Streamlining Cannabis Testing Using GC-MS and GCxGC-MS

David E. Alonso and Joe Binkley | LECO Corporation, St. Joseph, Michigan 49085

Background

- The composition of cannabis is very important in determining its utility, potency, and medicinal effectiveness
- Cannabis is difficult to analyze because of its chemical diversity, but more importantly the wide concentration ranges of its constituents
- Analysis often requires:
 - Tedious sample preparation
 - Specialized (targeted) instrumental analysis

Objectives

- Reduce sample manipulation & shorten preparation times
- Explore the possibility of streamlining cannabis screening
- Maximize the information obtained per analysis
- Implement the use of GC-TOFMS and GCxGC-TOFMS to effectively profile cannabis samples
- Use automated data processing software to quickly and confidently \bullet identify compounds
- Ultimately, the question to be answered... Is the product safe? \bullet

GC-TOFMS Re	esults: Terpenes
--------------------	------------------

Name	Formula	R.T. (s)	М D (Da)	Similarity	Name	Formula	R.T. (s)	М D (Da)	Similarity	Name	Formula	R.T. (s)	М D (Da)	Similarity
3-Thujene	C ₁₀ H ₁₆	386	0.00	896	Perillal	C ₁₀ H ₁₄ O	654	0.00	773	cis-Calamenene	$C_{15}H_{22}$	913	0.00	861
2-Pinene	C ₁₀ H ₁₆	394	0.00	967	Verbenone	C ₁₀ H ₁₄ O	660	0.00	896	(E)-α-Bisabolene	$C_{15}H_{24}$	921	0.00	946
Camphene	$C_{10}H_{16}$	410	0.00	952	Geraniol	C ₁₀ H ₁₈ O	690	0.07	814	α-Calacorene	C ₁₅ H ₂₀	929	0.00	878
4(10)-Thujene	$C_{10}H_{16}$	433	0.00	925	3-Terpinolenone	C ₁₀ H ₁₄ O	772	0.00	805	Caryophyllene oxide	C ₁₅ H ₂₄ O	961	0.00	936
β-Myrcene	$C_{10}H_{16}$	448	0.00	954	α-Cubebene	$C_{15}H_{24}$	776	0.00	909	Guaiol	C ₁₅ H ₂₆ O	966	0.00	935
α-Phellandrene	$C_{10}H_{16}$	463	0.00	865	Ylangene	$C_{15}H_{24}$	796	0.00	926	(-)-Globulol	C ₁₅ H ₂₆ O	975	0.00	918
δ 3-carene	$C_{10}H_{16}$	470	0.00	922	Copaene	$C_{15}H_{24}$	800	0.00	904	Humulene epoxide 2	C ₁₅ H ₂₄ O	979	0.00	868
