

ThermoFisher SCIENTIFIC

Unique Benefits Delivered by Orbitrap GC Technology for Non-Targeted Analysis

Jason Cole Orbitrap GC/MS Product Manager

- Thermo Scientific[™] Orbitrap[™] GC/MS Systems Overview
- Orbitrap GC/MS System for Targeted Screening and Confirmation
- Orbitrap GC/MS System for Known Unknowns Identification
- Orbitrap GC/MS System for True Unknowns Identification

- Orbitrap GC/MS Systems Overview
- Orbitrap GC/MS System for Targeted Screening and Confirmation
- Orbitrap GC/MS System for Known Unknowns Identification
- Orbitrap GC/MS System for True Unknowns Identification

Multi-Award-Winning Orbitrap GC-MS Technology

New Thermo Scientific Exactive GC Orbitrap GC-MS System

knowns routine screening

Food & Beverage

Environmental

Industrial

New Addition to the Thermo Scientific Orbitrap GC-MS Family

Thermo Scientific Orbitrap GC-MS Systems: The Technology Inside

Orbitrap mass analyzer

Incredible HRAM performance

Highly regarded Q Exactive GC system platform

Thermo Scientific™ TRACE™ 1310 GC System

Unique modular injector and detector design

Rapid heat cycling

Thermo Scientific[™] ExtractaBrite [™] Ion Source technology

Routine grade robustness

Patented RF lens

Removable without breaking vacuum

Thermo Scientific Exactive GC Orbitrap GC-MS System: The Technology Inside

Thermo Scientific Q Exactive Orbitrap GC-MS/MS System: The Technology Inside

• Mass accuracy: The accuracy to which the mass is measured by the mass spectrometer.

$$mass\ error = \left(\frac{exact\ mass - measured\ mass}{exact\ mass}\right) * 10^6$$

• **Resolution:** Ability of a mass spectrometer to distinguish between ions of nearly equal m/z ratios (isobars).

$$\boldsymbol{R} = \frac{\boldsymbol{m}}{\Delta \boldsymbol{m}}$$

- Orbitrap GC/MS Systems Overview
- Orbitrap GC/MS System for Targeted Screening and Confirmation
- Orbitrap GC/MS System for Known Unknowns Identification
- Orbitrap GC/MS System for True Unknowns Identification

Thermo Scientific Orbitrap GC/MS System Highlights

Requirements for High Resolution Targeted Screening or Quantitation

Requirement	Required for
High Enough Resolution (Selectivity)	Good Mass Accuracy Low Level Detection

Resolving Power: Selectivity

Pyrimethanil in leek at 10 µg/Kg

14

Simulated Unit Resolution MS: \pm 500 mDa Extraction Window

1 μ L inj. GC-Orbitrap MS Leek spiked @ 10 ppb, Full-scan *m/z* 50-500; Res = 60,000

Courtesy of Hans Mol, RIKLT, The Netherlands

\pm 100 mDa Extraction Window

1 μ L inj. GC-Orbitrap MS Leek spiked @ 10 ppb, Full-scan *m*/*z* 50-500; Res = 60,000

Courtesy of Hans Mol, RIKLT, The Netherlands

\pm 25 mDa Extraction Window

1 μ L inj. GC-Orbitrap MS Leek spiked @ 10 ppb, Full-scan *m*/*z* 50-500; Res = 60,000

Courtesy of Hans Mol, RIKLT, The Netherlands

\pm 5 mDa Extraction Window

RT: 14.00 - 18.60 SM: 5B 15.43 100 -TIC 15.93 14.36 50-14.78 15,02 16.08 17.91 Relative Abundance 16.36 100-206.08117 ±5 ppm 50-15.04 15.37 0 16.36 100-131.07295 ±5 ppm 50-16.87 16.36 100-116.04948 ±5 ppm 50-0-15 16 17 18 14 Time (min)

1 µL inj. GC-Orbitrap MS Leek spiked @ 10 ppb, Full-scan m/z 50-500; Res = 60,000

