

EMPOWERING RESULTS

Characterization and Quantitative Hydrocarbon Group-Type Analysis of Plastic-Derived Pyrolysis Oils by GCxGC-TOFMS/FID

15th Multidimensional Chromatography Workshop January 2024

Pyrolysis Oils Characterization Workflow

Plastic-Derived Pyrolysis Oil Samples

Polyethylene/polypropylene pyrolysis oil samples were taken on different dates from a variety of points along the process stream.

Choosing a GCxGC system

Features	QuadJet SD (FID)
Modulator	Quad-Jet Thermal
Secondary Oven?	Yes
Max Acquisition Rate	500 spectra/s
Mass Range	
Mass Resolution	
Chemical Ionization	
Software Platform	ChromaTOF SD

Pegasus BT 4D	Pegasus HRT+ 4D
Quad-Jet Thermal; FLUX	Quad-Jet Thermal
Yes	Yes
500 spectra/s	200 spectra/s
10-1500 m/z	10-1500 m/z
1000 (better-than-nominal)	25,000 HR/ 50,000 UHR
No	Yes, PCI and ECNI (with MMS)
ChromaTOF 5 BT	ChromaTOF 5 HRT

Choosing a GCxGC system

Features	QuadJet SD (FID)	Paradigm Shift (FID+MS)	Pegasus BT 4D	Pegasus HRT+ 4D
Modulator	Quad-Jet Thermal	Reverse Fill-flush Flow	Quad-Jet Thermal; FLUX	Quad-Jet Thermal
Secondary Oven?	Yes	No	Yes	Yes
Max Acquisition Rate	500 spectra/s	500 spectra/s	500 spectra/s	200 spectra/s
Mass Range		10-1500 m/z	10-1500 m/z	10-1500 m/z
Mass Resolution		1000 (better-than-nominal)	1000 (better-than-nominal)	25,000 HR/ 50,000 UHR
Chemical Ionization		No	No	Yes, PCI and ECNI (with MMS)
Software Platform	ChromaTOF SD	ChromaTOF 5 BT	ChromaTOF 5 BT	ChromaTOF 5 HRT

Benefits of the Pegasus BT 4D MS

- High-performance MS matches well with commercial spectral libraries for compound identification
- Quantitative for calibrated components
- Fast acquisition rate pairs perfectly with GCxGC
 - Structured chromatogram adds ID
 - Group-type clusters
 - Better-than-nominal mass filtering
- High sensitivity allows for trace-level discovery
 AND pairing for quantitation with FID

Benefits of the Paradigm Shift System

- Paradigm GCxGC acquisition parameters ensure <u>full transfer of</u> <u>analytes</u> and optimal separations
- Shift splitter maintains <u>constant</u> ratio between <u>MS & FID</u> throughout run for accurate quantitation
- Simultaneous qualitative and quantitative information!

Choosing a GCxGC column set...

Column phase selectivity influences the pattern of the GCxGC structured chromatogram

Choosing a GCxGC column set...

Column phase selectivity influences the pattern of the GCxGC structured chromatogram

"Normal" phase: nonpolar-polar Primary Column: Rxi-1MS 20 m x 0.18 mm x 0.18 um Secondary Column: Rxi-17SiIMS 3.35 m x 0.25 mm x 0.25 um

- Better separation of polycyclic aromatics region
- Clear bands based on ring # and clusters by C#

"Reverse" phase: polar-nonpolar Primary Column: DB-17 20 m x 0.18 mm x 0.30 um Secondary Column: DB-5 3.65 m x 0.25 mm x 0.25 um

- Better separation of paraffinic region
- Pulls aromatics away from naphthenes

alkanes

Using characteristic masses from the mass spectrometer makes it easy to lay out the structured chromatogram

alkenes/cycloparaffins

monocyclic aromatics

dicyclic aromatics

2.5-ring aromatics

tricyclic aromatics

Classification Regions are drawn around compounds of interest

Area% values from FID are used for the classified regions

Classification Regions are drawn around compounds of interest

Area% values from FID are used for the classified regions

This is possible because of novel alignment algorithm!

Classification Regions are drawn around compounds of interest

Area% values from FID are used for the classified regions

This is possible because of novel alignment algorithm!

ChromaTOF TILE

ChromaTOF TILE uses statistical differences in GCxGC samples to highlight differences

Fisher Ratio = $\frac{\sigma 2_{cl}}{\sigma 2_{err}} = \frac{class to class variation}{within class variation}$

Areas of Interest + PCA

													-
1	-	Benzene, 1,1'-(1,3-propanediyl)bis-	C15H16	196	859	881	81.01	1081-75-0	92	1633	546017.25	2170.0	\sim
162	-	Styrene	C ₈ H ₈	104	887	900	64.04	100-42-5	63	893	205001.20	705.0	
166	-10	Styrene	C ₈ H ₈	104	887	900	64.04	100-42-5	104	893	83668.90	705.0	
232	۲	Diphenyl ether	C ₁₂ H ₁₀ O	170	827	863	59.62	101-84-8	144	1405	131117.82	1750.0	
237	-14	Diphenyl ether	C ₁₂ H ₁₀ O	170	828	864	61.51	101-84-8	141	1405	57013.11	1750.0	
371	-	Bicyclo[4.4.1]undeca-1,3,5,7,9-pent	C11H10	142	870	893	33.13	2443-46-1	71	N.A.	107472.37	1560.0	
397	-14	Bicyclo[4.4.1]undeca-1,3,5,7,9-pent	C11H10	142	869	892	33.10	2443-46-1	141	N.A.	36288.72	1560.0	
496	-	1H-Indene, 1-methylene-	C10H8	128	883	946	48.78	2471-84-3	130	1097	107436.54	1340.0	
512	-	1H-Indene, 1-methylene-	C10H8	128	883	946	48.24	2471-84-3	128	1097	54829.35	1340.0	
614	-	2-Trifluoroacetoxypentadecane	C ₁₇ H ₃₁ F ₃ O ₂	324	810	824	5.88		97	N.A.	98957		
628	-	Tritetracontane	C43H88	604	879	884	11.63	7098-21-7	57	4300	12668.4z	3485.0	~
		1											N

