


# QuEChERS Combined with Agilent 7000 Series Triple Quadrupole GC/MS System for the Analysis of Over 200 Pesticide Residues in Cereals

**Application Note** 

Food

#### **Authors**

Zeying He, Lu Wang, Yi Peng, Ming Luo, and Xiaowei Liu Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, P.R. China

Wenwen Wang Agilent Technologies (China) Company, Ltd., Beijing 100102, China

#### **Abstract**

This application note describes a simple and high-throughput method for the analysis of 218 pesticides in cereals (corn, wheat flour, and rice) using an Agilent QuEChERS kit combined with an Agilent 7000 Triple Quadrupole GC/MS System. Matrix-matched standard calibration method was used to avoid quantitation bias resulting from matrix interference. It showed that the method has a linearity with two orders of magnitude (2–200  $\mu$ g/L), with the linear regression coefficients (R²) at 0.99 or above for the majority of the pesticides. The limits of quantification (LOQs) ranged between 5 and 50  $\mu$ g/kg, and for the majority of the pesticides the LOQ was 5  $\mu$ g/kg, which is below the regulatory maximum residue limits. A spiking test showed that most recoveries at 5, 10, 20, 50, 100, and 200  $\mu$ g/kg were in the range of 70–120 % (n = 6) with associated RSDs below 20 %. This procedure can be applied for the routine analysis of these pesticide residues in cereals.



# Introduction

Rice, wheat, and corn are the three most important cereal crops worldwide. To ensure high production, the extensive use of agrochemicals (fertilizers and pesticides) is common practice. However, unregulated pesticide use can result in pesticide residues in the products. A number of international organizations and the legislation of different countries (for example, USA, China, and Japan) have set maximum residue limits (MRLs) for pesticides in foodstuffs including cereals. The latest MRLs established by China set pesticide residue levels generally between 50 and 500 µg/kg in cereals [1]. In this study, the monitoring of pesticide residues in cereals is important to ensure not only food safety, but also compliance with good manufacturing practices.

The most used approach for the extraction and cleanup of pesticides from food samples is QuEChERS. Since it was firstly introduced by Anastassiades *et al.* [2] in 2003, the QuEChERS approach has been widely accepted by the scientific community. The QuEChERS multiresidue procedure omits or replaces many complicated analytical steps in traditional methods with easier ones.

Due to the high complexity and diversity of the matrices, the analysis of pesticides in dried samples such as cereals is considered to be a difficult task. Compared to vegetables, cereals, such as corns, have high fat content that makes them even more difficult to extract and clean. The QuEChERS procedure was developed to determine pesticide residues in samples with more than 75 % moisture and nonfatty matrices. Thus, the QuEChERS procedure is rarely used in pesticide residue analysis of cereals compared to its use in vegetables and fruits.

Previously, a number of studies have reported multiresidue pesticide analysis based on GC-MS/MS, GC-TOFMS, and UHPLC-MSMS detection [3-5]. However, these reports do not analyze more than 200 pesticides. This application note describes a recently published study of QuEChERS combined with GC-MS/MS for the analysis of over 200 pesticide residues in cereals [6]. It is a rapid multiresidue method based on modified QuEChERS sample preparation combined with GC-MS/MS detection, aiming to determine more than 200 pesticide targets in corn, rice, and wheat flour.

## **Materials and Methods**

Acetonitrile, ethyl acetate, and acetone were HPLC grade. Agilent QuEChERS extraction salt packets with ceramic homogenizer (p/n 5982-5755CH), QuEChERS dispersive SPE kit (p/n 5982-5158).

The standard pesticides were bought from Chemservice (West Chester, PA, USA) and Dr. Ehrenstorfer (Ausberg, Germany). Stock standard solution of 5  $\mu$ g/mL (mixture of pesticides divided into two groups) and internal standard solution (Heptachlor epoxide B, 1  $\mu$ g/mL) were prepared in ethyl acetate and stored at -20 °C until use.