Courtesy of Hans Mol, RIKLT, The Netherlands

Resolving Power: Selectivity

High Selectivity ∴ high sensitivity *and* confidence in identification

The Effect of Resolution on Accurate Mass Measurements

- Chlorpropham, procymidone and iprodione in a leek sample (10 ppb o.c.)
- A resolving power >30k required to completely separate these pesticides from the interfering matrix ions and to deliver <1 ppm mass accuracy
- <5 ppm expected mass accuracy

Requirements for High Resolution Targeted Screening or Quantitation

Requirement	Required for
High Enough Resolution (Selectivity)	Good Mass Accuracy Low Level Detection
High Mass Accuracy	Confident Confirmation of Identity

High Mass Accuracy

- Typically <1 ppm
- Across the peak
- Across the concentration range
- In matrix

Requirement	Required for
High Enough Resolution (Selectivity)	Good Mass Accuracy Low Level Detection
High Mass Accuracy	Confident Confirmation of Identity
High Dynamic Range	Accurate Quantitation Accurate Ion Ratio

Full-scan Evaluation with Pesticides

- 102 pesticides spiked into QuEChERS extracted apple
- 60K Resolution
- Average RSD at 10 ppb (N=5) = 2.9%
- Average R^2 from 1-200 ppb = 9.9984

Requirements for High Resolution Targeted Screening or Quantitation

Requirement	Required for
High Enough Resolution (Selectivity)	Good Mass Accuracy Low Level Detection
High Mass Accuracy	Confident Confirmation of Identity
High Dynamic Range	Accurate Quantitation Accurate Ion Ratio
High Sensitivity	Low Level Detection

150 compounds in mixed vegetable matrix

Triple-quadrupole-level sensitivity possible with a non-target acquisition

*Acquired on the Q Exactive GC system – the Exactive GC system provides equivalent performance.

Full-featured Screening and Quantitation with Thermo Scientific TraceFinder Software

