

Automated Solid Phase Extraction and Gas Chromatography-Mass Spectrometry Analysis of Tap Water Samples According to EN 16693:2015 for Organochlorine Pesticides

Dr. Jean-Baptiste Bossa, David Gallagher, Michael Ebitson, Horizon Technology, Inc., Salem, NH USA

Dr. Stephanie Heuskin, Interscience and IS-X, Louvain-la-Neuve, Belgium Professor Joeri Vercammen, Interscience and IS-X, Louvain-la-Neuve, Belgium, Ghent University Ghent, Belgium

APPLICATION NOTE

Key Words

OCPs, EN 16693:2015, Water Framework Directive, Priority Substances, Disk-Based SPE, whole water samples

Introduction

The Water Framework Directive (WFD) is a European Union directive adopted in 2000 by the European Commission which commits European Union member states to protect and restore clean water across Europe by 2015. The framework comprises the development of a list of priority substances and analytical methodologies to control and monitor in a consistent and comparable way the pollution of different water bodies at the Environment Quality Standard (EQS) level. Directive 2013/39/EU¹ introduced in August 2013 amends Directives 2000/60/EC and 2008/105/EC and limits the concentration of 45 priority substances. Among these 45 priority substances, 13 are organochlorine pesticides (OCPs, Table 1) and among them, 12 are also classified as hazardous substances under the WFD, i.e., toxic, persistent, and liable to bioaccumulations. To support the implementation of the WFD, the European Committee for Standardization (CEN) published in 2015 a European standard EN 16693:2015² that describes and specifies a procedure to determine 21 selected OCPs in whole water samples using the solid phase extraction (SPE) coupled with gas chromatography-mass spectrometry (GC-MS).

Organochlorine pesticides are synthetic pesticides that belong to the large group of chlorinated organics composed primarily of carbon (C), chlorine (Cl), and hydrogen (H). These chlorinated hydrocarbons have strong polar covalent bonds in their chemical structures between their chlorine and carbon atoms (327 kJ/mol), thus making them non-biodegradable, inert, and extremely persistent in the environment. The chlorine atoms in their structures also confers them specific chemical properties such as low water solubility and a high affinity for fats. Therefore, OCPs tend to absorb onto particles and accumulate in lipid-rich tissue of animals, including humans and aquatic life. By their nature, OCPs are potentially toxic. Numerous studies have linked OCPs exposures with cancers, endocrine disruptor effects, neurotoxic and reproductive effects.

OCPs have been used for several applications (especially as insecticides) and were widely dispersed into the environment over the past decades. In 1942, during World War II, Dichlorodiphenyltrichloroethane (DDT) was used to control Malaria and Typhus among civilians and troops. Although first synthetized in 1874, the insecticidal action of DDT was discovered in 1939 by the Swiss chemist Paul Hermann Müller who also received a Nobel prize in 1948 for this discovery.

This note demonstrates the performance of automated disk-based solid phase extraction (SPE) for concentration of organochlorine pesticides from whole water, prior to GC/MS analysis, following the requirements of EN16693:2015.

Table 1. Substance, Molecular Formula and CAS Numbers of the OCPs Determined by EN 16693:2015

Substance	Molecular Formula	CAS #	Priority Substance under WFD	Priority Hazardous Substance under WFD	
Alachlor	C14H20CIN02	15972-60-8	х		
Cyclodiene pesticides:					
Aldrin	C12H8Cl6	309–00–2			
Dieldrin	C12H8Cl6O	60–57–1			
Endrin	C12H8Cl6O	72–20–8			
Isodrin	C12H8Cl6	465-73-6			
DDT-total:					
op´-DDT	C14H9Cl5	789–02–6			
pp´-DDT	C14H9Cl5	50–29–3			
pp´-DDD	C14H9Cl4	72–54–8			
pp´-DDE	C14H9Cl4	72–55–9			
Hexachlorobenzene (HCB)	C6Cl6	118–74–1	x	x	
Hexachlorobutadiene (HCBD)	C4Cl6	87–68–3	x	x	
Hexachlorocyclohexane:					
alpha-HCH	C6H6Cl6	319–84–6	х	х	
beta-HCH	C6H6Cl6	319–85–7	х	х	
delta-HCH	C6H6Cl6	319–86–8	х	х	
gamma-HCH	C6H6Cl6	58–89–9	х	х	
Pentachlorobenzene	C6HCI5	608–93–5	х	x	
Trichlorobenzene:					
1,2,3-TCB	C6H3Cl3	87–61–6	х	x	
1,2,4-TCB	C6H3Cl3	120-82-1	х	х	
1,3,5-TCB	C6H3Cl3	108–70–3	х	x	
Endosulfan:					
Endosulfan-I (alpha)	C9H6Cl6O3S	959–98–8	х	x	
Endosulfan-II (beta)	C9H6Cl6O3S	33213–65–9	х	х	

Experimental

Chemicals

All solvents used were HPLC grade or higher. Target substances were purchased from Restek and Supelco. Mass-labelled internal standards were purchased from Chiron. Stock standard solutions, 2 μ g/mL, were prepared in methanol and stored at 4°C. Calibration solutions and working standards were prepared from stock solutions by dilution with methanol and stored at 4°C.