D-Limonene	$C_{10}H_{16}$	487	0.00	966	β-Guaiene	$C_{15}H_{24}$	805	0.00	780	Selin-6-en-4α-ol	C ₁₅ H ₂₆ O	985	0.01	814
1,8-Cineole	C ₁₀ H ₁₈ O	491	0.00	879	β-Yalangene	$C_{15}H_{24}$	808	0.00	749	(-)-10-epiγ-Eudsemol	C ₁₅ H ₂₆ O	987	0.00	928
β-Ocimene	$C_{10}H_{16}$	503	0.00	970	β-Cubebene	$C_{15}H_{24}$	810	0.00	798	Aristolene	$C_{15}H_{24}$	1002	0.00	756
γ-Terpinene	$C_{10}H_{16}$	516	0.00	835	Selina-5,11-diene	$C_{15}H_{24}$	817	0.00	884	(-)-α-Panasinsen	$C_{15}H_{24}$	1012	-0.24	767
3,8-p-Menthadiene	$C_{10}H_{16}$	545	0.00	758	Cadinene	$C_{15}H_{26}$	828	-0.02	893	α-Bisabolol	C ₁₅ H ₂₆ O	1022	0.01	922
L-Fenchone	C ₁₀ H ₁₆ O	547	0.00	795	Santalene	$C_{15}H_{24}$	832	0.00	866	Ledene	$C_{15}H_{24}$	1029	0.00	855
Linalool	C ₁₀ H ₁₈ O	552	0.01	941	Isocaryophyllene	$C_{15}H_{24}$	837	0.00	960	Junipercamphor	C ₁₅ H ₂₆ O	1038	0.01	853
1,3,8-p-Menthatriene	$C_{10}H_{14}$	567	0.00	814	α-Guaiene	$C_{15}H_{24}$	848	0.00	825	Aromadendrane-4,10-diol	$C_{15}H_{26}O_2$	1101	0.01	824
Fenchol	C ₁₀ H ₁₈ O	570	0.00	964	Aromandendrene	$C_{15}H_{24}$	852	0.00	930	Isoaromadendrene epoxide	C ₁₅ H ₂₄ O	1127	0.00	789
Pinanol	C ₁₀ H ₁₈ O	579	0.00	885	(E)-β-Famesene	$C_{15}H_{24}$	854	0.02	884	Spathulanol	C ₁₅ H ₂₆ O	1144	0.00	751
cis-p-Mentha-2,8-dien-1-ol	C ₁₀ H ₁₆ O	588	0.06	797	Humulene	C ₁₅ H ₂₄	864	0.00	955	Corymbolone	$C_{15}H_{24}O_2$	1169	0.00	794
Ipsdienol	C ₁₀ H ₁₆ O	595	0.00	889	Alloaromadendrene	$C_{15}H_{24}$	869	0.00	959	m-Camphorene	C ₂₀ H ₃₂	1188	0.01	851
(+)-2-Bornanone	C ₁₀ H ₁₆ O	601	0.01	850	γ-Muurolene	$C_{15}H_{24}$	878	0.00	855	p-Camphorene	C ₂₀ H ₃₂	1208	0.01	818
Pinocarvone	C ₁₀ H ₁₄ O	617	0.00	813	α-Selinene	$C_{15}H_{24}$	895	0.00	943	Phytol	C ₂₀ H ₄₀ O	1274	0.02	951
endo-Borneol	C ₁₀ H ₁₈ O	620	0.00	963	β-Bisabolene	$C_{15}H_{24}$	897	0.00	966	Neophytadiene	C ₂₀ H ₃₈	2120	-0.02	887
Terpinen-4-ol	C ₁₀ H ₁₈ O	629	0.00	895	γ-Cadinene	$C_{15}H_{24}$	907	0.00	932					
α-Terpineol	C ₁₀ H ₁₈ O	640	0.01	943	δ-Cadinene	$C_{15}H_{24}$	912	0.00	892	Ave.: Mass Δ =0	.01, Sin	nilarity	=878/1	000