ompounds	*	# ×	Sam	ple Re	sults													
Compound	RT	*	B	- -	Statu	- Con	firm 🗢	Sample ID) =	Area 🧠	Actual RT	m/z (Expected)	- m/z (Delta)	• I	R =	Isotopic Patte	rn Score (%) 😐	RT
<u>A</u> a •	An ·				An .	=	•	<u>A</u> a	•	Aa ▪	An ►	An •	Ba ↔	=	•	=	-	<u>A</u> a
Fipronil	16.11	T	(*)	2	•		4	Leek 0.5 ug/	Kg	49801	12.31	214.0854	4828 (ppm)				0	12.31
Hexachlorobenzene	12.00	т	۲	3	•		4	Leek 1 ug/Kg	3	212898	12.31	214.0854	5541 (ppm)				58	12.31
Iprodione	21.97	Т	(#)	4	•		4	Leek 2 ug/Kg	1	324095	12.31	214.0854	6254 (ppm)		•		66	12.31
Kresoxim-methyl	18.30	Т	۲	5	•		•	Leek 5 ug/Kg	3	991200	12.30	214.0854	.0161 (ppm)		•		100	12.31
Metalaxyl	14.19	т	(1)	6	•		•	Leek 10 ug/k	(g	2172675	12.31	214.0854	4828 (ppm)		•		100	12.31
Myclobutanil	18.15	т	۲	7	•		•	Leek 20 ug/ł	(g	3891693	12.31	214.0854	.2299 (ppm)		•		100	12.31
Oxadixyl	19.30	т		8	•		•	Leek 50 ug/H	(g	11433890	12.31	214.0854	0552 (ppm)		•		100	12.31
Parathion-methyl	13.98	Т	۲	9	•		•	Leek 100 ug	/Kg	21568976	12.31	214.0854	6254 (ppm)		•		100	12.31
Pendimethalin	16.01	т		10	•			Leek 200 ug	Kg	47069995	12.31	214.0854	2690 (ppm)				100	12.31
Pirimicarb	13.24	т	۲	11	•		•	Leek 500 ug	Kg	112381602	12.31	214.0854	.5863 (ppm)		•		100	12.31
Procymidone	16.59	T		12				Leek 0 ug/Kg	1	N/F	N/F	214.0854	N/F				N/A	12.31
Propazine	12.31	т	۲	13			•	Leek 10 ug/	ία	2297718	12.31	214.0854	6254 (ppm)		•		100	12.31
Pyrimethanil	12.93	т	۲	14			•	Leek 10 ug/H	(g	2229421	12.31	214.0854	4116 (ppm)		•		100	12.31
Terbuthylazine	12.55	т	۲	15			•	Leek 10 ug/k	(g	2345810	12.31	214.0854	3403 (ppm)				100	12.31
Tetramethrin	22.38	TE	•	16			•	Leek 10 ug/k	(a	2275906	12.31	214.0854	2690 (ppm)		•		100	12.31
Tolclofos-methyl	14.02	т		17	ē			Leek 10 ug/k	(a	2274406	12.31	214.0854	.2299 (ppm)				100	12.31
Trifluralin	11.33	т		18			•	Leek 10 ug/	(a	2266493	12.31	214.0854	.4437 (ppm)				100	12.31
Triphenylphosphate (TPP)	21.21	т	۲	19	ē			Leek 10 ug/	(a	2195922	12.31	214.0854	1977 (ppm)				100	12.31
Vinclozolin	13.92	-		20				Leek 10 ug/	(n	2429947	12.31	214 0854	- 1977 (ppm)				100	12 31
.eek_11May_MTG_008 F	×									Y = 2.26e5X	Propi 6.967e4; R*2: 0.9	ecine 988; Origin: Ignore; W: 1/3	X: Area					
		12	000000														~	/
160-		10	000000													/		
RT 12 30 120 AA: 991200 AH: 613737			000000	-										/				
100-		Area	000000	-								/						
108				7							/							
60-			000000	-						-								
		-4	000000	0-					/									
40		3	000000	0-				/										
40-1			000000	0-			/	-										
40- 20- 0			000000															
40 20 0 12.2 12.4		1	000000	_														
40- 20- 0- 12.2 RT(min) (- 214 0854		1	000000	-	-	-												

High Throughput Target Quantitation

Mass Tolerance: 5.00 🚔 🔘 MMU 💿 PPM

High Resolution Enabled

\bigotimes	🕅 Window Ranges							
	Low Range	High Range	Window (+/- %)	Window Type				
1	0	10	30	Relative 👻				
2	10	20	20	Relative 🝷				
3	20	50	20	Relative 🝷				
4	50	100	20	Absolute 🝷				
			Cancel	OK				

Flexible Ion Ratio Confirmation

Table: Quan Results					
Compound Name					
Detected Mass	With Label				
Calculated Amount DataReview					
Ion Ratio Flags					
Custom Reporting					

- Orbitrap GC/MS Systems Overview
- Orbitrap GC/MS System for Targeted Screening and Confirmation
- Orbitrap GC/MS System for Known Unknowns Identification

Orbitrap GC/MS System for True Unknowns Identification

Peak Detection and Candidate Matching

Canalate	
Compounds	

Candidate

Acq m/z	Fragment ID	Theo m/z	Mass Error (ppm)
147.9477	C ₅ Cl ₂ H ₂ O	147.9477	0.20277
148.9369	C₅CI[37]CIHO	148.9369	0.2679
149.9448	C₅CI[37]CIH ₂ O	149.9448	0.06602
151.9419	C ₅ [37]Cl ₂ H ₂ O	151.9418	0.72528
154.9895	C7CIH4O2	154.9894	0.38712
155.9974	C7CIH5O2	155.9973	0.89745
157.9943	C ₇ [37]ClH₅O ₂	157.9943	0.25381
159.9479	C ₆ Cl ₂ H ₂ O	159.9477	0.87529
161.9446	C ₆ Cl[37]ClH ₂ O	161.9448	0.80213
162.9711	C6Cl₂H₅O	162.9712	0.36816
163.9745	C₅[13]CCl ₂ H₅O	163.9745	0.3342
164.9682	C ₆ Cl[37]ClH₅O	164.9682	0.24186
165.9716	C₅CCI[37]CIH₅O	165.9716	0.02832
		1	