Areas of Interest + PCA

Comparing Trends of Multiple Features

836

852

39.98

1595-16-0

118 1096

42411.89

1340.0

148

4439

H Benzene, 1-methyl-4-(1-methylpro C11H16

GCxGC Options

Benefits of the Pegasus HRT+ 4D

- High-resolution spectra
- Confident ID of compounds using complementary EI, PCI, and ECNI
- Unique Encoded Frequent Pushing increases sensitivity along folded flight path
- Mass accuracies calibrate to low ppm
- Combined with GCxGC separation power

Benefits of the Multi-Mode Source (MMS)

1) Primary ion formation:	$CH_4 + e^{\ominus} \rightarrow CH_4^{\oplus \bullet} + CH_3^{\oplus} + CH_2^{\oplus}$	$\oplus \bullet + CH^{\oplus} + C^{\oplus \bullet} + H_2^{\oplus \bullet} + H^{\oplus}$
2) Reagent ion formation:	$\begin{array}{rcl} CH_4^{\oplus \bullet} \ + \ CH_4 \ earrow \ CH_5^{\oplus} \ + \ CH_3 \\ CH_3^{\oplus} \ + \ CH_4 \ earrow \ C_2H_5^{\oplus} \ + \ H_2 \\ CH_4 \ + \ C_2H_3^{\oplus} \ earrow \ C_3H_5^{\oplus} \ + \ H_2 \end{array}$	
3) Adduct Formation:	$\begin{array}{rcl} M & + & CH_5^{\oplus} \rightarrow [MH]^{\oplus} + CH_4 \\ M & + & C_2H_5^{\oplus} \rightarrow [M + C_2H_5]^{\oplus} \\ M & + & C_3H_5^{\oplus} \rightarrow [M + C_3H_5]^{\oplus} \\ AH & + & CH_5^{\oplus} \rightarrow A^{\oplus} + & CH_4 + H_2 \end{array}$	
	Formation of Thermal Electrons (e^-):	CH ₄ (buffer gas)+ e ⁻ → + CH ₄ ⁺⁺ + *e ⁻ + e ⁻ CH ₄ (buffer gas)+ e ⁻ → + CH ₃ ⁺ + H ⁺ + *e ⁻
	1) Associative Resonance Capture:	M + *e ⁻ → M ⁻
	2) Dissociative Resonance Capture:	$M-X + *e^- \rightarrow M^- + X^-$
	3) Ion-Pair Formation:	$M-X + *e^- \rightarrow M^+ + X^- + e^-$

No hardware change between EI, PCI, and ECNI acquisitions, makes it easy to correlate peak retention times between modes:

- EI (electron impact ionization) provides universal, reproducible fragmentation that matches NIST library spectra with high fidelity
- PCI (positive chemical ionization) provides softer ionization than EI, allowing selective formation of molecular ions and adducts that allow for identification of chemical formula for most hydrocarbon species
- ECNI (electron-capture negative ionization) provides exceptional sensitivity for electronegative species (compounds with halogens like F, CI, I, Br)

GCxGC

Pegasus HRT+ 4D Data Processing Workflows

Pegasus HRT+ 4D Data Processing Workflows

CO

High-Resolution, Accurate Mass Data

LECO

Mass Defect: Nitrogen-Containing Species

Heteroatomic Species Identification

Mass Defect: Sulfur-Containing Species

LECO

Heteroatomic Species Identification Leveraging High Resolution Mass Accuracy

Region - sample "Pyro Oil 2 GCxGC PCI", Deconvoluted, (330 s, 0.000 s) x (5707.9 s, 8.000 s)

Heteroatomic Identification Leveraging High Resolution Mass Accuracy

Mass	Formula	Mass Accuracy (ppm)	Species	Abundance
135.0263	C ₈ H ₇ S	-0.08	[M+H]+	1000
163.0576	$C_{10}H_{11}S$	0.26	$[M+C_2H_4]^+$	274
175.0576	C ₁₁ H ₁₁ S	-0.23	$[M+C_{3}H_{5}]^{+}$	97

Species

High-Resolution, Accurate Mass Data

Mass	Formula	(ppm)	Abundance
134.0185	C ₈ H ₆ S	-0.08	1000
89.0386	C_7H_5	0.26	111
135.0218	¹³ C ₇ CH ₆ S	-0.23	100
90.0464	C ₇ H ₆	0.05	91

High-Resolution, Accurate Mass Data

Elution band signifies the low-level presence of clusters of C1-, C2-, C3- and possibly C4- benzothiophene isomers

Plotting back to EI tells us where to look; some were already properly identified!

Combination of high-resolution and GCxGC resolves the mass split!

Conclusion

- The variety of LECO GCxGC options provides high-quality data for both quantitative and qualitative characterization of plastics-derived pyrolysis oils
 - Group-type bulk composition
 - Statistical analysis of differences between samples
 - Detailed identification of heteroatomic species

