

Agilent Quantitative Test Mixture for the PIONA Analyzer

User manual

33 Components

The quantitative PIONA mix (Part Number CP299107, batch 004) is a mixture of 33 components. Most components represent a different group in the report matrix. The performance check is therefore straightforward and easy to carry out.

The concentration of a component in the mixture is mainly based on its volatility. The mix does not contain components below carbon number C_6 , while components with a carbon number of 6 and 7 are present in low concentrations.

99% purity

The mixture is a blend of components with a purity of at least 99% (see Table 1). The sequence of adding is based on the individual boiling point starting with the high boilers. The mixture is weighed on a precision balance with a read-out of three decimals. The amount of component added is from 2.5 grams per component for low boilers and up to 30 grams per component for high boilers. See Table 2 for the sample composition in weight percentages. The mix is filled out in 1 mL ampoules and sealed. Before sealing, the mix is frozen in liquid nitrogen to prevent evaporation and to ensure a constant sample composition.

The sample composition of the mix is checked on several PIONA analyzers in the PINA and PIONA. An example of a PIONA analysis is shown in Figure 1.

How to use the sample

The quantitative mix is used to check the quantitative performance of the analyzer.

As a shortcut method to check the performance of the PIONA analyzer we advise to run a single analysis and to calculate the mean difference between weighed and measured values.

The values obtained should be at least within the following ranges:

- -0.2% for each structural group per carbon number
- -0.5% for each carbon group

Note: To prevent sample discrimination we advise to cool the ampoule before transferring its contents into a vial. The ampoules are prescored and therefore easy to open.

Table 1. The purity of the chemicals

Component	Supplier	Purity %
Tetradecane	Fluka	>99
Phenylheptane	Aldrich	99
Dodekane	Aldrich	99
Undekane	Aldrich	>99
Trans-decaline	Fluka	>99
2-methylnonane	Fluka	>99
Butylbenzene	Aldrich	99+
Decane	Fluka	>99
Tertbutylcyclohexane	Aldrich	99+
Isopropylhexane	Fluka	>99
2,2,5-trimethylhexane	TCI	99
Nonane	Fluka	>99
Isopropylbenzene	Merck	>99
o-xylene	Fluka	>99
Ethylcyclochexane	Aldrich	99+
2,2,4-trimethylpentane	Aldrich	99.7+
2-methyl-1-heptene	Fluka	>99
Ethylbenzene	Aldrich	99+
Octane	Fluka	99.5
1-heptene	Aldrich	99+
2,3-dimethylpentane	Aldrich	99+
Toluene	Aldrich	99.9+
4-methyl-1-cyclohexene	Fluka	>99
Methylcyclohexane	Aldrich	99+
Heptane	Fluka	>99.5
4-methyl-1-hexene	Fluka	>99
Cyclohexene	Fluka	>99.5
Cyclohexane	Aldrich	99.9+
1-hexene	Aldrich	99+
4-methyl-1-pentene	Riedel de Hean	99
2,2-dimethylbutane	Fluka	>99
Hexane	Fluka	>99.5
Benzene	Aldrich	99.9+

Suppliers:

Fluka - The Netherlands, Merck - The Netherlands, Aldrich - Belgium, Riedel de Hean - The Netherlands, TCI - Japan

Table 2. Composition of the test mixture (by weight)

Name: Test mixture PIONA quantitative

Part Number: CP299107 Batch Number: 004

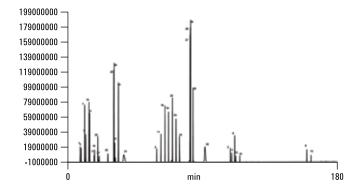
		Code PIONA/	Code	Weight
Number	Component	PIONA-H	PIONA	-%
1	Cyclohexane	N6	N6	1.06
2	Cyclohexene	c06	N6	1.06
3	2,2-dimethylbutane	iP6	iP6	1.05
4	4-methyl-1-pentene	i06	iP6	1.08
5	Hexane	nP6	nP6	1.07
6	1-hexene	n06	nP6	0.54
7	Methylcyclohexane	N7	N7	4.21
8	4-methyl-1-cyclohexene	c07	N7	1.96
9	2,3-dimethylpentane	iP7	iP7	2.09
10	4-methyl-1-hexene	i07	iP7	0.52
11	Heptane	nP7	nP7	2.10
12	1-heptene	n07	nP7	0.53
13	Ethylcyclochexane	N8	N8	5.24
14	2,2,4-trimethylpentane	iP8	iP8	4.22
15	2-methyl-1-heptene	i08	i08	0.53
16	Octane	nP8	nP8	4.22
17	Isopropylhexane	iP9	iP9	1.34
18	2,2,5-trimethylhexane	iP9	iP9	0.56
19	Nonane	nP9	nP9	3.14
20	Tertbutylcyclohexane	N10	N10	2.80
21	2-methylnonane	iP10	iP10	0.51
22	Decane	nP10	nP10	5.27
23	Undecane	nP11	nP11	5.26
24	Trans-decaline	pΝ	pΝ	6.31
25	Benzene	A6	A6	3.17
26	Toluene	A7	A7	3.22
27	Ethylbenzene	A8	A8	5.30
28	o-xylene	A8	A8	5.29
29	Isopropylbenzene	A9	A9	6.37
30	Butylbenzene	A10	A10	5.26
31	Tetradecane	BP>200	BP>200	4.20
32	Phenylheptane	BP>200	BP>200	6.33
33	Dodecane	BP>200	BP>200	4.18
Total				100

Used abbreviations:

nP = normal Paraffin iP = iso Paraffin N = Naphthene n0 = normal Olefin iO = iso Olefin

c0 = Naphthenic Olefin pN = poly Naphthene A = AromateBP>200 = Boiling Point above 200°C

Table 3 gives the expected report values after PIONA analysis. In case of a less extended method, PNA, PINA, PONA or PIANO numbers must be re-grouped in order to get the expected value under those conditions. Consult the PIONA+ manual for specific method information.


Also for the oxygenated modes this sample can be used. The user can add oxygenates to the sample by means of a syringe. The oxygenated components that can be analyzed using the PIONA+ analyzer in any O-mode: MTBE, TAME, ETBE, DIPE, Etrhanol, Propanol, Iso-propanol, Butanol (n-, iso-, sec- or tert-). Consult the PIONA+ manual for specific method information.

NB. Oxygenated components are not mixed in this particular sample as the sample stability would suffer.

Table 3. PIONA report according to the weighted values.

Carbon#	Saturates:			Unsaturates		Aromatics	Totals	
	N	iP	nP	c0	i0	n0		
6	1.06	1.05	1.07	1.06	1.08	0.54	3.17	9.04
7	4.21	2.09	2.10	1.96	0.52	0.53	3.22	14.64
8	5.24	w4.21	4.22		0.53		10.59	24.80
9		1.91	3.14				6.37	11.42
10	2.80	0.51	5.27				5.26	13.83
11			5.26					5.26
Totals	13.32	9.78	21.06	3.02	2.13	1.07	28.61	78.98
Fraction >	200°C		14.71					
Poly Nanh	nthenes		6.31					

Poly Naphthenes:

Learn more:

www.agilent.com/chem

Buy online:

www.agilent.com/chem/store

Find an Agilent office or authorized distributor:

www.agilent.com/chem/contactus

U.S. and Canada

1-800-227-9770 agilent_inquiries@agilent.com

Europe

info_agilent@agilent.com

Asia Pacific

inquiry_lsca@agilent.com

India

india-lsca_marketing@agilent.com

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2014 Published in The Netherlands, March 1, 2014 Part Number CP505219