HRF Score =	$\sum (m/z $ *Intensity) _{explained}	x 100%
	∑ (<i>m/z</i> *Intensity) _{observed}	X 10070

Subset formulae

Introduction: Disinfection By-Products (DBP)

- > 600 DBPs identified (Richardson, 2002)
- Risk of health effects: bladder/colon cancer, reproductive and developmental effects
- 50% of the total halogenated material formed in chlorinated water is still unknown

• Emerging DBPs lodo-DBPs CI-DBPs NOM fast $I^{-} + NH_2CI \xrightarrow{fast} HOI \xrightarrow{s/ow} IO_2^{-} IO_3^{-}$

• Toxicity: iodo- > bromo- > chloro- DBPs

Lab-scale experiment using two sample types:

- Certified reference material
- Llobregat River (LLOB) water
- Both sample types were subjected to chlorination and chloramination (NH₂Cl) reactions

Thermo Scientific TraceFinder Software: Automatic Peak Detection and Identification

Thermo Scientific TraceFinder Software Cross Sample Peak List

Fold Change NL NH₂Cl vs. NL Cl

DBP Detected and Confirmed in the Samples Analyzed

RT (min)	Identity	Elemental Composition	Chemical Structure	Theoretical m/z (EI)	Measured m/z (EI)	∆(ppm)	Theoretical m/z [M+H] ⁺	Measured m/z [M+ H] ⁺	Δ(ppm)	
3.71	Iodomethane	CH ₃ I	Н ₃ С—I	141.92739	141.92745	0.4	142.93522	142.93522	0.0	
5.36	Chloroiodomethane	CH ₂ Cli	cı—́	175.88842	175.88839	0.2	176.89625	176.89620	0.3	
5.76	Iodoacetaldehyde	C ₂ H ₃ IO		169.92231	169.92234	0.2	170.93013	170.93014	0.06	
7.36	Diiodomethane	CH ₂ I ₂		267.82404	267.82424	0.8	268.83186	268.83192	0.2	
8.03	Ethyliodoacetate	C4H2IO2	+₀∕~~	213.94852	213.94840	0.6	214.95635	214.95627	0.4	
8.14	Iodoethene	C ₂ H ₃ I	I CH2	153.92739	153.92742	0.2	154.93522	154.93519	0.2	
8.77	Chlorodiiodomethane	e CHCll ₂		301.78507	301.78509	0.1	301.78507	301.78511	0.1	
9.85	Bromodiiodomethane	e CHBrl ₂	Brl	345.73455	345.73459	0.1	345.73455	345.73446	0.3	

- Orbitrap GC/MS Systems Overview
- Orbitrap GC/MS System for Targeted Screening and Confirmation
- Orbitrap GC/MS System for Known Unknowns Identification
- Orbitrap GC/MS System for True Unknowns Identification

Analytical Tool	Analytical Utility
Chemical Ionization	Determination of Molecular Ion
High Mass Accuracy	Narrow Down Possible Chemical Formula
Isotope Pattern	Confirm Chemical Formula
MS/MS Data	Suggest Structural Identification

Unknown Unknowns Software tools

Proton transfer

$$M + CH_5^+ \rightarrow [M + H]^+ + CH_4$$
$$M + C_2H_5^+ \rightarrow [M + H]^+ + C_2H_4$$

[M+1.00728]⁺

Adduct formation

 $M + C_2 H_5^+ \rightarrow [M + C_2 H_5]^+ \qquad [M+29.03858]^+$ $M + C_3 H_5^+ \rightarrow [M + C_3 H_5]^+ \qquad [M+41.03858]^+$