#### Instrumental conditions

#### **GC** conditions

GC system Agilent 7890A GC, coupled with an

Agilent 7693A Automatic Liquid Sampler

Column Agilent VF-1701ms (30 m  $\times$  0.25 mm, 0.25  $\mu$ m)

(p/n CP9151)

Oven temperature 40 °C hold 1 minute,

40 °C/min to 120 °C, 5 °C/min to 240 °C, 12 °C/min to 300 °C, hold 6 minutes

Carrier gas Helium
Flow rate 1.0 mL/min
Injection port temperature 280 °C
Injection volume 1.0 µL

Injection mode Splitless, purge on after 1.5 minutes

#### **MS** conditions

MS system Agilent 7000B Triple Quadrupole GC/MS System\*

Ion source EI
Ionization voltage 70 eV
Ion source temperature 280 °C

Quadrupole temperature Q1 150 °C, Q2 150 °C

Interface temperature 280 °C
Solvent delay 3.0 minutes

The specific MRM transitions for all the test pesticides and other parameters are given in the appendix.

<sup>\*</sup>Agilent has the new GC-MS/MS model 7000C and 7010 which have better performance.

# Sample preparation

Weigh a portion of 5 g cereal samples (ground rice, wheat flour, and ground corn) into a 50-mL centrifuge tube. Add 10 mL of purified water into the centrifuge tube, and place in a ceramic homogenizer. Shake the centrifuge tube by hand for a few seconds to hydrate the sample.

Let stand for 30 minutes, then add 15 mL of acetonitrile with 1 % acetic acid, followed by the QuEChERS extraction salt packet. Immediately, seal the tube, and shake vigorously by hand for 1 minute to prevent the formation of crystalline agglomerates during  $\rm MgSO_4$  hydration. Centrifuge the tube for 5 minutes at 8,000 rpm.

Transfer 8 mL of the supernatant into a 15-mL QuEChERS dispersive centrifuge tube. Vortex the extract with the sorbent for 1 minute, then centrifuge the tube for 5 minutes at 8.000 rpm.

Transfer 3 mL of the supernatant into a 10-mL glass centrifuge tube and add 75  $\mu$ L of internal standard solution. Evaporate the supernatant to dryness under a stream of nitrogen in a 35 °C water bath.

Redissolve the residue in 1.5 mL of ethyl acetate, and filter through a PTEE filter (0.22-um) for GC-MS/MS analysis.

#### Method validation

A recovery study was carried out to determine the method accuracy and precision. For each blank matrix, six levels, 5, 10, 20, 50, 100, and 200  $\mu g/kg$  were fortified. After fortification, the spiked samples were left at room temperature for 30 minutes prior to the addition of water and extraction solvent. To avoid quantitative errors, matrix-matched calibration standards were used to calculate the analyte recoveries. Solvent-based standards were also analyzed to assess the matrix effects. The limits of quantification (LOQs) for each pesticide was based on the recovery results and defined as the lowest validated spike level meeting the requirement of recovery and relative standard deviation (RSD) for different fortification levels.

#### **Results and Discussion**

## Linearity and LOQs

Due to the matrix effect, a matrix-matched standard was used for quantification. Each matrix-matched standard also contained ISTD at a concentration of 50 µg/L. Linearity was determined in all matrices, and the linear range was between 2 and 200 µg/L. In the three matrices, 97.2 % of correlation coefficient of detection (R2) was equal to, or higher than 0.99, which would guarantee accurate quantification. There were 218 pesticides spiked at 5, 10, 20, 50, 100, and 200 µg/L (n = 6) in cereal matrix for recovery and RSD analysis. The LOQs for the pesticides were determined based on the recovery and RSD results, and defined as the selected lowest validated spike level meeting the requirement of recovery and RSD for different fortification levels, as described in Document No. SANCO/12495/2013 [7]. The LOQs for the 218 pesticides ranged between 5 and 50 µg/kg and the results were presented in Figure 1. For most of the pesticides at an LOQ of 5 µg/kg, the signal-to-noise of the quantitative transition was much higher than 10. This means that it is possible to apply the method for concentrations lower than 5 μg/kg.

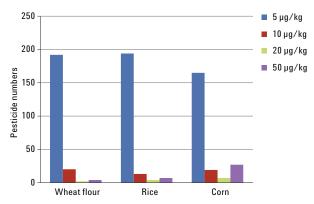



Figure 1. The distribution of LOQs in three matrices.

