 100           | 2,3,4,7,8-Pentachloro("C_)dibenzofuran                              |         | 10 |  |  |  |  |  |  |
| 1,2,3,6,7,8-Hexachlorol <sup>14</sup> C, Idibenzo-p-o             | nixoit                                       | 100           | 1,2,3,4,7,8-Hexachloro[°C,]dibenzofuran                             |         | 18 |  |  |  |  |  |  |
| 1,2,3,4,6,7,8-Heptachloro( <sup>III</sup> C <sub>a</sub> )dibenzo | p-dioxin                                     | 100           | 1,2,3,6,7,8-Hexachloro] <sup>10</sup> C, Idibenzofuran              |         | 10 |  |  |  |  |  |  |
| Octachloro] <sup>10</sup> Ctildibenzo-p-dioxin                    |                                              | 200           | 1,2,3,7,8,9 Hexachloro[ <sup>10</sup> C <sub>11</sub> ]dibenzofuran |         | 10 |  |  |  |  |  |  |
|                                                                   |                                              |               | 2,3,4,6,7,8-Hexachloro[ <sup>10</sup> C <sub>10</sub> ]dibenzofuran |         | 10 |  |  |  |  |  |  |
| 2278 BOLL Tetrahlandhar                                           | uni-                                         | 10            | 1,2,3,4,6,7,8-Heptachloro["C <sub>p</sub> ]dibenzofuran             |         | 10 |  |  |  |  |  |  |
| 2.3,7,0-1 "Cig-retrachiorodibenzo-p-dio                           | 20m                                          | 10            | 1,2,3,4,7,8,9-Heptachloro["C <sub>10</sub> ]dibenzofuran            |         | 10 |  |  |  |  |  |  |
| INTERNAL STANDARDS:                                               |                                              |               |                                                                     |         |    |  |  |  |  |  |  |
| 1,2,3,4-Tetrachloro[ºC <sub>p</sub> ]dibenzo-p-dio                | din.                                         | 100           |                                                                     |         |    |  |  |  |  |  |  |
| 1.2.3.7.8.9 Hexachlorol <sup>19</sup> C. Idihenzo-p-              | dioxin                                       | 100           |                                                                     |         |    |  |  |  |  |  |  |





The Italian Law for the matrices investigate Water and Soil is Legislative Decree 3 April 2006 N° 152 and modification at December 2019, it is transposing the Environmental Directive of the European Parliament.

For Groundwater, the threshold limits are reported in the Table 2 Annex 5 Part IV Title V, equal to  $4*10^{-6} \mu g$ -TEQ/L for the sum of Dioxins and Furans.

For Soil, the threshold limits are reported in the Table 1 Annex 5 Part IV Title V, in column A for Public Garden and column B for Commercial and Industrial Sites equal to 1\*10<sup>-5</sup> and 1\*10<sup>-4</sup> mg-TEQ/Kg dry matter for the sum of Dioxins and Furans.

The same Decree, where possible, ask to guarantee a LOQ less than 1/10 of the threshold limits. Usually for Environmental Samples is recommended the Medium Bound approach for TEQ.

NATO/CCMS: North Atlantic Treaty Organization/Committee on the Challenges of Modern Society. International Toxicity Equivalency Factor (I-TEF) method of risk assessment for complex mixtures of dioxin and related compounds, 186, 1988



<sup>•</sup> WHO: World Health Organization - The 2005 World Health Organization Re-evaluation of Human and Mammalian Toxic Equivalency Factors for Dioxins and Dioxin-like Compounds. Van den Berg, M. et al. ToxSci Advance Access published July 7, 2006.

## CS0.5 - (ppt) Tetra 25 and Penta 125

Hexa and Heptha 125; Octa 250 (after 500 runs)





Agilent

#### CSL - (ppt) Tetra 10 and Penta 50 Hexa and Heptha 50; Octa 100 (after 500 runs)







## Sample Preparation – Water samples Calibration starting from CS1



1800 mL sample (900mL in 1L bottle, volumes are gravimetryly determined by use a balance at 0.01g) plus 100µL of Labeled Compounds LCS solution at 1µg/L (50µL per bottle) and 20mL of Hexane (10mL per bottle) are mechanical extracted by use an Agitator (Collomix by DTO Servizi Srl - Spinea (VE) Italy) with a program of 3-4 minutes.

After the extraction, with the help of a Pasteur, the top Organic phases in the bottles are collected inside a separation funnel together with other Hexane added in the bottles after a short manual agitation, then in order to not lose solvent also a minimum part of water is collected.

The whole Organic phase in the separation funnel is collected in a 40mL Vial through a paper filter with sodium sulfate, in order to retain the residual water; both the separator funnel and the filter need to be washed with Hexane, also this solvent must be collected.