Confirmation of Molecular Formula with CI

Confirmation of Molecular Formula with CI

Fine Isotope Match at M+2

M+2 Isotope Confirms One Oxygen Present

Structure Proposals with Automated Chemspider Searching

O-phenylphenol #2 listed compound based on Chemspider with 508 references

Monitor for $\Delta([M+C_2H_5]^+ - [M+H]^+) = m/z \ 28.03130$ in fullscan

This $\Delta m/z$ triggers MS/MS event on [M+H]⁺ ions

Method editor — Mass Tags		
File Edit Help		Done 🤡
∆ Mass [m/z]	Comment	
1 28.03130	C2H5+ - H+	
* 2		

Using MS/MS for Structural Confirmation

Molinate #1 listed compound based on Chemspider with 158 references

Automated mzCloud Search in Compound Discoverer

Molinate MS/MS spectral match

Thermo Scientific Mass Frontier Can Increase Confidence in Structure Proposal

MS/MS fragments rationalized based on fragment library and known reaction mechanisms

Pharmaceutical Example

ΑΡΙ	Phase	Solvent	working concentration
(3S)-3-methylmorpholine	liquid	Methanol	1% v/v
N,N,N'-trimethylethylenediamine	liquid	DMSO	1% v/v
1,2-A imidazo pyridine	liquid	Methanol	1% v/v
4-fluorobenzonitrile	solid	Methanol	100 μg/mL (w/v)
3,5-difluorophenol	solid	Methanol	100 μg/mL (w/v)
2,6 difluorobenzyl bromide	solid	Methanol	100 μg/mL (w/v)