Chemical Summary

- 1. Acetone ≥ 99.8% HiPerSoslv CHROMANORM[®] for HPLC.
- 2. Hexane ≥ 97% HiPerSolv CHROMANORM[®] for HPLC.
- 3. Water AnalaR NORMAPUR® ISO 3696, Grade 3 analytical reagent.

Instrumentation

- Horizon Technology, Inc.
 - SPE-DEX[®] 5000 Automated Extractor
 - XcelVap[®] Evaporation/Concentration System
 - SDS-101 Solvent Drying System
 - DryDisk[®] Membranes
 - Atlantic[®] DVB SPE Disk
- Thermo Fisher Scientific
 - TRACE[™] GC 1300
 - Programmed Temperature Vaporizer (PTV) Inlet
 - ISQ[™] LT Single Quadrupole Mass Spectrometer
 - TriPlus RSH[™] Autosampler
- Restek
 - Rxi[™]-5ms Capillary Column, 30 m x 0.25 mm ID, 0.25 um film thickness

Sample Preparation

All water samples were transferred into a 1 liter glass-bottle container (laboratory bottle with DIN thread, GL 45). The reversedphase polymeric sorbents evaluated in this work is divinylbenzene (DVB). Sample extraction was performed during the same sampling day as follows:

- 1. Transfer 1 liter of sample into a glass-bottle container.
- 2. Spike the mass-labelled internal standard (500 ng) into sample.
- 3. Spike the target substances (200 ng) into sample.
- 4. Incorporate the 47-mm disk holder assembly loaded with an Atlantic® DVB SPE Disk.
- 5. Extract the sample using the SPE-DEX[®] 5000 Automated Extraction System and the method shown below in Table 2.
- 6. Collect and dry the extract using the SDS-101 Solvent Drying System loaded with a DryDisk[®] Separation Membrane.
- 7. Concentrate the dried extract using the XcelVap[®] Concentration System and the method shown in Table 3 to a final volume of 1 mL.
- 8. Transfer the concentrated extract to a 2 mL glass-GC vials and perform the final analysis using GC-MS.

Shown: SPE-DEX 5000 Extraction System

Step	Operation	Solvent	Solvent Vol. (mL)	Purge Time (s)	Pum Rate		Time (s)	Soak Time (s)	Drain Time (s)		
1	Condition SPE Disk	Hexane	Hexane 10 30 2 1		30	30					
2	Condition SPE Disk	Acetone	10	30	2		1	30	30		
3	Condition SPE Disk	Reagent Water	10	30	2		1	30	30		
4	Condition SPE Disk	Reagent Water	10	30	2	2 1		30	30		
Step	Operation	Sam	ple Flow Ra	te (#)		Dor	e Loadi	ng Sample D	elay (s)		
5	Load Sample		3					45	45		
Step	Operation	Solvent	Solvent Vol. (mL)	Purge Time (s)	Pump Rate (#)	N₂ Blan- ket	Sat. Time (s)	Soak Time (s)	Drain Time (s)		
6	Wash Sample Container	Reagent Water	15	60	6	Off	1	10	15		
Step	Operation	Dry Time (s)		Pump Rate (#)		N ₂ Blanket					
7	Air Dry Disk Timer	360	6			Off					
Step	Operation	Solvent	Solvent Vol. (mL)	Purge Time (s)	Pump Rate (#)	N₂ Blan- ket	Sat. Time (s)	Soak Time (s)	Elute Time (s)		
8	Elute Sample Container	Acetone	5	60	2	Off	1	30	30		
9	Elute Sample Container	Hexane	10	30	2	Off	1	30	30		
10	Elute Sample Container	Hexane	10	30	2	Off	1	30	30		
11	Elute Sample Container	Hexane	10	30	6	Off	1	30	120		

Table 2. Automated Extraction Method

Table 3. XcelVap Concentrator System Settings

Extract Starting Volume	45 mL of Acetone:Hexane in a 8:1 ratio				
Water Bath Temperature	60 °C				
Nitrogen Ramp	14 minutes at 0.14 – 0.97 bar (1 step)				
Gas source	5 bar of Nitrogen from gas cylinder				

GC-MS Analysis

The separation of the 21 OCPs was carried out on a Restek Rxi-5ms capillary column (30 m x 0.25 mm ID, 0.25 μ m film thickness) using a Thermo Scientific TRACE GC 1300 equipped with a single quadrupole mass spectrometer ISQ LT (Thermo Scientific) and a TriPlus RSH autosampler. The analytical conditions are presented in Table 4.

