

Analysis of Coffee Aroma Components with Agilent PAL3 Autosampler and 7010B GC/TQ

Complementary Agilent sampling techniques of static headspace, dynamic headspace ITEX, SPME, and SPME Arrow

Authors

Yufeng Zhang and Lay Peng Tan Agilent Technologies, Inc.

Abstract

The Agilent 7010B triple quadrupole GC/MS system (GC/TQ), operating in full-scan data acquisition mode, was used for the qualitative analysis of volatile organic aroma compounds in coffee samples. In this application note, fully automated solvent-free extraction and complementary Agilent sample introduction techniques including static headspace, dynamic headspace ITEX, solid phase microextraction (SPME), and SPME Arrow were evaluated to uncover the complete volatile profile of coffee. Compound identification was performed using deconvoluted mass spectra matched against NIST and Wiley libraries by Agilent MassHunter Unknowns Analysis software. This application note provides the guidelines for data acquisition and processing with the Agilent 7010B GC/TQ, PAL3 autosampler system, and MassHunter Unknowns Analysis software. In this application note, 146 compounds of flavor and fragrance relevance were detected with the four sample introduction techniques. Among these 146 compounds, 6, 48, 27, and 11 compounds were uniquely detected using headspace, dynamic headspace ITEX, SPME, and SPME Arrow, respectively. The rest of the compounds were detected with at least two of the sample introduction techniques.

Introduction

Coffee is one of the most popular beverages in the world, and it is an important agricultural product in countries such as Brazil, Vietnam, Indonesia, and Colombia.¹ Different varieties of coffee have different chemical profiles, which play an important role in its taste and aroma. As a result, there is great research interest in the aroma composition of coffee. However, the composition of volatiles from coffee is complex, with hundreds of chemical compounds contributing to the aroma. These aroma compounds, including acids, alcohols, aldehydes, esters, furans, pyrazines, pyridine, and thiols²-⁴, are correlated to coffee taste and its qualities.

To analyze volatile compounds from coffee, several sample preparation techniques are used: liquid–liquid extraction (LLE)⁵, SPME⁶, and dynamic headspace extraction (DHS)⁷. These techniques are usually coupled with GC/MS instruments. Among these techniques, LLE is tedious and time-consuming. It requires manual sample preparation with toxic organic solvents. Static headspace and SPME are often operated in manual mode, which is neither productive nor reproducible. DHS, when used as the only sampling technique, is not comprehensive. It does not provide the full picture of compounds in coffee .

Static headspace is a technique that analyzes volatile organic compounds in complex samples that cannot be directly injected into a GC or GC/MS system. Static headspace analysis samples the gaseous form of the compounds that are evaporated from liquid or solid samples in the headspace of the sample vial. If the analyte of interest is not volatile enough at room temperature, heat and agitation can be applied to help reach an equilibrium between the phases. Static headspace offers the advantages of simplified sample preparation, smaller solvent peaks, and reduced instrument maintenance. These improvements are due to a cleaner gas sample with minimal sample matrix being introduced to the GC or GC/MS system.

Dynamic headspace ITEX is a syringe-based technique for rapid and efficient enrichment of volatile and semivolatile compounds from gaseous, liquid, and solid samples. The syringe is filled with Tenax adsorbent material to concentrate and enrich the volatile compounds. The in-tube extraction procedure is shown in Figure 1. The collection of target compounds is through repeated strokes of the syringe. With a higher number of strokes, higher concentration and enrichment can be achieved to improve the detection of trace-level compounds. After sample adsorption, the ITEX tool moves to the GC injector for desorption and analysis.

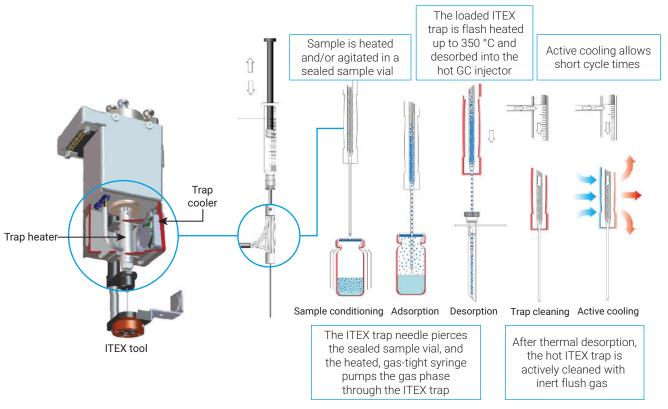
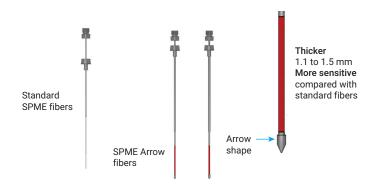



Figure 1. Schematic of dynamic headspace ITEX.

SPME is a common solvent-free sample preparation technique. It works on the principle of adsorption and desorption. It uses a fiber coated with an extractive phase to concentrate analytes in a sample. SPME is widely used in many kinds of analyses including environmental, food and flavor, pharmaceutical, etc.