Drug precursors tested

													_			
File View Help															_	
Talicoment view	_	_	_	_	_		_		_	_	_		_	_	_	_
• X 🖬 • 🗛 🖷						_						_				
Peak List: (101)							Top Library Hits: (8)				Sam	ples			
Component name	Avg Score Re	eference m/z	Avg TIC	RT + Form	ula CAS	-	Avg Score	Matched compound	Lib. Hit Name	Formula	CAS# *		Camala	Com	TIC	here
Benzonitrile, 4fluoro-	95.8	121.03225	14125751222	4.483 C7FH	4N 1194-02-1		95.8	Benzonitrile, 4fluoro-	Benzontrie, 4-flu	C7FH4N	1194-02-1		Saliple	Jule	110	Nea
Peak@4.51144	0	281.05118	6501890	4.511			95.8	Benzonitrile, 2-fluoro-	Benzonitrile, 2-flu	C7FH4N	394-47-8	12	AZ15june001	95.8	2825150244	29/916
Peak@4.52089	0	179.00102	886118	4.521			95.6	Benzonitrile, 3-fluoro-	Benzonitrile, 3-flu	C7FH4N	403-54-3		AZ15june000	0		1
Pesk-RA 53053	0	135 08052	253621	4 531			477	Girbert and 2, Man Ellin	Chiegen grid 2.c	C1975L197	6	•	_			
•												1				,
btracted lons					Sp	ectra										
Actual Nomalized					- (_
															Component sp	pectrum
			RP-12	21 02225 @ 1 71F	-010		100.									
	/	~	64 - 14				100									
1 50E+010	/)														
							80	1	in a d	00	~~+~		<u> </u>			
	(80	Acqu	ired	spe	ectr	un	n			
							80 60	Acqu	ired	spe	ectr	un	n			
1.00E+010							80 60 40	Acqu	ired	spe	ectr	un	n			
1.00E+010							80 60 40	Acqu	iired	spe	ectr	un	n			
1.00E+010						lance	80 60 40 20	Acqu	iired	spe	ectr	un	n			
1.00E+010 5.00E+009					E	bundance	80 60 40 20	Acqu	iired	spe	ectru	un	n			
1.00E+010 5.00E+009					E	ve abundance	80 60 40 20 0-11	Acqu	lired	spe	ectr	un	n 			-
1.00E+010 5.00E+009					Ē	ielative abundance	80 60 40 20 0 1 7-20	Acqu	lired	spe	ectr	un	n 			6
1.00E+010 5.00E+009 0.00E+000	44730	45/200	4 5030	4 61210	Ē	Relative abundance	80 60 40 20 0 1'	Acqu	lired	spe	ectr	un	n 			a
1.00E+010 5.00E+009 0.00E+000 4.41310	0 4.46310	451310	4.56310	4.61310	Ē	Relative abundance	80 60 40 20 -20 -20 -40	Acqu	iired	spe	ectr	un	n			-
1.00E+010 5.00E+009 0.00E+000 4.41310	0 4.46310	451310	4.56310	4.61310	Ē	Relative abundance	80 40 20 -20 -20 -40	Acqu	iired	spe	ectro	un	n			-
1.00E+010 5.00E+009 0.00E+000 4.41310	4.46310	4.51310	4.56310	4.61310		Relative abundance	80 40 20 -20 -40 -60	Acqu	iired	spe	um	un	n 			
1.00E+010 5.00E+009 0.00E+000 4.41310) 4.46310	451310	4.56310	4.61310		Relative abundance	80 60 40 20 -20 -40 -60 -80	Acqu NIST	iired	spo	um	un	n 			n.
1.00E-010 5.00E-009 0.00E-000 4.41310) 4.46310	4.51310	4.56310 ment ID The	4.61310 so m/z Mas	e error (pp. *	Relative abundance	80 60 40 70 -20 -40 -60 -80	Acqu NIST	iired	spo	um	un	n 			~
1.00E+010 5.00E+009 0.00E+000 4.41310 R I Measured n/; A 140.0047	0 4.46310	4.51310 100 100 100 100 100 100 100 100 100	4.56310	4.61310		Relative abundance	80 60 40 20 -20 20 40 60 80 80 100 	Acqu NIST	ired		um	un	n 	129.02438	143	
1.00E+010 5.00E+009 0.00E+000 4.41310 Meauved m/2 Meauved m/2 140.03047 122.03865) 4.46310 10 4.46310 10 53422572 75282234 75282234	4.51310 # Frag 30218100 4.8272888 C(12)	4.56310 mert ID Th 56.C(13)2.FH. 123	4.61310 eo m/2 Mas 03893 0.562	E a error (p * #67	Relative abundance	80 60 40 20 -20 -20 -40 -60 -80 -100 43,00000	Acqu NIST	ired spe		um	un 1828	n 	129 02438	145	
1.00E+010 5.00E+009 0.00E+000 4.41310 140.03047 120.03555	ves Hegt 55422572 75238234 5582548	4.51310 10218100 142272880 C(112 31832233	4.56310 mert ID Th 5 C(132 FH. 123	4.61310 ao m/z Mas 0.08830 0.565	5 error (pp +	Relative abundance	80 60 40 20 -20 -40 -40 -60 -80 -100 45,0000	Acqu NIST	ired spe		um	un	n 	129 02438	14S Library si	

Impurities in (3S)-3-methylmorpholine ID'ed by deconvolution/library search

Impurities confirmed by accurate mass CI molecular lons

Pharmaceutical Application Notes

Impurity Profiling of Pharmaceutical Starting Materials Using Gas Chromatography Coupled with High-**Resolution Accurate Mass Spectrometry**

Cristian Cojocariu and Paul Silcock Thermo Fisher Scientific, Runcorn, UK

Key Words

Pharmaceutical active ingredients, impurities, accurate mass, high resolution, Q Exactive GC

Introduction

Pharmaceutical impurities are unwanted chemicals present in starting and intermediate materials used in the manufacturing of active pharmaceutical ingredients (API) which, even in small amounts, can affect the efficiency of the pharmaceutical product and ultimately can pose health risks to patients.1 In general, most of these impurities are small molecules formed during the manufacturing process of the API or originated from the contact of the active ingredient with the packaging materials.

The impurity profiling process (defined as compound detection, identification and quantitation) is currently a mandatory step in the manufacturing of pharmaceutical products and is receiving rigorous attention from regulatory authorities, such as the International Conference Harmonization (ICH), United States Food and Drug Administration (FDA).

