

Theory and Key Principles Series Gas Chromatography (GC)

Session 5 – Alternatives to Liquid Injection

Introduction

Welcome to Shimadzu's Gas Chromatography Theory and Key Principles Series!

Presenter

Ollie Stacey GC/GCMS Technical Specialist

- Part of Shimadzu team for >2.5 years
- Previous experience with TOF-GCMS
- Expertise in GCxGC and GCxGC-MS

Theory & Key Principles Series – GC

- Introduction to Gas Chromatography *
- GC Columns *
- The Split/Splitless Inlet *
- Advanced Liquid Injection Techniques *
- Alternatives to Liquid Injection
- Choice of Detectors for GC
- Processing GC Data
- Maintenance & Troubleshooting
- * Now available on demand at www.shimadzu.co.uk/webinars

Alternatives to Liquid Injection

In this presentation:

- Headspace (HS)
 - Loop & Syringe systems
- Solid Phase Micro-Extraction (SPME)
- Thermal Desorption (TD)
- Pyrolysis (Py)
- Gas Sampling Valves (GSVs)

Headspace (HS)

Shimadzu UK Theory & Key Principles Series – GC Session 5

Headspace

'Headspace' (HS) is the **gas above a sample**, where the sample can be **liquid** or **solid**.

Headspace is a **sample pre-treatment** technique for the analysis of **VOCs** (volatile organic compounds).

Suitable for **solid** & **liquid** samples.

Enables analysis of samples with a dirty **sample matrix**.

Common HS-GC applications:

- Blood alcohol content
- Testing for residual solvents in pharmaceuticals
- Analysing toxic VOCs in waste water (usually HS-GCMS)

Shimadzu UK Theory & Key Principles Series – GC Session 5

Principles of headspace

In a **sealed vessel**, molecules of analytes exist in the **sample phase** or the **gas phase** (headspace).

A **partition coefficient** (**K**), is the distribution of analytes, at equilibrium, in the sealed vessel.

• K is dependant on the analyte, the sample matrix & temperature.

The **phase ratio** (β) relates to the relative volumes of sample and headspace in the vial.

Solvent	K Value	
Ethanol	1355	
Isopropanol	825	
Ethyl acetate	62.4	
Dichloromethane	5.65	
Toluene	2.82	
Cyclohexane	0.077	

K =	<u>Conc. (sample)</u> Conc. (gas)
β =	<u>Volume (gas)</u> Volume (sample)

HS conc. = <u>Sample conc.</u> (K + β)

Smaller K = Higher sensitivity Smaller β = Higher sensitivity

Air/water system at 40 °C

Shimadzu UK Theory & Key Principles Series – GC Session 5

Heating & agitating

In almost all headspace analysis, the sample is **heated**, or incubated.

There are two benefits to this:

- Ensures constant temperature (stable K)
- Reduces K (higher sensitivity)
 - Inorganic salts can also be added to liquid samples to reduce K further Known as 'salting out'

Samples also tend to be **agitated**. This reduces the **equilibration time**

> With agitation Without agitation

	K Value		
Solvent	40 °C	80 °C	
Ethanol	1355	328	

Headspace autosamplers

Two main types of autosampler systems:

Loop

- Sample vial is pressurised
- Pressure is released into fixed-volume loop
- Loop is flushed onto column
- Offers split or splitless operation *via* flow controller (no SPL)

Syringe

- Gas-tight syringe draws sample of gas from above solid/liquid
- Injects into split/splitless inlet

Shimadzu UK Theory & Key Principles Series – GC Session 5

Dynamic headspace

Previous discussion covered **static headspace**.

Dynamic headspace continuously removes analytes from the headspace to reach **lower limits of detection**.

- **Multiple Headspace Extraction** (MHE) is **semi-dynamic** and involves multiple sampling steps on loop-based system, where **loop is flushed onto trap**.
- **Purge & Trap** bubbles carrier gas through sample to purge the analytes into gas.
- **In-Tool Extraction** (ITEX) uses a **syringe with a built-in trap** to draw analytes onto the trap.