SPME Arrow is a new technology that is based on conventional SPME with the benefits of providing larger sorption-phase surfaces and volumes. There are different kinds of fiber available including PDMS, acrylate, carbon WR, DVB, and different combinations of these four sorbents, to cater to different of analyte polarities. The arrow-shaped tip not only fully protects the sportive material but allows smooth penetration of vial and injector septa. Compared with conventional SPME, SPME Arrow offers two times higher sample throughput and up to 10 times more sensitivity due to its thicker fiber. The schematic of SPME/SPME Arrow is shown in Figure 2. The differences between standard, conventional SPME fibers and SPME Arrow fibers are shown in Figure 3.

Figure 3. Differences between standard SPME fibers and SPME Arrow fibers.

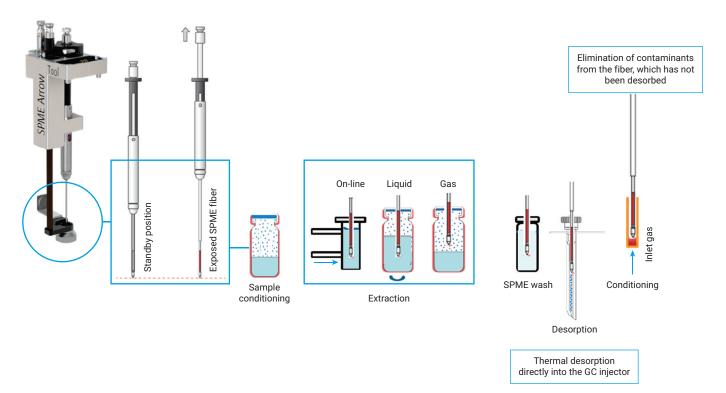


Figure 2. Schematic of SPME/SPME Arrow.

GC/TQ is typically operated in multiple reaction monitoring (MRM) mode to achieve high sensitivity through high selectivity for trace-level quantitation analysis. GC/TQ can also be operated in scan mode for full-scan acquisition analysis. With the scan data, library matching can be performed for identification of unknown compounds.

This application note demonstrates the use of the PAL3 RTC autosampler and the 7010B GC/TQ in scan mode for the analysis of the volatile aroma compounds in roasted coffee

powder. Four sampling tools including the static headspace tool, dynamic headspace ITEX tool, SPME tool, and SPME Arrow tool (as shown in Figure 4) were used. The PAL3 autosampler offers the advantage of seamless integration and automatic tool change during sample analysis. The four fully automated sample preparation and introduction techniques are complementary in nature and offer full aroma profiling of coffee.

Figure 4. (A) Agilent static headspace tool, (B) Agilent dynamic headspace ITEX tool, (C) Agilent SPME tool, (D) Agilent SPME Arrow tool.

Experimental

Equipment

Table 1 shows the instrumentation used to perform the experiments.

Table 1. Instrumentation used for the experiments.

Parameter	Value
Sample Pretreatment Platform	Agilent PAL3 RTC autosampler with the static headspace, dynamic headspace ITEX, SPME, SPME Arrow tool, Heatex Stirrer, Arrow injection port assembly, fiber conditioning module, and agitator.
Static Headspace	2.5 mL headspace syringe
Dynamic Headspace ITEX	1.3 mL ITEX syringe, Tenax TA 80/100 mesh ITEX trap
SPME	DVB/CAR/PDMS sorbent phase (p/n 5191-5874). Before first use, the SPME Arrow was conditioned at 270 °C for 30 min.
SPME Arrow	DVB/CAR/PDMS sorbent phase (p/n 5191-5861). Before first use, the SPME Arrow was conditioned at 270 °C for 30 min.
GC/TQ Platform	Agilent 8890 GC and 7010B GC/TQ system

Reagents and samples

- Ground coffee powder, purchased from a local supermarket
- Milli-Q ultrapure water

Sample preparation

A 0.25 g sample of coffee powder was placed in an empty 20 mL screw cap vial, then 0.5 mL of ultrapure water was added to the vial. The cap was tightened, and the vial was placed in the PAL3 autosampler sample rack for analysis.

PAL3 RTC parameters

The analysis parameters of the PAL3 autosampler are shown in Table 2.