#### Recovery and precision

The proposed modified QuEChERS method was evaluated for 218 pesticides in corn, wheat flour, and rice matrices. A recovery study was carried out to determine method accuracy by comparing the real concentration of each pesticide measured by performing the complete procedure with a known pesticide concentration initially fortified to the blank matrix at six levels 5, 10, 20, 50, 100, and 200 μg/kg in replicates (n = 6). For recovery experiments, most of the 218 pesticides were in the 70-120 % range with the RSD below 20 %. There were a few exceptions, with recoveries in the 60–70 % range or the RSD in the 20-30 % range at 5 µg/kg and 10 μg/kg, such as disulfoton sulfoxide, edifenphos, ethiolate, and methamidophos. The recovery results of 100 µg/kg are presented in Figure 2A. It shows that, for most of the pesticides, the recoveries in rice were comparatively lower than in corn and flour. In general, the recoveries of the pesticides in corn and wheat flour were the same.

## Real sample analysis

Ten cereal samples (two wheat flours, four corns, and four rices) from local markets were determined to validate the established method. As shown in Table 1, two pesticides were detected in the samples, including dichlorvos and isoprothiolane, but the concentrations and positive rate were very low. The extracted ion chromatograms of dichlorvos in matrix standard solution and real corn sample were given in Figure 3.

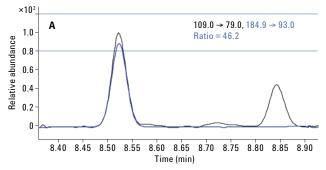



Figure 2. Recoveries of all the tested pesticides (100 μg/kg) in corn, wheat flour, and rice matrices (A) and recoveries of five pesticides with lower recoveries in corn than those in wheat flour and rice (B).

Table 1. Pesticide Levels (µg/kg) Found in Real Samples

| Pesticide      | Flour A | Flour B | Rice A | Rice B | Rice C | Rice D | Corn A | Corn B | Corn C | Corn D |
|----------------|---------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
| Dichlorvos     | n.d.    | n.d.    | n.d.   | n.d.   | < L00  | n.d.   | n.d.   | < L00  | 9.58   | < L00  |
| Isoprothiolane | n.d.    | n.d.    | < L00  | n.d.   | < L00  | n.d.   | n.d.   | n.d.   | n.d.   | n.d.   |

n.d. = not detected



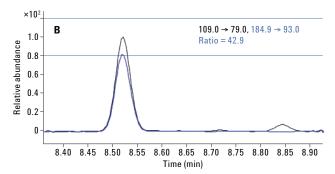



Figure 3. Extracted ion chromatograms of dichlorvos in (A) matrix-matched standard solution (5 µg/kg) and (B) real corn sample.

# Comparison of the proposed method with other works

The QuEChERS method has been widely used in pesticide residue analysis, especially for vegetables and fruits. However, the application was limited for cereal. There were unique differences from other works:

- Over 200 pesticides were determined in three kinds of cereals, whereas other published works involved many fewer pesticides or matrices.
- In the extraction procedure, a ceramic homogenizer was used to improve extraction efficiency and repeatability.
- Six spiking levels were carried out to ensure good method validation.
- Less extraction time and a simpler extraction procedure was needed for sample preparation.

# **Conclusions**

Cereals represent complex samples that are difficult to extract and clean in multipesticide residue analysis. In this study, a very simple, robust QuEChERS method combined with GC-MS/MS was developed for the determination of 218 pesticides in corn, wheat flour, and rice. Compared to other works involving pesticide residue analysis in cereal by the QuEChERS method, the proposed method has some superiorities in respect to the number of target pesticides, a simpler sample extraction procedure, and method validation. In this study, satisfactory LOQs, precision, and accuracy were obtained, demonstrating the suitability of the method for multipesticide residue analysis in cereals for regulatory and routine residue monitoring purposes.