The large number and diversity of impurity compounds that can be present in starting and intermediate materials poses a significant analytical challenge for detection, quantitation and chemical characterization of these chemicals. Amongst the various analytical tools used to detect and characterize impurities in API, gas chromatography coupled with mass spectrometry (GC-MS), is commonly used to detect volatile and semi-volatile chemicals throughout the active pharmaceutical ingredients manufacturing process, as well as in the final product.

Until recently, GC-MS analysis of impurities has traditionally been performed by Electron Ionization (EI) or Chemical Ionization (CI) on single-quadrupole systems. However, developments of Time-of-flight mass spectrometry (TOFMS) technology have allowed high resolution accurate mass measurement to be utilized in this application.² In addition to EI and CI, soft Ionization techniques, such as Atmospheric Pressure Chemical Ionization (APCI) coupled with ToF mass spectrometers have been applied to GC-HRMS analysis. However. these systems have limited linear dynamic range and higher chemical background noise compared to vacuum GC-MS systems.3 Moreover, the incompatibility of the mass spectra obtained with the APCI-GC-MS with existing commercial mass spectral libraries makes compound identification difficult.3

> Thermo SCIENTIFIC

Confident Identification of Leachable Impurities from Pharmaceutical Container Closure Materials using Orbitrap-Mass-Spectrometer-Based GC-MS

Dominic Roberts,¹ Andrew Feliden,² Richard Barlow,² Kyle D'Silva,¹ and Paul Silcock¹ Thermo Fisher Scientific, Runcorn, UK Smithers Rapra, Shawbury, UK

Key Words

Extractables and Leachables, Q Exactive GC, Orbitrap mass spectrometry, differential analysis, unknown identification, container closure system, pharmaceutical.

Introduction

leaching from a wide variety of plastics, polymers, and packaging products destined for pharmaceutical products has received a great deal of attention and remains a challenging analysis for chemists. Often termed extractables and leachables (E/L) studies, their aim is to identify, quantify, and ultimately minimize any impurities that can migrate from packaging into a final product or drug. "Extractables" are those chemicals that can extract from components of a container closure system into solvents under accelerated laboratory conditions, such as elevated temperature and aggressive solvent, with the aim to extract the maximum amount without deforming or degrading the material. "Leachables" are defined as chemicals that can migrate from the packaging into a drug product over the course of its shelf life.

The potential, versus the actual, impact of the product on its user:

• Extractable = possible impact. · Leachable = actual impact

- The object on which the testing is performed:
- · Extractable = the container material
- · Leachable = the final product

Extractable testing is primarily used to mitigate risk by identifying potentially toxic leachables very quickly and allowing the selection of a different packaging material. In general, for most dosage forms, any material that is in direct contact with an API (Active Pharmaceutical ingredient) should be considered for extractable and leachable analysis and in some cases, secondary or tertiary packaging, e.g., labels should also be considered. Leachables can come from the container closure system and any components used in the manufacturing process They may also be the product of reactions between the drug and packaging material and may continue to form during storage.1 A controlled extractables experiment is accomplished by exposing the material to extremes of solvents, pH, and temperatures to test the product under worst case scenarios. The confident detection and identification of compounds present is a very demanding task and it is essential that analysts use the available technology to accurately and comprehensively characterize products.

> Thermo SCIENTIFIC

www.thermofisher.com/OrbitrapGCMS

Toxicology Application Note

100-

80-

40

100

80

40

Spectrum

337

338

339 340

High Confidence, Non-Targeted Screening for Drugs of Abuse in Urine

Dominic Roberts,¹ Andrea Steuer,² Michael Poetzsch,² Thomas Kraeme^a and Paul Silcock¹ "Thermo Fahrer Scientific, Runcorn, UK "Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Suttratefund

Key Words

Drugs of abuse, GC-MS, urine, screening, high resolution, Q Exactive GC, Orbitrap mass spectrometry, accurate mass