 $\label{eq:table 2.} \textbf{Agilent PAL3 autosampler system parameter settings for coffee analysis.}$

Parameter	Value
Headspace	2
Sample Volume	0.5 mL
Incubation Time	10 min
Incubation Temperature	80 °C
Syringe Temperature	100 °C
Agitator Speed	500 rpm
ITEX	
Incubation Time	10 min
Incubation Temperature	80 °C
Syringe Temperature	100 °C
Trap Purge Time	5 s
Trap Extraction Temperature	40 °C
Sample Volume	500 μL
Extraction Strokes	50
Extraction Volume	1,000 μL
Agitator Speed	500 rpm
SPME	
Fiber Type	DVB/CWR/PDMS
Fiber Conditioning Temperature	250 °C
Preconditioning Time	5 min
Incubation Time	10 min
Incubation Temperature	80 °C
Agitator Speed	500 rpm
Sample Extraction Time	10 min
Sample Desorption Time	1 min
Postconditioning Time	5 min
SPME Arrov	N .
Fiber Type	DVB/CWR/PDMS
Fiber Conditioning Temperature	250 °C
Preconditioning Time	10 min
Incubation Time	10 min
Incubation Temperature	80 °C
Agitator Speed	500 rpm
Sample Extraction Time	10 min
Sample Desorption Time	3 min
Postconditioning Time	5 min

GC/TQ analysis conditions

The analysis parameters of the GC/TQ instrument are shown in Table 3.

Table 3. GC/TQ parameters for coffee analysis.

Parameter	Value
Gas	Chromatograph
Model	Agilent 8890 GC
GC Column	Agilent J&W HP-5ms Ultra Inert column, 30 m × 0.25 mm, 0.25 µm (p/n 19091S-433UI)
Column Pneumatics	Constant flow
Injector Mode	Pulse split
Split Ratio	5:1
Injector Liner	Agilent Ultra Inert single taper splitless liner (p/n 5190-2292)
Inlet Temperature	250 °C
Injector Pulse Pressure	20 psi until 0.75 min
Flow Rate	1 mL/min
Oven Temperature Program	40 °C for 10 min, 5 °C/min to 100 °C, 20 °C/min to 280 °C, hold 10 min
Total Run Time	41 min
Equilibration Time	3 min
Mas	ss Spectrometer
Model	Agilent 7010B GC/TQ
Ionization Mode	EI, 70 eV
Acquisition Mode	MS1 scan
Scan Range	33 to 500
GC Transfer Line Temperature	280 °C
Ion Source Temperature	230 °C
Quad Temperature	150 °C (MS1), 150 °C (MS2)
He Quench Gas	2.25 mL/min
N ₂ Collision Gas	1.5 mL/min

MassHunter Unknowns Analysis method parameters

Acquired data files were processed using MassHunter Unknowns Analysis software. This tool uses the power of chromatogram deconvolution to extract the compounds, followed by a library search for identification of the compounds.

Unknowns Analysis software is a powerful tool to allow the batch processing of data files for the identification of unknown compounds. Due to the complexity of the samples, coelution is commonly observed. More accurate identification of compounds can be achieved with chromatographic deconvolution, leading to cleaner spectra and a higher library match scores. In addition, blank subtraction can be performed automatically to subtract the compounds that are detected in the blank samples.

The analysis parameters of the Unknowns Analysis tool are shown in Table 4.

Table 4. Agilent MassHunter Unknowns Analysis method parameters.

Parameter	Description
Peak Detection	Deconvolution
RT Window Size Factor	25, 50, 100, 200
Library	Wiley 12/NIST 20
Minimum Match Factor	80
Minimum m/z	33
Library Search Type	Spectral search
Perform Blank Subtraction	Yes

Results and discussion

Figure 5 shows an overlay chromatogram of the coffee sample analysis using the different sampling techniques. Compared with static headspace, more peaks were detected with dynamic headspace ITEX analysis. The comparison of conventional SPME with the SPME Arrow also indicated enhanced detection of compounds, as observed by the much higher response of the peaks detected. The higher enrichment is due to the larger sorption-phase surfaces and volumes of the SPME Arrow fiber.

Data files that were acquired by the four techniques were processed by MassHunter Unknowns Analysis software with the parameters setting in Table 4. The compounds with a match score of 80 and above with flavor and fragrance relevance are summarized in Table 5 in retention time (RT) order. The aroma information for each of the detected compounds (if available) is also included in the table. All this organoleptic information is obtained from the Good Scents Company Information System.⁸ In Table 5, \checkmark means that the compound was detected by the related technique. The compounds that were uniquely detected by each of the techniques are indicated with \checkmark and a blue background.

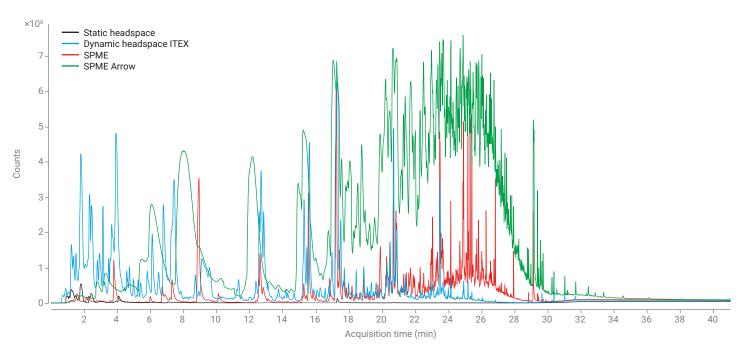


Figure 5. Chromatogram of coffee sample analysis using Agilent static headspace, dynamic headspace ITEX, SPME, and SPME Arrow.