Shown: XcelVap Evaporation/ Concentration System

Table 4. GC and MS Conditions

Parameter	Setting	Remark(s)				
Autosampler						
Volume injected (µL)	1					
Flush A		Hexane				
Injection						
Туре	PTV					
Mode	PTV splitless CT					
Temp (°C)	280					
Splitless time (min)	1					
Split flow (ml/min)	50					
Oven						
Initial temperature (°C)	45					
Initial time (min)	1					
Final temperature (°C)	300					
Final time (min)	2					
Rate (°C/min)	20					
Carrier						
Туре	Helium					
Mode	Constant flow					
Flow (mL/min)	0.9					
Detection						
Туре	MS					
Mode	EI					
Acquisition	MS full scan	Range: 45-450 amu				
Electron energy (eV)	70					
Transfer line temperature (°C)	300					
Source temperature (°C)	280					

Results and Discussion

Duplicate tap water samples were spiked with target substances at 200 ng/L, extracted by disk-based SPE, and analyzed by GC-MS. An extra tap water sample was run as blank to show if any existing target OCPs was present. All of the tap water used in this work was collected the same day from the same source. Quantification and method validation were determined with recovery experiments based on ion peak areas of selected ions as specified in the EN 16693:2015 method. Target substance recovery values were calculated using the calibration curve combined with the internal standard method to correct any minor deviations due to sample losses throughout the sample preparation and injection. All water samples were spiked with mass-labelled internal standards at 500 ng/L, extracted by disk-based SPE, and analyzed by GC-MS. All water samples were processed in approximately 10 minutes, thus giving an average sample flow rate of 100 mL/min during the loading step. The total time for the OCPs extraction method (conditioning, loading, washing, air-dry, and elution) on the SPE-DEX 5000 was 38 minutes. A typical chromatogram with peak assignments and retention times is depicted Figure 1 / Table 5. The recovery study and overall results are shown in Table 6. The blank measurement confirms non-detected (ND) target substances in the Belgian tap water used in the frame of this study. The precision was excellent overall and all results were above 70% for the four internal standards. The recovery of each target substance complies with the method requirement.

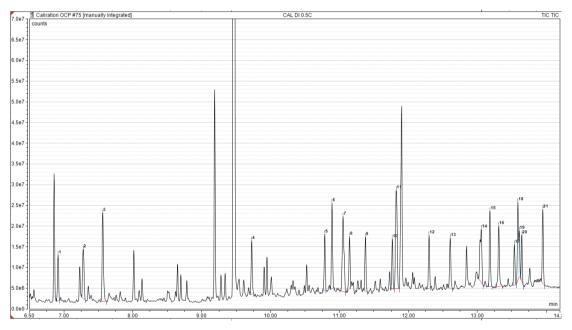


Figure 1. Gas Chromatogram of 21 OCPs.

Table 5. Retention Times

Peak number	Rt (min)	Identification		
1	6.9	1,3,5-TCB		
2	7.27	1,2,4-TCB		
3	7.56	1,2,3-TCB + Hexachlorobutadiene (HCBD) + HCBD 13 C4		
4	9.71	Pentachlorobenzene		
5	10.78	alpha-HCH		
6	10.88	Hexachlorobenzene (HBH) + HCB ¹³ C6		
7	11.04	beta-HCH		
8	11.14	gamma-HCH		
9	11.37	delta-HCH		
10	11.76	Alachlore D13		
11	11.8	Alachlore		
12	12.29	Aldrin		
13	12.6	Isodrin		
14	13.03	Endosulfan I (alpha) + Endosulfan alpha D4		
15	13.17	pp'-DDE		
16	13.31	Dieldrin		
17	13.53	Endrin		
18	13.58	pp'-DDD		
19	13.6	Endosulfan II (beta)		
20	13.64	op'-DDT		
21	13.95	pp'-DDT		