SPME

SPME is a **sample concentration** technique for **solids** & **liquids**.

Used for trace VOC & SVOC analysis.

It uses a **solid sorbent** or **liquid polymer** to trap volatile analytes on a probe.

Common applications:

- Food & beverage aroma/flavour profiling
- Low-level environmental pollutants

SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 5

SPME fiber materials

Range of sorbent materials and thicknesses.
Sorbent and analyte chemistries should match.
Common sorbents: PDMS (polydimethylsiloxane) Carboxen DVB (divinylbenzene) Polyacrylate PEG (polyethylene glycol)

Multi-sorbent option can be used for more universal analysis

	<u>Suitability</u>	
PDMS	Non-polar	
Carboxen	Very volatiles	
DVB	Aromatics	
РА	Polar	
PEG	Polar	

DI-SPME vs. HS-SPME

Liquid samples can be analysed using Direct Immersion (DI) or Headspace (HS) SPME.

HS-SPME follows the same principles as typical headspace.

DI-SPME involves submerging the fiber into a liquid sample.

<u>DI-SPME</u>		HS-SPME	
Analyte volatility	Low to medium	High to medium	
Analyte polarity	ity Medium to high Low to medium		
Matrix	Clean liquids are best	best Any liquid or solid	
Advantages Higher-efficiency ext	Higher-efficiency extraction	Can be used with very dirty matrices	
Disadvantages	Shorter fiber lifetime Can require sample pre-treatment	Matrix modification may be nent required to boost sensitivity	

SPME Sampling

DI-SPME

Sample agitation

SPME probe inserted into liquid

HS-SPME

Sample agitation at elevated temperature

Equilibrium achieved

SPME probe inserted into headspace

SPME Sampling

DI-SPME

Sample agitation

SPME probe inserted into liquid

Fiber exposed

HS-SPME

Sample agitation at elevated temperature

Equilibrium achieved

SPME probe inserted into headspace

Fiber exposed

SPME Sampling

DI-SPME

Sample agitation

SPME probe inserted into liquid

Fiber exposed

Analytes adsorb to fiber surface

HS-SPME

Sample agitation at elevated temperature

Equilibrium achieved

SPME probe inserted into headspace

Fiber exposed

Analytes in HS adsorb to fiber surface

HS concentration reduces

Analytes in sample re-partition to to maintain K value

Fiber removed and dried before sampling

SPME Sampling

Probe is injected into hot split/splitless inlet & fiber exposed.

High temperatures desorb analytes from fiber.

At this point, standard principles of split/splitless inlets apply.

SPME Arrow

SPME Arrow technology offers a more robust & sensitive SPME solution.

Shimadzu UK Theory & Key Principles Series – GC Session 5

Thermal desorption

Thermal desorption is a **sample pre-concentration** technique.

Wide range of sampling techniques available:

Passive

• Breath

• Active

• Direct

• Permeation

Common applications:

- Monitoring air for toxic VOCs near landfill sites
- Workplace air monitoring
- Vehicle emission testing
- Aroma profiling in food & beverages
- Permeation of VOCs through packaging
- Detection of cancer markers in breath

Shimadzu UK Theory & Key Principles Series – GC Session 5

TD operation

- Sample tube is heated to desorb analytes.
- Desorption from sample tube can take several minutes.
- Desorbed onto a smaller 'trap', which is cooled to prevent samples breaking through.

- Trap is rapidly heated to desorb analytes quickly onto the column.
- Sample can be diluted using split flow.
- Split flow can be recovered on second tube.

Pyrolysis (Py)

Shimadzu UK Theory & Key Principles Series – GC Session 5

Pyrolysis

Pyrolysis is a technique that splits large molecules into smaller fragments (**pyrolysates**) using heat.

These smaller fragments are volatile enough for GC analysis.