 Table 5. Flavor- and fragrance-related compounds identified in coffee.

No.	Name	Headspace	ITEX	SPME	SPME Arrow	Aroma Description	
1	Acetic acid, methyl ester		√	√		Green, ethereal, fruity, fresh, rum, whiskey	
2	Propanal, 2-methyl-		√			Fresh, aldehydic, herbal, green, malty	
3	Acetic acid				✓	Pungent, sour, fruit, overripe fruit, acetic	
4	Methyl ethyl ketone	✓				Ethereal, fruity, green	
5	Furan, 3-methyl-	✓		√		Natural substances and extractives, no aroma information	
6	2-Heptanone, 5-methyl-				✓	Natural substances and extractives	
7	Butanal, 3-methyl-	✓		✓		Fruity, dry, green, chocolate, nutty, leafy, cocoa	
8	Butanal, 2-methyl-		✓	✓		Cocoa, fruity	
9	3-Pentanone		✓			Ethereal	
10	2-Pentanone		√			Fruity	
11	Furan, 2-ethyl-		✓			Cocoa, bready, malty, coffee, nutty	
12	2,3-Pentanedione	✓				Toasted, buttery, caramellic, marshmallow, molasses	
13	Furan, 2,5-dimethyl-	✓	√			Meaty, chemical	
14	2-Vinylfuran	✓	✓	✓		Phenolic, coffee	
15	1,3-Dioxolane, 2,4,5-trimethyl-		✓			Flavoring agents, no aroma information	
16	Pyrazine		✓	✓		Nutty	
17	2(5H)-Furanone, 5,5-dimethyl-		✓			Natural substances and extractives, no aroma information	
18	Methyl vinyl ketone		✓			Sweet	
19	1H-Pyrrole, 2-methyl-		✓			Natural substances and extractives, no aroma information	
20	Disulfide, dimethyl	✓				Sulfurous, cabbage, malty, creamy	
21	Oxazole, 2,4-dimethyl-	✓				Natural substances and extractives, no aroma information	
22	Pyridine	✓	✓	✓	✓	Sour, fishy	
23	Thiophene, 3-methyl-	✓	✓	✓		Fatty	
24	2-Allylfuran		✓			Natural substances and extractives, no aroma information	
25	3-Hexanone		✓			Fruity	
26	2-Methylnon-2-en-4-one		✓			Natural substances and extractives, no aroma information	
27	Hexanal		✓			Green, woody, vegetable, apple, grassy, citrus, orange, fresh	
28	Thiazole, 2-methyl-		✓			Green	
29	3(2H)-Furanone, dihydro-2-methyl-	✓	✓	✓	✓	Nutty, bready	
30	4-Methylthiazole		✓	✓		Nutty	
31	1H-Pyrrole, 3-ethyl-	✓				Burnt	
32	Pyrazine, methyl-	✓	✓	✓	✓	Nutty	
33	3-Furaldehyde	✓	✓	✓		Flavoring agents, no aroma information	
34	p-Cresol		✓			Phenolic	
35	Furan, 2-(methoxymethyl)-	✓	✓	✓		Coffee	
36	2-Cyclopenten-1-one, 2-hydroxy-		✓			Caramellic	
37	delta-2-Dodecenolactone		✓			Coconut, lactonic, creamy, fatty	
38	2-Furanmethanol	✓	✓			Bready, burnt	
39	3-Furanmethanol		✓	✓		Natural substances and extractives, no aroma information	
40	Thiophene, 2,3-dimethyl-		✓			Flavoring agents, no aroma information	

