

DIRECT FLOW MODULATION METHOD FOR COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY

INTRODUCTION

- There are two kinds of GC x GC modulators
 - Thermal modulator
 - Valve/Flow modulator
- The thermal modulation method has the advantages of good performance (makes sharp secondary peaks) and concentrates primary simultaneously. However, its costs are high and not good for low boil compounds
- The valve/flow modulator has the advantages of simple, low cost, and good for low boil compounds
- The flow modulation can be classified as
 - Switch flow modulation
 - Direct flow modulation
- This presentation will discuss the direct flow modulation method.

VICI

SWITCH FLOW MODULATION METHOD REVIEW

TYPICAL FLOW MODULATION

Pulsed flow modulation comprehensive two-dimensional gas chromatography Marina Poliak, Maya Kochman, Aviv Amirav* Journal of Chromatography A, 1186 (2008) 189-195

A reversed-flow differential flow modulator for comprehensive twodimensional gas chromatography James F. Griffith, William L. Winniford, Kefu Sun, Rob Edam, Jim C. Luong* Journal of Chromatography A, 1226 (2012) 116-123

dimensional gas chromatography Pedro A. Bueno Jr., John V. Seeley* Journal of Chromatography A, 1027 (2004) 3-10

PULSE FLOW MODULATION

υστοτοι

Analytical Column B

Pulse Generator

Transfer Line B

DIRECT FLOW MODULATION AND COMPARE WITH SWITCH MODULATION

DIRECT FLOW MODULATION

SWITCH FLOW MODULATION

DIFFERENCES

- Only one T connected between primary and secondary column and no storage line.
- On/off solenoid volve instead of 2-way solenoid valve.
- Way to modulation and deriver primary sample
- Pressure at the primary and secondary join.

PRESSURE CHANGE DIFFERENCE AND DIRECT FLOW MODULATION PROCESS

DIRECT FLOW MODULATION

SWITCH FLOW MODULATION

Time

PULSE FLOW MODULATION

DIRECT FLOW MODULATION PROCESS

(3)

EXPERIMENTAL SETUP

360 Tee

ADVANTAGES:

- Small internal and dead volume
- Less mass, no extra heat needed
- Can withstand high temperature
- Long lifetime

TYPICAL MODULATED CH₄ PEEK BY DIRECT FLOW MODULATION METHOD

Primary column: VB-1 30m×0.25mm×1.0µm

Secondary column:

VB-1 $5m \times 0.25mm \times 0.25\mu m$

Oven temperature: 50 °C

Sample: 100ppm CH₄, 2µL

The static column flow rates at FID end: 2.60 mL/min when the valve is in OFF/LOAD position. 20.0 mL/min in On/HOLD position.

Loading time: 0.2 s Modulation period: 10 s

C₁ TO C₃ PRIMARY SEPARATION

P _M	<i>Т_R</i> (СН4)	W _{1/2} (CH4)	<i>Н</i> (СН4)	<i>SN</i> (C2/C3)
(s)	(min)	(min)	(pA)	
1D	1.55	0.0094	226	1.5
9	3.88	0.186	1210	1.1
30	5.34	0.58	1050	0.8
60	8.05	1.06	930	0.4

SECONDARY DIMENSION PEAK PROFILE

LOADING TIME T₁

PRESSURE DIFFERENCE ΔP

HOLDING TIME T_H

 t_L = loading time.

 t_H = Holding time.

 ΔP = Pressure difference between inlet and modulation point = $P_{in} - P_{mod}$

SIGNAL ENHANCEMENT AND REPEATABILITY

tL	P _{in}	Secondary peak height (pA)				Pri. CH ₄ level	Signal ratio	
(s)	(psi)	Run1	Run2	Run3	Avg.	RSD(%)	(pA)	
0.3	27.0	3666	3644	3646	3652	0.33	620	5.89
	27.4	4538	4538	4541	4539	0.03	620	7.32
	27.8	4419	4432	4433	4428	0.17	620	7.14
	28.2	4278	4288	4292	4286	0.17	620	6.91
0.6	27.1	4776	4802	4804	4794	0.32	625	7.67
	27.4	4763	4772	4783	4772	0.21	625	7.64
	27.7	4763	4772	4783	4772	0.21	625	7.64
	28.2	4553	4587	4573	4571	0.37	625	7.31

t_H = 9.0 s *P_{mod}* = 28.0 psi

PRESSURE DIFFERENCE ΔP TO THE BREAKTHROUGH TIME

N-PENTANE SOLVENT MODULATION

Тее	W _{1/2}	W _b
	(ms)	(ms)
360	63.4	860
1/32	63.6	1,585
1/16	69.4	2,445

Primary column: VB-1 30m×0.25mm×1.0µm

Secondary column: VB-1 5m×0.25mm×0.25µm

Oven temperature: 50 °C

Sample: 1 µL Pentane, 100:1

Loading time: 0.2 s Modulation period: 10 s

WAIT TIME FROM 1D TO GC×GC

Normal start * 9.28 min, 54 cycles.

Program modulation pressure from 20 psi to 28 psi at 8.0 psi/min * 1.90 min, 10 cycles.

Program loading time, start with t_L = 6.4, 3.9, 2.7, 2.1, 1.7, 1.4, 1.1, 0.9, 0.7, 0.6 s * 3.01 min, 16 cycles.

High frequency at beginning -63 fast cycles and 9 normal cycles

* 2.91 min, 63+9 cycles.

VICI

VICI

A GASOLINE SAMPLE

Primary: HP-1 $15m \times 0.25mm \times 0.25\mu m$

 $\begin{array}{l} \textbf{Secondary: VB-wax} \\ 5m \times \ 0.25mm \ \times \ 0.25 \mu m \end{array}$

Oven: 35 °C (1 min) to 220 °C at 1.4 °C/min

Secondary Flow: 20 mL/min constant flow mode

Pressure at Inlet: Programed from 26.2 psi to 44.7 psi at 0.14 psi/min

Loading Time: 0.6 s

Holding Time: 7.2 s

P_M: 7.8 s

REFERENCE GAS OIL (RGO)

Primary Column: VB-1, 12m×0.10mm×0.10µm

Secondary Column: HP-17ms, 10mx0.18mm×0.18µm

Oven Temperature: 70 °C to 320 °C at 0.90 °C/min

Secondary Flow: 5.0 mL/min constant flow mode

Inlet Pressure: Programed from 48.3 psi to 91.6 psi at 0.14 psi/min

Loading Time: 1.1 s

Holding Time: 27.0 s

P_M: 28.1 s

CONCLUSIONS

- The direct flow modulation is a simple, robust, and low-cost modulation method for GCxGC.
- It can achieve less than 100 ms ²W_b and as long as 120 s secondary time range with 100% transfer from primary to secondary dimension.
- Since the solenoid value is mounted outside the GC oven and 360 fittings are used, this modulator can work at temperatures up to the column temperature limit.
- However, it is sensitive to pressure and flowrate change and require longer time to switch from 1D to GC x GC.

THANK YOU