Enhancement of Undergraduate Chemistry Laboratory Experiences Through a Collaboration of Industry and Academia

Alonso, D.E.¹, Ahlberg L.², Clear K.³, Muna G.³, and Binkley J.¹; 1) LECO Corporation, St. Joseph, MI, 2) Andrews University, Berrien Springs, MI, 3) Indiana University at South Bend, South Bend, IN

Background

- 1) Analytical instrumentation in undergraduate laboratories is critical for the scientific training of students at colleges and universities.
- 2) LECO Corporation is currently involved in various projects:
- a) Cooperative education
- b) Technology presentations
- c) Mobile bus visits Showcase technology to researchers
- d) Laboratory experiments "hands-on" instrument activities for students and faculty

Objective

To enhance education through exposure to modern analytical instrumentation (GC-TOFMS) and software

Collaboration Institutions

Figure 1: Project Interactive Strategy

Indiana University at South Bend

Public University, 3rd largest IU System Campus Location: South Bend, IN

Enrollment:

- Undergraduate 4,375
- Graduate 567

Figure 2: LECO Corporation Markets

Andrews University

Private Institution, Seventh-Day Adventists Location: Berrien Springs, MI Enrollment:

- Undergraduate 1,434
- Graduate 1,955

LECO Corporation

Instrument Manufacturer Location: St. Joseph, MI Instruments:

- Analytical Science
- Metallographic Science
- Separation Science

Project Tools

Figure 3: LECO Mobile Laboratories

LECO Prous 31-61

Figure 4: Pegasus BT 4D

Mobile Lab Instruments

- GC-TOFMS and GCxGC-TOFMS
- Low fg sensitivity
- 10⁵ Linear dynamic range
- L-PAL3 Autosampler
- Liquid
- Headspace
- SPME

Results and Discussion

1) Organic Chemistry

Figure 5: Acid-catalyzed dehydration of 2-methylcyclohexanol

Experimental Concepts

a) Dehydration Reactions

- Mechanism of Elimination Reactions
- Stability of Intermediates
- Hydride/Alkyl Shifts
- Thermodynamic Stability of Isomeric Alkenes

b) Gas Chromatography – Mass Spectrometry

- Total Ion Current (Separation science)
- Fragment Ions (Carbocation/radical)

Molecular Ion (Structural information)

Figure 6: Simple Distillation Glassware for Dehydration Reaction

Figure 7: Product Mixture Total Ion Chromatogram

Figure 8: Mobile Lab Analysis Report

Results and Discussion

2) Instrumental Analysis: Quantitative Analysis of Acetaminophen and Caffeine

Figure 9: Sample Preparation – Extraction

a) Quantitative Analysis

- Gas Chromatography
- Chromatographic Parameters
- Instrument Parameters

b) Mass Spectrometry

- Ionization Methods
- Mass Analyzers

Detectors

0.4e9 -0.2e9 -

Figure 10: Analytical Ion Chromatogram Showing Selected Excedrin Constituents

Figure 11: Acetaminophen and Caffeine Calibration Curves

Summary

- 1) The collaboration between academia and industry enhanced laboratory experiences through the utilization of modern-day instrumentation and software
- 2) Sample analyses were conducted using GC-TOFMS instruments on a mobile laboratory
- 3) New experiments will be developed for future mobile laboratory university projects

Figure 12: SPME, GC-TOFMS AIC for a Citrus Beverage