No.	Name	Headspace	ITEX	SPME	SPME Arrow	Aroma description	
41	2-Propanone, 1-(acetyloxy)-		✓	✓	√	Fruity, buttery, dairy, nutty	
42	Thiophene, 2,5-dimethyl-		√			Nutty, green, sulfurous	
43	Thiazole, 2,4-dimethyl-		√			Coffee, tea, beefy, barley, roasted	
44	Styrene		√			Almond	
45	3-Buten-1-ol, 3-methyl-, acetate		√			Fruity	
46	Benzene, 1,3-dimethyl-		√			Natural substances and extractives, no aroma information	
47	Thiophene, 3,4-dimethyl-		√			Savory, roasted, onion	
48	2-Cyclopenten-1-one, 2-methyl-		√			Natural substances and extractives, no aroma information	
49	Pyridine, 2-ethyl-		√			Green	
50	Pyrazine, 2,5-dimethyl-			✓		Cocoa, chocolate, musty, nutty	
51	Furfuryl formate		√			Ethereal	
52	Pyrazine, 2,6-dimethyl-		√	✓		Nutty	
53	Ethanone, 1-(2-furanyl)-			✓		Sweet, nutty, roasted, baked	
54	Pyrazine, 2,3-dimethyl-		√	✓		Nutty	
55	Pyrazine, ethyl-	√	√	√		Nutty	
56	1-(1-Hydroxycyclohexyl)ethanone		✓			Fragrance agents, no aroma information	
57	Pyrazine, ethenyl-		√			Green, burnt, nutty	
58	2-Cyclopenten-1-one, 2,3-dimethyl-		√			Natural substances and extractives, no aroma information	
59	1H-Pyrrole, 1-butyl-		√			Natural substances and extractives, no aroma information	
60	1-(2-Furyl)-2-propanone		√	√	√	Fruity	
61	Benzaldehyde			√		Almond, fruity	
62	p-Methylanisole			√		Phenolic, nutty	
63	Trisulfide, dimethyl	✓				Sulfurous, alliaceous, gassy, savory, meaty, fresh, vegetable	
64	5-Methyl furfural	✓	√	√		Caramellic	
65	2-Oxobutyl acetate			√		Natural substances and extractives, no aroma information	
66	Methyl furfuryl thiol			✓		Sulfurous, coffee, roasted coffee	
67	Blackberry thiophenone			✓		Sulfurous, fruity, berry	
68	Decane, 2,2-dimethyl-			✓		Natural substances and extractives, no aroma information	
69	Phenol			√	√	Phenolic	
70	Benzofuran		✓			Styrene aromatic	
71	Thiazole, 2,4,5-trimethyl-		√			Nutty, chocolate	
72	3-Thiophenecarboxaldehyde		✓	✓		Natural substances and extractives, no aroma information	
73	2-Furanmethanol, acetate	√	√	√		Green, banana skin	
74	Pyrazine, 2-ethyl-6-methyl-	✓	✓			Potato	
75	Pyrazine, trimethyl-			√		Nutty coffee	
76	1H-Pyrrole-2-carboxaldehyde, 1-methyl-			✓		Flavoring agents, no aroma information	
77	Pyrazine, 2-ethyl-3-methyl-		✓	✓		Nutty	
78	1-Propanone, 1-(2-furanyl)-		✓	✓	√	Fruity	
79	Benzoxazole		✓			Natural substances and extractives, no aroma information	
80	2-Acetylthiazole		√			Toasted, corn, chip, popcorn, raw, nutty, bready	
81	Pyrazine, 2-ethenyl-5-methyl-		√	✓		Coffee	

No.	Name	Headspace	ITEX	SPME	SPME Arrow	Aroma description	
82	Butanoic acid, 2-oxo-, methyl ester			√		Natural substances and extractives, no aroma information	
83	D-Limonene	✓	√	√		Citrus	
84	Ethanone, 1-(2-pyridinyl)-		√	√		Popcorn	
85	3,4-Dimethylmaleic Anhydride			√		Natural substances and extractives, no aroma information	
86	Benzeneacetaldehyde		√	√	√	Green	
87	2-Cyclohexen-1-one, 4,4-dimethyl-		√			Natural substances and extractives, no aroma information	
88	1-Ethyl-1H-pyrrole-2-carbaldehyde		√	√		Roasted, burnt	
89	3-Carene		√			Citrus	
90	Propanoic acid, anhydride				√	Like acetaldehyde (pungent, fresh, green)	
91	o-Cresol		√	√		Phenolic	
92	2-Cyclopenten-1-one, 2,3,4-trimethyl-		✓			Natural substances and extractives, no aroma information	
93	Linalool oxide		√	✓		Earthy, floral, sweet, woody	
94	2-Acetyl-1-methyl pyrrole		✓	✓		Nutty	
95	Benzofuran, 2,3-dihydro-		✓	✓		Natural substances and extractives, no aroma information	
96	Pyrazine, 3-ethyl-2,5-dimethyl-			✓		Hazelnut, nutty	
97	p-Cresol			✓		Phenolic	
98	Pyrazine, 2,6-diethyl-		✓			Nutty	
99	Pyrazine, 2-ethyl-3,5-dimethyl-	✓			√	Nutty	
100	Furan, 2,2'-methylenebis-	✓	✓	✓		Rich, toasted, aromatic	
101	Ortho-guaiacol			✓		Phenolic, bacon, savory, smoky	
102	Furfuryl propionate			✓		Fruity, coffee, green	
103	2-Ethyl-6-vinylpyrazine			✓		Buttery, potato, baked potato	
104	Linalyl formate				✓	Citrus, green, herbal	
105	2-Cyclohexen-1-one, 4,4-dimethyl-			✓		Natural substances and extractives, no aroma information	
106	Benzofuran, 2-methyl-				✓	Phenolic, burnt	
107	2(3H)-Furanone, dihydro-5,5- dimethyl-				✓	Natural substances and extractives, no aroma information	
108	2,5-Furandione, 3-ethyl-4-methyl-			✓	✓	Natural substances and extractives, no aroma information	
109	Maltol			✓	✓	Caramellic	
110	2-Acetyl-4-methylpyridine		✓	✓		Natural substances and extractives, no aroma information	
111	Phenethyl alcohol				✓	Floral, bready	
112	2-Acetyl-5-methyl pyrazine				✓	Nutty	
113	2-Acetyl-3-methylpyrazine			✓		Nutty	
114	Ethylcyclopentenolone			✓		Sweet, brown, caramellic	
115	Benzyl methyl ketone			✓	✓	Almond	
116	5H-5-Methyl-6,7- dihydrocyclopentapyrazine			✓		Nutty, roasted, grain, coffee	
117	Pyrazine, 2,3-diethyl-5-methyl-		✓	✓		Musty, nutty, toasted, cocoa, hazelnut, potato	
118	Pyrazine, 3,5-diethyl-2-methyl-		✓			Nutty	
119	1-(1-Hydroxycyclohexyl)ethanone		✓			Fragrance agents, no aroma information	
120	Benzoic acid, 2,3-dihydroxy-			✓		Natural substances and extractives	
121	2,5-Diethyl-3-methylpyrazine		✓	✓	√	Nutty	