The Organic phase is concentrated under nitrogen flow (Techne Dri-Block DB100/3) at 50°C, and transferred in a 12mL test tube, with a Pasteur, together with other little Hexane aliquots added in the 40mL Vial after a short manual agitation to wash the Vial walls.

The Organic phase in the 12mL test tube is reduced in volume, close to 100µL, and transferred in an autosampler Vial at micro volume, together with other 100µL Hexane aliquots added in 12ml test tube with a soft manual agitation to wash the walls.

The Organic phase in the autosampler Vial is dried and finally recovered with 10 µL of Internal Standard ISS solution at 10ng/mL.

The sample is concentrated 180,000 times. Less factors if calibration starts from CS0.5 or CSL.



### Sample Preparation – Soil samples Calibration starting from CS1



The soil sample is dried for 24h in an oven at 40°C, then pestled in a mortar, homogenized and sifted at 2mm. 1g is then directly weighed in a technical balance (0.01g) inside a 10mL cell for ASE Extractor (100°C, 1500psi, Hexane as solvent, single cycle and two series of washes, collection in 40mL Vial), after addition of 160µL Labeled Compounds LCS solution at 1µg/L.

To the extract is added 200µL of Cleanup Standard CSS solution at 0.08µg/L, in order to verify the success of the next purification process.

The Organic phase is concentrated under nitrogen flow (Techne Dri-Block DB100/3) at 50°C, at about 5-7mL, a quantity of acid is added directly into the 40mL Vial (pure Sulfuric Acid equal to approximately the quantity of extract). With the necessary precautions, a first step is performed only by slightly shaking the Vial, in order to avoid the appearance of emulsions. By using a Pasteur, by tilting the Vial, the Sulfuric Acid, which forms the underlying part, is withdrawn at rest and discharged, taking care not to take small parts of Hexane, in the form of drops. Proceed with a second step by adding again the same amount of Sulfuric Acid, this time, always with caution, shake the Vial more vigorously to ensure that the sample is sufficiently purified. After having discharged the Sulfuric Acid again, carry out an evaluation of the success of the purification process by observing the limpidity of the extract. If it is not clear enough, proceed with further steps (up to a maximum of three cycles), if the clarity of the solution is not appreciable, the sample is treated with an equivalent aliquot of 5% NaCl in water, with caution and shaking more vigorously, in order to eliminate all the acid present; also in this case discharge the underlying part with a Pasteur.

After the purification process, transfer the extract in a 12mL test tube, with a Pasteur, through a paper filter with sodium sulfate, in order to retain the residual water; both the 40mL Vial and the filter need to be washed with Hexane, perform a short manual agitation to wash the Vial walls, also this solvent must be collected. The Organic phase in the 12mL test tube is reduced in volume, close to 100µL, and transferred in an autosampler Vial at micro volume, together with other 100µL Hexane aliquots added in 12mL test tube with a soft manual agitation to wash the walls.

The Organic phase in the autosampler Vial is dried and finally recovered with 16µL of Internal Standard ISS solution at 10ng/mL.

The sample is concentrated 62.5 times. Less factors if calibration starts from CS0.5 or CSL.



## Sample Preparation – Optional Purification step



An optional step, depending on the dirt present in the sample, is possible after the extraction step.

For the Water samples, proceed by adding 125µl of CSS at 0.08µg/L, while for those of Soil with what has already been provided in the previous slide.

For both matrices, the purification phase involves the use of an automatic system, schematized alongside.

Loading the solution into the system, which has three different columns: Silica (acidic, neutral and basic), Alumina and Carbon. All columns are disposable. The elution from the same occurs using different solvents such as: Hexane; Dichloromethane/Hexane 20:80; Dichloromethane/Hexane 50:50; Toluene. These allow to trap unwanted materials in the column phase and divide the extract into two distinctly collected fractions, PCB and Dioxins/Furans.

LCTech GmbH - DEXTech Heat Automated Sample Clean-up in PCB and Dioxin analysis





## GCQTOF (advantages) vs Magnetic Sector



GCQTOF is a benchtop instrument, no special floor or room, climate

User friendly: for Tune (Magnetic Sector only manual tune: time consuming and expertise) and Method (Time Segments and only SIR (SIM))

Easy maintenance of the Ion Source (many pieces for Magnetic Sector Source)

Stability (long batch analysis / Automatic Mass Tune Calibration)

Versatility (not only PCDDs/Fs analysis)

Retrospective data evaluation



Thank You! Now Q&A session

#### An awesome Instrument, fine tuned on Hardware and Software for this application







Special Thanks to Agilent: Anna, Fabrizio and Marica. BioChemie: Alessio, Cristian, Erika, Mattia and Davide.