Drug abuse is a condition that is characterized by a destructive pattern of using a substance, usually through self-administration, which leads to significant problems or distress. Almost any substance, that on consumption can cause a euphoric feeling, can be abused. Examples of drugs of abuse (DoA) include depressants (opioids, barbiturates, benzodiazepines, alcohol), stimulants (amphetamines, cocaine), hallucinogens (LSD, mescaline, phencyclidine), and cannabinoids (marijuana). The reasons for DoA testing are diverse. For example, DoA screening can be performed for criminal and other forensic investigations, high-risk employment functions, clinical toxicology, or rehabilitation programs. For such tests, urine is generally accepted as the sample of choice as it is non-invasive, reliable, economical, widely utilized, and strictly regulated.1 One limitation of testing in urine is that it will usually only provide information about current or recent substance use as a specimen is likely to be negative after a period of 2-3 days after drug administration. There are some compounds and their metabolites that remain detectable for longer periods, e.g., THC-COOH and some benzo diazepines.1 To prolong the detection period as long as possible, sensitive analytical techniques are important. Laboratory testing of urine for DoA is a challenging

Eatornovy texting or innite to book in a claiminging an application. This is primarily due to the high number of rr compounds and metabolites that need to be screened for in a sample that has a variable chemical background, su Furthermore, depending on exposure, the levels of such roompounds can be present at both trace and very high o concentrations. Gas chromatography coupled with mass spectrometry (GC-MS) is well-suited for DoA screening is and confirmation as it provides excellent chromatographic resolution, peak capacity and extensive spectral libraries to ad in identification.³⁴ However, higher sensitivity and specificity would increase the confidence in positive results and improve the robustness of the system, specially

> 343.02272 C₁₃ H₁₁ O₂ N₅ ³⁷Cl₂ = 343.02253

> > 343

344 345 346

342

m/z

in a high throughput routine laboratory environment

341

One further challenge is that the evaluation of informa-

tion rich electron impact spectra generated using GC-MS is difficult if performed manually, especially when analyte peaks are often overlapped by matrix and background ions.

In this application note, the performance of the Thermo Scientifie "Q Exervier "GC Othinger "GC-MISMS system was evaluated for the screening of DoA in utime. This work aims to demonstrate the application of a nontragered workflow using the Q Exactive GC Othirag GC-MISMS system to detect and identify DoA. This work focuses on analyzing real case utime samples using a full-scan, non-targered acquisition and high-mass resolving power to obtain accurate mass measurements in support of spectral library matching. The evaluation of scan speed in combination with high in-scan dynamic range and high sensitivity will be made for the detection of low and high intensity components. In addition, unique software algorithms for automated deconvolution and identification were also assessed for routine screening.

> Thermo SCIENTIFIC

Sample	Compound	Base Peak (<i>m/z</i>)	HRF (%)	Base Peak Mass Accuracy (ppm)	Molecular Ion Mass Accuracy (ppm)
	Cocaine	82.06512	100.0	1.5	—
	Methadone	72.08077	99.7	0.5	—
Urine A	Morphine	268.1332	99.9	0.8	0.2
	Paracetamol	109.05221	99.0	0.6	0
Urine B	Tramadol	114.09134	99.7	0.8	_
Urino C	Mirtazapine	195.09167	98.2	0.2	_
UTILLE C	Lamotrigine	184.97935	100.0	0.4	0.3
	Morphine	268.1332	96.7	0.8	0.2
Urine D	Paracetamol	109.05221	98.9	0.9	0.5
Urine E	Myristicin	180.07809	98.9	0.6	_
Urine F	Butyrfentanyl	146.09646	_	0.4	0.0

www.thermofisher.com/OrbitrapGCMS

- > Industry-best resolution, mass accuracy, dynamic range, and sensitivity
- Triple-quadrupole-level quantitation
- Deconvolution/library search for known unknown identification
- Unique capabilities for true unknown identification
 - Industry-best mass accuracy
 - Highest resolution for fine isotope detection
 - Automated compound identification without spectral library reference

Serving Your Science

thermo scientific

unity lab services

Thank You

Please join me in the Gas Chromatography and Mass Spectrometry section of our booth where I'll address comments and questions.