No.	Name	Headspace	ITEX	SPME	SPME Arrow	Aroma description
122	Pulegone		✓			Minty, sulfurous, fruity
123	1H-Pyrrole, 1-(2-furanylmethyl)-		✓	✓	√	Plastic, green, waxy, fruity, coffee, vegetable
124	(R)-Massoia lactone				√	Milky, waxy, creamy, coconut
125	Methyl salicylate		✓			Minty
126	Dodecane		√			Fragrance agents, no aroma information
127	Methyl furfuryl disulfide		✓	✓	√	Coffee, roasted coffee
128	Bicyclo[2.2.1]hept-2-ene, 2,3-dimethyl-		✓			Natural substances and extractives, no aroma information
129	Furan, 3-phenyl-			✓		Natural substances and extractives, no aroma information
130	Furfuryl isovalerate			✓	√	Fruity
131	Para-methyl tetrahydroquinoline		√			Animal, civet, leather, ambergris
132	Benzoic acid, 2,3-dihydroxy-				√	Natural substances and extractives, no aroma information
133	2-Butenal, 4-phenyl-		✓			Natural substances and extractives, no aroma information
134	Guaiacol, 4-ethyl-		✓	√		Spicy, sweet, vanilla
135	Indole			✓		Pungent, phenolic, floral
136	Difurfuryl ethyl		✓	✓	√	Coffee, nutty
137	2-Methoxy-4-vinylphenol			✓		Spicy, phenolic
138	3,4-Dimethoxy styrene		✓	✓		Green, floral, fruity
139	(E)-Beta-damascenone		✓			Fruity
140	1H-Indole, 5-methyl-			✓		Natural substances and extractives, no aroma information
141	Tetradecane		√			Mild, waxy
142	Cyclamen aldehyde			✓		Floral, green
143	Caffeine			✓	√	Bitter, astringent, metallic
144	Methyl palmitate			✓	√	Oily, waxy, fatty, orris
145	n-Hexadecanoic acid				√	Waxy, creamy, fatty
146	Ethyl palmitate			✓	✓	Waxy, fruity, creamy, fermented, vanilla, balsamic

Sulfur-containing compounds contribute a high odor impact on the taste of coffee even though trace amounts are present. The low concentration levels of these compounds makes their detection difficult. With the combination of the four techniques, 14 sulfur-containing compounds were detected: disulfide dimethyl, thiophene, 3-methyl-, thiazole, 2-methyl-, 4-methylthiazole, thiophene, 2,3-dimethyl-, thiazole, 2,4-dimethyl-, thiophene, 3,4-dimethyl-, trisulfide, dimethyl, methyl furfuryl thiol, blackberry thiophenone, thiazole, 2,4,5-trimethyl-, 3-thiophenecarboxaldehyde, 2-acetylthiazole, and methyl furfuryl disulfide.

The representative aroma compounds of coffee including different kinds of pyrazine (nutty flavor), maltol (caramel flavor), and caffeine (bitter and astringent flavor) were also detected. With this work, 146 compounds with flavor and fragrance relevance were identified in the coffee sample acquired using the combination of the four sample introduction techniques.

It was observed that there were more compounds reported with SPME (77) compared to SPME Arrow (31). This was due to saturation of the detector in the SPME Arrow setup as it had larger sorption-phase surfaces and volumes compared to SPME fiber. The sample amount and acquisition parameters (including split ratio and MS gain factor) were kept the same for comparison across the four techniques in this study. The sample amount and acquisition parameters could be optimized to prevent the saturation of the detector for specific SPME Arrow analysis.

For complex chromatograms with a high possibility of coelution of adjacent peaks, deconvolution helps to provide a clean component spectrum, improving library match quality. In Table 6, the component pyrazine, methyl- with an RT of 6.698 minutes was chosen to demonstrate the value of deconvolution as an important step in data processing (as shown in Figure 6).

