

A holistic view of river water quality using passive sampling and GC×GC–TOF MS

Presented by: Dr Jonathan Grandy Sampling performed by Natural Resources Wales and Analysis in conjunction with Sepsolve Peterborough

GC×GC at SepSolve Analytical

The INSIGHT[®] modulator series

INSIGHT-Flow

- Reverse fill/flush (RFF) flow modulator
- Bleed line control kit for greater flexibility in method development
- Optional 4-port purged splitter

- Cryogen-free thermal modulator using delay loop technology
- Advanced control of cold jet flow rate
- Smart column holder design for easy set-up

Smart design

Fast and accurate column installation

Smooth surfaces to prevent column breakages

Column holder (patent-pending) ensures precise alignment of the column between the jets

Fully unattended analysis to maximise sample throughput

Full control of all jet parameters and easy sequencing of instrument methods

Fully unattended analysis to maximise sample throughput

Extending the analyte range

Efficient modulation of C_7 to C_{50+}

Standby flows to prevent icicle formation

Have the confidence to leave your samples running unattended

	Project: Path:	Pyrolysis oil: C:\Program[s Data\Markes Interna	tional\Chromspace vthermal\	Data	Seq	uence:Pyrolysis o	Comms settings		
Live		Status	Sample Type	File Name	Comment Global Method	Vial	Process			
	Pyrolysi	oils	1	Repetition: 1/	1 🖨 Continuous	Start Time:	:	Codel and		
	1	Active	Sample	23_08_23 Pyrolysis oil A	Pyrolysis oils (version 1)	1		Senai port. COM4		
	2		Sample	23_08_23 Pyrolysis oil B	Pyrolysis oils (version 1)	1		0	0	
	3		Sample	23_08_23 Pyrolysis oil C	Pyrolysis oils (version 1)	2		Start	Stop	
	4		Sample	23_08_23 Pyrolysis oil D	Pyrolysis oils (version 1)	2		Trigger: Open	Closed	
	5		Sample	23_08_23 Pyrolysis oil E	Pyrolysis oils (version 1)	3		open	Ciuseu	
	6		Sample	23_08_23 Pyrolysis oil F	Pyrolysis oils (version 1)	3				
	7		Sample	23_08_23 Pyrolysis oil G	Pyrolysis oils (version 1)	4 -		MEC Gas Turses N2 N2		
	8		Sample	23_08_23 Pyrolysis oil H	Pyrolysis oils (version 1)	4 -	_	MFC Gas Type:		
	9		Sample	23_08_23 Crude oil A	Crude oils (version 1)	5		1200		
	10		Sample	23_08_23 Crude oil B	Crude oils (version 1)	5		Timeouts		
	11		Sample	23_08_23 Crude oil C	Crude oils (version 1)	6				_
	12		Sample	23_08_23 Crude oil D	Crude oils (version 1)	6		Standby time (mins):	40	
	13		Sample	23_08_23 Crude oil E	Crude oils (version 1)	7				1
	14		Sample	23_08_23 Crude oil F	Crude oils (version 1)	7	_		50	1
	15		Sample	23_08_23 Crude oil G	Crude oils (version 1)	8	_	Hot jet (C)	50	_
	16		Sample	23_08_23 Crude oil H	Crude oils (version 1)	8 -			1	
	17		Sample	23_08_23 Vac gas oil A	VGO (version 1)	9		Cold Jet Flow (L/min)	0.5	
	18		Sample	23_08_23 Vac gas oil B	VGO (version 1)	9				
	19		Sample	23_08_23 Vac gas oil C	VGO (version 1)	10				
	20		Sample	23_08_23 Vac gas oil D	VGO (version 1)	10				Z
	21		Sample	23_08_23 Vac gas oil E	VGO (version 1)	11		OK	Cance	e
	22		Sample	23_08_23 Vac gas oil F	VGO (version 1)	11				1
	23		Sample	23_08_23 Vac gas oil G	VGO (version 1)	12				
	24		Ormala	00.00.001/00.000.00111	100 (marries 4)	40				

 Cold jet flow defaults to 0.5 L/min between runs and sequences to prevent issues, such as icicle formation, previously experienced during unattended operation or over weekends

Monitoring river water quality

What are the challenges?

- Constantly seeking lower detection limits
- New sampling techniques (e.g., passive sampling) deliver extracts with greater complexity
- Focus is typically on "priority"(organochlorines) substances, but what about those of emerging concern?

What are the emerging contaminants?

Pharmaceuticals and hormones

Water treatment by-products

Personal care products and fragrances

Caffeine and nicotine (and their metabolites)

Industrial additives and by-products

Flame/fire retardants and surfactants

- May pick up temporal contaminant releases overcoming a limitation of grab sampling
- Designed to concentrate hydrophobic chemicals (with log Kow > 4), more sensitive to heavier VOC's and SVOC's
- Extraction for 4 weeks, stored at -18 C under argon, desorbed with hexane cleaned by SEC and reconstituted to 1 mL

Samples kindly supplied by Dr Anthony Gravell (Natural Resources Wales, UK)

Experimental

- Samples: Passive sampling extracts from 2 sampling locations in a UK river
- GC×GC: INSIGHT-Thermal modulator; Modulation period (P_M): 6.0 s.
- MS: Instrument: BenchTOF2™; Mass range: m/z 30–600; Acquisition rate: 100 Hz in Tandem Ionisation[®] mode at 70 eV and 14 eV.
- Software: Full instrument control and data processing by ChromSpace[®]

Samples kindly supplied by Dr Anthony Gravell (Natural Resources Wales, UK)

Passive sampling of a UK river with GC×GC–TOF MS

Passive sampling of a UK river with GC×GC–TOF MS

Screening for emerging contaminants

Screening for emerging contaminants

Filtered for organochlorines

Filtered for organochlorines

ChromCompare+

Future work

• 11 sampling sites in total

Field blanks performed at each site

 Apply new processing workflows to compare the sites

Summary

- Passive sampling coupled with GC×GC–TOF MS
 - Minimises the risk of missing pollution events
 - Gives greater insight into river quality
- The new INSIGHT-Thermal modulator provides improvements in productivity and performance for thermally modulated GC×GC
 - Ramped cold jet flow rates for efficient modulation of high boilers.
 - Easy to configure column holder for simple set-up and repeatable results
 - Retrofittable to all popular GCs
- Further work on-going to compare multiple sampling sites along a UK river using GC×GC–TOF MS

Thanks for listening! Any questions?

Contact SepSolve

- Email: <u>hello@sepsolve.com</u>
- Tel.: +44 (0)1733 669222 (UK)

+1 519 206 0055 (Canada/US)

+49 (0)69 668 108 920 (DE)

- Web: www.sepsolve.com
- Twitter: @SepSolve

LinkedIn: www.linkedin.com/company/sepsolve-analytical