Suitable for analysing a wide range of samples:

• Plastics

- Adhesives
- Polymer additives

Rubber

Paints

• Wood

Shimadzu UK Theory & Key Principles Series – GC Session 5

Pyrolysis techniques

Pyrolysers can be used in a variety of ways.

The most common is **single shot** or **flash pyrolysis**.

This can be used to identify polymers using **pyrograms**:

Shimadzu UK Theory & Key Principles Series – GC Session 5

Pyrolysis techniques

Evolved Gas Analysis (EGA) is used for method development.

This information is used to create a double-, or multi-shot, method.

Sample is analysed at different temperatures to **simplify results**.

Peaks A+B+C [TD: 100 – 300°C]

EGA

Shimadzu UK Theory & Key Principles Series – GC Session 5

Catalytic pyrolysis (micro-reactors)

Some pyrolyser furnaces can be fitted with a catalyst bed.

Enables analysis of catalytic products of pyrolysates for catalyst development & optimal temperature and pressure settings for reactors.

Gas sampling valves (GSVs)

Gas sampling

Analysis of very volatile, gaseous samples.

Injection via syringe gives poor reproducibility so gas sampling valves (GSVs) are used.

Common applications:

- Reactor product analysis
- *Hydrocarbon processing industry*
- Gas purity analysis
- Mask breakthrough testing

SHIMADZU

Shimadzu UK Theory & Key Principles Series – GC Session 5

Basic 6-port valve operation

10-port valve operation (with pre-column backflush)

10-port valve operation (with pre-column backflush)

System GC solutions

Summary

Shimadzu UK Theory & Key Principles Series – GC Session 5

Comparison

	Gas	<u>Liquid</u>	<u>Solid</u>
Liquid injection	×	\checkmark	×
Headspace	×	\checkmark	\checkmark
SPME	×	\checkmark	\checkmark
Thermal Desorption (TD)	\checkmark	\checkmark	\checkmark
Pyrolysis	×	\checkmark	\checkmark
Gas Sampling Valves	\checkmark	×	×

Summary

- GC is an extremely versatile technique that can be used to analyse gaseous, liquid and solid samples.
- Headspace is used to analyse VOCs by extracting them from the gas phase above a sample.
 - Static headspace can use loop or syringe sampling systems.
 - Dynamic headspace, such as purge & trap offers lower detection limits.
- SPME uses a fiber to trap VOCs & SVOCs either from the sample or gas phase.
 - HS-SPME is well suited to non-polar VOCs.
 - DI-SPME offers better extraction and is useful for polar SVOCs.
- Thermal desorption (TD) uses sorbent-packed tubes to trap VOCs & SVOCs.
 - Offers pre-concentration of up to 10⁶ for gas analysis.
 - Very wide range of sampling options to cover a range of applications.
- Pyrolysis uses a high-temperature furnace to break down large molecules into VOCs & SVOCs.
 - Advanced instruments can perform multiple techniques, such as EGA, TD and even catalytic conversion.
- Gas sampling valves (GSVs) offer a highly reproducible means of analysing gaseous samples.
 - Use a 2-position valve that has fill and flush modes.
 - Systems range from a 6-port valve with one column, up to systems with multiple valves and as many as 8 columns.

Next time

The next session will be on...

Choice of GC Detectors

This will cover:

- Considering which detector to use
- How the detectors operate
- Sensitivity & selectivity
- Requirements
- Typical applications

Shimadzu UK e-News

Join our e-News mailing list today!

Benefits of joining:

- Be entered into our prize draws & competitions
- Find out about our latest webinars, workshops & events
- Receive exciting information about the latest analytical technology & application notes

Look for the link in our follow-up email or go to www.shimadzu.co.uk and click on e-News

Shimadzu UK webinars

Please visit our website to check out our other webinar sessions that are open for registration or are available on demand:

www.shimadzu.co.uk/webinars

Excellence in Science

UK Contact Details

www.shimadzu.co.uk

info@shimadzu.co.uk

01908 552209

Shimadzu UK Limited

Thank you for your attention!

Excellence in Science

Global Contact Details

www.shimadzu.com/an/