 $\begin{tabular}{ll} \textbf{Table 6.} Components table with compound identification and library match factor (SPME). \end{tabular}$

Components + # >							
Component RT	Compound Name	Match Factor	Formula	CAS#	١.		
3.780	Pyridine	97.8	C5H5N	110-86-1	ш.		
4.571	Thiophene, 3-methyl-	87.7	C5H6S	616-44-4			
5.982	3(2H)-Furanone, dihy	89.7	C5H8O2	3188-00-9			
6.558	4-Methylthiazole	85.4	C4H5NS	693-95-8			
6.698	Pyrazine, methyl-	91.1	C5H6N2	109-08-0			
7.174	Furan, 2-(methoxyme	95.0	C6H8O2	13679-46-4			
7.299	3-Furaldehyde	89.1	C5H4O2	498-60-2			
8.921	3-Furanmethanol	92.5	C5H6O2	4412-91-3			
9.511	2H-Pentaleno[1,6-bc]f	89.7	C9H10O2	127268-74-0			
0.710	111 11111111111111111111111111111111111	00.0	O 1 4 LIO TAUE	000000 14 1			

With MassHunter Unknowns Analysis software, a clean deconvoluted spectrum for the peak at RT 6.698 minutes (as shown in Figure 6A) was obtained. Due to the coelution of the adjacent peaks, there were ions (206.9, 190.8, 162.8, 132.9, and 107.9) that did not belong to the compound present in the raw mass spectrum (Figure 6C). The deconvoluted spectrum (Figure 6A) enabled the compound to be identified with a good match score of 91.1 (as shown in Table 8) against the library spectrum (Figure 6B).

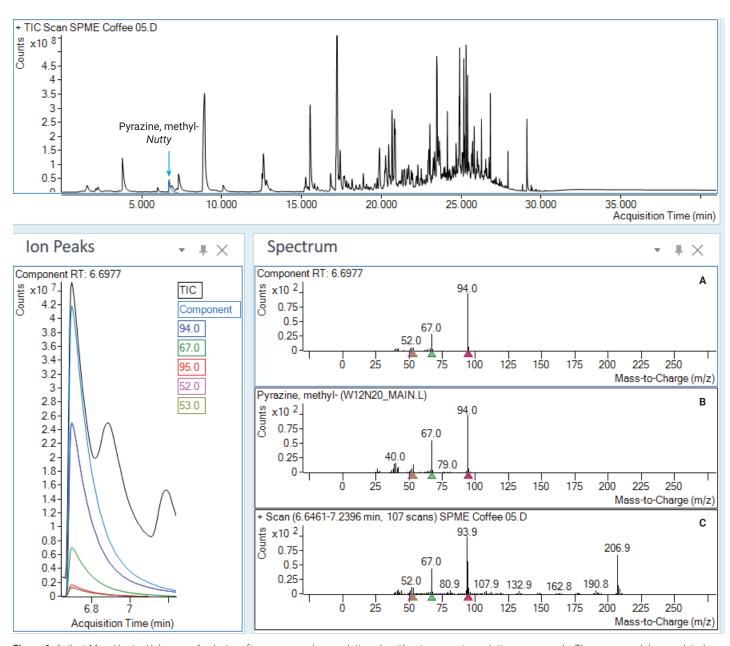


Figure 6. Agilent MassHunter Unknowns Analysis software uses a deconvolution algorithm to separate coeluting compounds. The compound deconvoluted spectrum (A), library spectrum (B), and raw spectrum (C) are displayed.

Components with trace concentrations can be difficult to detect and identify from complex matrix interference. Performing deconvolution of the data can help with the detection and identification of such trace-level components. In Table 7, the component trisulfide, dimethyl with a retention time of 15.622 minutes is a trace compound (as shown in Figure 7).

Table 7. Components table with compound identification and library match factor (static headspace).

Components ${}_{\star}$ # \times							
Component RT	Compound Name	Match Factor	Formula	CAS#			
7.389	Furan, 2-(methoxyme	89.5	C6H8O2	13679-46-4			
7.701	3-Furaldehyde	84.0	C5H4O2	498-60-2			
9.373	2-Furanmethanol	82.9	C5H6O2	98-00-0			
13.121	Pyrazine, ethyl-	90.7	C6H8N2	13925-00-3			
15.622	Trisulfide, dimethyl	86.3	C2H6S3	3658-80-8			
15.894	5-Methyl furfural	86.6	C6H6O2	620-02-0			
17.275	2-Furanmethanol, ace	94.1	C7H8O3	623-17-6	ш		
17.308	Pyrazine, 2-ethyl-6-m	83.0	C7H10N2	13925-03-6	14		
18.438	D-Limonene	82.2	C10H16	<u>5989-27-5</u>			
00.000	D . O	00.0	COLUTONO	12025 07 0			