EMPOWERING RESULTS

Samples

Terpene Oils and HEMP

Recreational Marijuana Medical Marijuana

1000

Instrument Parameters

Gas Chromatograph	Agilent 7890, LECO Dual Stage Quad Jet Modulator & L-PAL 3 Autosampler		
Injection	Variable (250 °C)		
Carrier Gas	He @ 1.0 mL/min, Constant Flow		
Columns (1 st Dimension) (2 nd Dimension)	Rxi-5 MS, 30 m x 0.25 mm i.d. x 0.25 μm (Restek, Bellefonte, PA, USA) Rxi-17 Sil MS 0.6 m x 0.25 mm i.d. x 0.25 μm (Restek, Bellefonte, PA, USA		
Temperature Program	40 °C (5 min), ramped 10 °C/min to 300 °C (2 min) Secondary oven maintained +5 °C relative to primary oven	\succ	GCxGC-TOFN
Modulation	2s with temperature maintained +15 °C relative to secondary oven		
Mass Spectrometer	LECO Pegasus [®] BT 4D		
Ion Source Temperature	250 °C		
Ionization Mode	FI		

"3A 27 Car 00.5

Figure 2. Deconvoluted (top) and NIST library spectra (bottom) for B-Ocimene and m-Camphorene.

GC-TOFMS: Cannabinoids

Name	Formula	R.T. (s)	Mass Delta (Da)	Similarity
Cannabidivarol	$C_{19}H_{26}O_2$	1342	0.01	882
Cannabidiol	$C_{21}H_{30}O_2$	1445	0.07	905
Delta 8-THC	$C_{21}H_{30}O_2$	1483	0.01	837
Delta 9-THC	$C_{21}H_{30}O_2$	1491	-0.01	928 —
Cannabigerol	$C_{21}H_{32}O_2$	1510	0.01	900
Cannabinol	$C_{21}H_{26}O_2$	1522	0.01	902
Cannabichromene	$C_{21}H_{30}O_2$	1578	N/A	873

Figure 3. List of representative cannabinoids with deconvoluted (top) and NIST library (bottom) spectra shown for

ľ	Acquisition Rate	10 spectra/s (1D) 200 spectra/s (2D)
ĺ	Mass Range (m/z)	45-600

Sample Preparation Methods

- Solvents
- Monoterpenes (C_{10})
- Sesquiterpenes (C_{15})
- Diterpenes (C_{20})
- Cannabinoids

900 - 800 - 700 - 600 - 500 - 400 - 300 - 200 -	C10 Solvents	L C15	H€ Dr. Cl	ead Space BD, 1mL, s1	0
100 -					
0 [⊸] Time (s)	200 400 600	800 1000	1200 1400	1600 1800	2000
1000 - 900 - 800 - 700 - 600 - 500 - 400 - 300 - 200 - 100 - 0 - Time (s)	C10 Solvents	C15		S SPME Arr /B/CAR/PD Dr. CBD, s1 CBD,THC	ow MS 0
3e9 -	Lie	quid, Dr. CBD		CBD,THC & mc	ore
2e9 -		i II L , SIU			
- 1e9 - -	C10		20		
Time (s)	200 400 600	800 <u>1000</u> TIC	1200 1400	1600 1800	200
1e9 - - 0 - Time (s)	200 400 600	C15 	20 1200 1400	1600 1800	2

Name	Formula	R.T. (s)	Mass D (Da)	Similarity
Ethylbenzene	C_8H_{10}	323	0.00	946
o-Xylene	C ₈ H ₁₀	331	0.00	939
2-Heptanone	C ₇ H ₁₄ O	349	0.00	813
p-Xylene	C ₈ H ₁₀	354	0.00	956
Heptanal	$C_7H_{14}O$	359	0.00	926

Delta 9-THC.

GCxGC-TOFMS Contour Plot Showing Separation of Several Compound Classes

GCxGC-TOFMS – More Compounds Identified

GC-TOFMS

Name	Formula	R.T. (s)	Similarity
Decanal	$C_{10}H_{20}O$	Not Found	
Myrtenal	C ₁₀ H ₁₄ O	648	745
Selina-3,7(11)-diene	$C_{15}H_{24}$	929	805
α-Calacorene	$C_{15}H_{20}$	929	878

R.T. (s)

648 s, 1.262 s

648 s, 1.445 s

928 s, 1.414 s

Similarity

723

890

869

881

Figure 1: List of miscellaneous compounds in cannabis with deconvoluted (top) and NIST library (bottom) spectra shown for 4-Chloro-4'-methoxybiphenyl.

Summary

- A variety of sample introduction methods can be used to prepare cannabis products for analysis
- Comprehensive profiling of cannabis is an attractive alternative to targeted, panel-based methods
- GCxGC-TOFMS facilitates fast and confident cannabis profiling.
- Compound identification: Similarity searches, mass Δ calculations, and RI filtering