Cubatanaa	Recovery (%)			Maan (9/)		Acceptance	Passed
Substance	Blank	Spike	Spike Duplicate	Mean (%)	RSD(%)	Criteria (% - %)	Failed
Alachlore	ND	107.2	105.3	106.3	1.3	70 -120	Passed
Aldrin	ND	97.3	96.2	96.7	0.8	70 -120	Passed
Dieldrin	ND	99.7	102.3	101.0	1.8	70 -120	Passed
Endrin	ND	108.4	109.9	109.2	1.0	70 -120	Passed
Isodrin	ND	103.8	98.3	101.0	3.9	70 -120	Passed
op´-DDT	ND	111.2	112.7	112.0	0.9	70 -120	Passed
pp´-DDT	ND	110.6	115.8	113.2	3.3	70 -120	Passed
pp´-DDD	ND	101.9	103.7	102.8	1.3	70 -120	Passed
pp´-DDE	ND	107.2	106.8	107.0	0.2	70 -120	Passed
Hexachlorobenzene	ND	107.8	109.1	108.5	0.8	70 -120	Passed
Hexachlorobutadiene	ND	105.1	107.5	106.3	1.6	70 -120	Passed
alpha-HCH	ND	107.4	104.9	106.2	1.7	70 -120	Passed
beta-HCH	ND	113.7	109.3	111.5	2.8	70 -120	Passed
delta-HCH	ND	110.6	107.3	108.9	2.2	70 -120	Passed
gamma-HCH	ND	111.6	107.2	109.4	2.8	70 -120	Passed
Pentachlorobenzene	ND	109.0	111.4	110.2	1.6	70 -120	Passed
1,2,3-TCB	ND	107.1	107.1	107.1	0.1	70 -120	Passed
1,2,4-TCB	ND	110.8	111.0	110.9	0.1	70 -120	Passed
1,3,5-TCB	ND	102.6	102.6	102.6	0.0	70 -120	Passed
Endosulfan-I (alpha)	ND	113.5	116.2	114.9	1.7	70 -120	Passed
Endosulfan-II (beta)	ND	106.3	112.4	109.3	3.9	70 -120	Passed
Alachlore D13	-	105.3	98.1	101.7	5.0	70 -120	Passed
HCB 13C6	-	103.0	95.0	99.0	5.7	70 -120	Passed
HCBD 13C4	-	105.3	105.2	105.2	0.0	70 -120	Passed
Endosulfan-I D4 (alpha)	-	99.6	89.1	94.4	7.9	70 -120	Passed

Table 6. Results from Tap Water Samples

Conclusion

This work demonstrates the successful performance of automated SPE with SPE disks for the extraction of a OCPs mixture. Automated SPE using SPE disks complies with method requirements (European Standard EN 16693:2015) and provides excellent recoveries between 70 and 120 %. Automated SPE using SPE disk therefore meets the Water Framework Directive requirements.

References

- 1. Directive 2013/39/EU of the European Parliament and of the Council.
- 2. European Standard EN 16693:2015.

EUROPE

Main Office: +46 18 565900 Toll Free: +800 18 565710 Fax: +46 18 591922 Order Tel: +46 18 565710 Order Fax: +46 18 565705 order@biotage.com Support Tel: +46 18 56 59 11 Support Fax: + 46 18 56 57 11 eu-1-pointsupport@biotage.com

NORTH & LATIN AMERICA

Main Office: +1 704 654 4900 Toll Free: +1 800 446 4752 Fax: +1 704 654 4917 Order Tel: +1 704 654 4900 Order Fax: +1 434 296 8217 ordermailbox@biotage.com Support Tel: +1 800 446 4752 Outside US: +1 704 654 4900 us-1-pointsupport@biotage.com

HORIZON TECHNOLOGY

Tel: +1 603 893 3663 Toll Free: +1 800 997 2997 Fax: +1 603 893 4994 sales@biotage.com

JAPAN Tel: +81 3 5627 3123 Fax: +81 3 5627 3121 jp_order@biotage.com jp-1-pointsupport@biotage.com

CHINA

Tel: +86 21 68162810 Fax: +86 21 68162829 cn_order@biotage.com cn-1-pointsupport@biotage.com

KOREA Tel: + 82 31 706 8500 Fax:+ 82 31 706 8510 korea_info@biotage.com kr-1-pointsupport@biotage.com INDIA Tel: +91 22 4005 3712 india@biotage.com

Distributors in other regions are listed on www.biotage.com

Part Number: AN122-HOR

Part Number: AN122-HOR © 2017 Biotage. All rights reserved. No material may be reproduced or published without the written permission of Biotage. Information in this document is subject to change without notice and does not represent any commitment from Biotage. E&OE. A list of all trademarks owned by Biotage AB is available at www.biotage.com/legal. Other product and company names mentioned herein may be trademarks or registered trademarks and/or service marks of their respective owners, and are used only for explanation and to the owners' benefit, without intent to infringe.

Horizon technology a part of Biotage