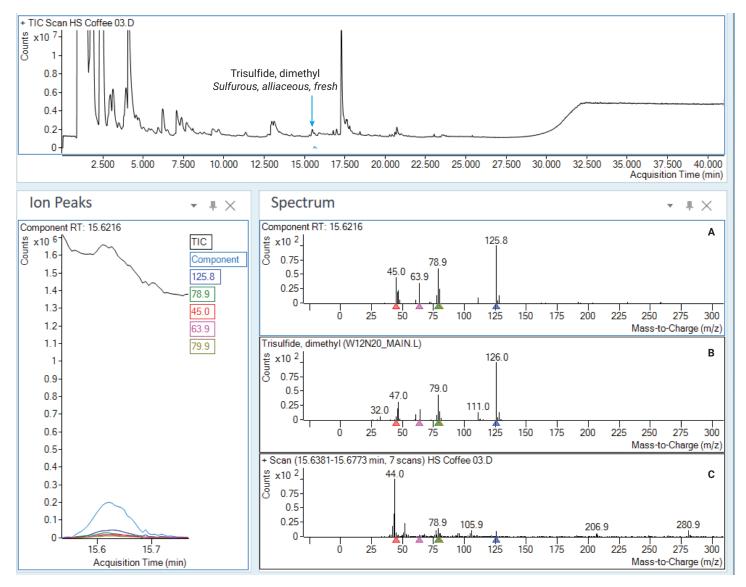


Figure 7. Agilent MassHunter Unknowns Analysis software uses a deconvolution algorithm to separate coeluting compounds. The compound deconvoluted spectrum (A), library spectrum (B), and raw spectrum (C) are displayed.

For the very small peak at 15.622 minutes in Figure 7, the carbon dioxide (a component of air, with molecular ion of 44) background interference (Figure 7C) was eliminated through deconvolution processing to generate a clean spectrum (Figure 7A). It is identified as a sulfur compound, trisulfide dimethyl (library match score of 86.3, as shown in Table 7), which is associated with being alliaceous in taste or smell.

Conclusion

This application note describes full coffee aroma profiling using the Agilent PAL3 RTC autosampler, 8890 GC, 7010B triple quadrupole GC/MS system, and MassHunter Unknowns Analysis software. Four Agilent sampling tools, including the static headspace tool, dynamic headspace ITEX tool, SPME tool, and SPME Arrow tool were used. In this application note, 146 compounds of flavor and fragrance relevance were detected with the four sample introduction techniques. Among these 146 compounds, 6, 48, 27, and 11 compounds were uniquely detected using headspace, dynamic headspace ITEX, SPME, and SPME Arrow, respectively. The rest of the compounds were detected using at least two of the sample introduction techniques. These four techniques are complementary in nature and can be used to uncover the complete volatile aroma profile of coffee.

References

- Thammarat, P. et al. Identification of Volatile Compounds and Selection of Discriminant Markers for Elephant Dung Coffee Using Static Headspace Gas Chromatography— Mass Spectrometry and Chemometrics. *Molecules*. 2018, 23(8), 1910. DOI: 10.3390/molecules23081910
- López-Galilea, I. Changes in Headspace Volatile Concentrations of Coffee Brews Caused by the Roasting Process and the Brewing Procedure. *J. Agric. Food Chem.* 2006, 54(22), 8560–8566. DOI: 10.1021/jf061178t
- 3. Moon, J. K.; Shibamoto, T. Formation of Volatile Chemicals from Thermal Degradation of Less Volatile Coffee Components: Quinic Acid, Caffeic Acid, and Chlorogenic Acid. *J. Agric. Food Chem.* **2010**, *58*, 5465–5470. DOI: 10.1021/jf1005148
- Wei, F.; Tanokura, M. In Coffee in Health and Disease Prevention. Chapter 10 Chemical Changes in the Components of Coffee Beans During Roasting. Preedy, V.R., Ed.; Academic Press, San Diego, CA, USA, 2015, pp. 83–91. DOI: 10.1016/B978-0-12-409517-5.00010-3
- 5. Amanpour, A.; Selli, S. Differentiation of Volatile Profiles and Odor Activity Values of Turkish Coffee and French Press Coffee. Journal of Food Processing and Preservation. **2016**, 40(5), 1116–1124. DOI: **10.1111/jfpp.12692**
- Aileen, P. et al. Improved Detection of Key Odourants in Arabica Coffee Using Gas Chromatography-Olfactometry in Combination with Low Energy Electron Ionisation Gas Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Food Chemistry 2020, 302,125370. DOI: 10.1016/j.foodchem.2019.125370
- 7. Ochiai, N. et al. Multi-Volatile Method For Aroma Analysis Using Sequential Dynamic Headspace Sampling with an Application to Brewed Coffee. *J. Chromatogr. A.* **2014**, 1371, 65–73.
- The Good Scents Company. The Good Scents
 Company Information System. 2022. http://www.
 thegoodscentscompany.com/ (accessed 2022-03-08)

www.agilent.com

DE89244906

This information is subject to change without notice.