# **Appendix**

Acquisition and Chromatographic Parameters for the Selected Pesticides

| Pesticides                               | RT<br>(min) | MRM<br>transition 1 | CE1<br>(V) | MRM<br>transition 2 | CE2<br>(V) |
|------------------------------------------|-------------|---------------------|------------|---------------------|------------|
| Group A                                  |             |                     |            |                     |            |
| Dichlorvos                               | 8.52        | 109 → 79            | 5          | 184.9 → 93          | 10         |
| Disulfoton sulfoxide                     | 9.09        | 125 → 96.9          | 5          | 213 → 97            | 20         |
| Methamidophos                            | 10.12       | 141 → 95            | 5          | 95 → 79             | 10         |
| Dichlorobenzonitrile (2,6-(Dichlobenil)) | 10.71       | 171 → 100           | 25         | 171 → 136.1         | 15         |
| Mevinphos                                | 12.46       | 127 → 109           | 10         | 127 → 95            | 15         |
| Methacrifos                              | 12.8        | 207.9 → 180.1       | 5          | 207.9 → 93          | 10         |
| Molinate                                 | 13.33       | 126.2 → 55.1        | 10         | 126.2 → 83.1        | 5          |
| Cycloate                                 | 14.89       | 154.1 → 83.1        | 5          | 83 → 55.1           | 5          |
| Isoprocarb                               | 14.94       | 121 → 77.1          | 20         | 136 → 121.1         | 10         |
| Acephate                                 | 15.32       | 142 → 96            | 5          | 136 → 94            | 10         |
| Hexachlorobenzene                        | 15.51       | 283.8 → 213.9       | 30         | 283.8 → 248.8       | 15         |
| Ethoprophos                              | 15.88       | 157.9 → 114         | 5          | 157.9 → 97          | 15         |
| Ethalfluralin                            | 16.21       | 275.9 → 202.1       | 15         | 315.9 → 275.9       | 10         |
| Chlordimeform                            | 16.42       | 151.9 → 117.1       | 10         | 195.9 → 181         | 5          |
| Propoxur                                 | 16.97       | 110 → 63            | 25         | 110 → 64            | 15         |
| Sulfotep                                 | 16.97       | 237.8 → 145.9       | 10         | 201.8 → 145.9       | 10         |
| BHC-alpha                                | 17.55       | 216.9 → 181         | 5          | 218.9 → 183         | 5          |
| Atrazine-desethyl                        | 18.40       | 172 → 94            | 15         | 187 → 172           | 5          |
| Triallate                                | 18.69       | 268 → 184.1         | 20         | 142.9 → 83          | 15         |
| Profluralin                              | 18.72       | 317.9 → 199         | 15         | 317.9 → 54.8        | 10         |
| Fonofos                                  | 18.91       | 136.9 → 109         | 5          | 108.9 → 80.9        | 5          |
| Tebupirimfos                             | 19.06       | 233.9 → 110.1       | 15         | 260.8 → 137.2       | 15         |
| Dioxathion                               | 19.19       | 152.9 → 96.9        | 10         | 271 → 96.9          | 30         |
|                                          |             |                     |            |                     |            |

Acquisition and Chromatographic Parameters for the Selected Pesticides (cont.)

| Pesticides                  | RT<br>(min) | MRM<br>transition 1     | CE1<br>(V) | MRM<br>transition 2       | CE2<br>(V) |
|-----------------------------|-------------|-------------------------|------------|---------------------------|------------|
| Disulfoton                  | 19.38       | 88 → 60                 | 5          | 153 → 97                  | 10         |
| Propazine                   | 19.40       | 214.2 → 172.2           | 10         | 229.1 → 58.1              | 10         |
| Dicloran                    | 19.59       | 206.1 → 176             | 10         | 160.1 → 124.1             | 10         |
| Propetamphos                | 19.70       | 138 → 110               | 10         | 138 → 64                  | 15         |
| Iprobenfos                  | 20.21       | 203.9 → 91              | 5          | 121.9 → 121               | 15         |
| Dichlofenthion              | 20.35       | 278.9 → 222.9           | 15         | 222.9 → 204.9             | 15         |
| Pirimicarb                  | 20.39       | 238 → 166.2             | 10         | 166 → 55.1                | 20         |
| Dimethoate                  | 20.82       | 86.9 → 46               | 15         | 142.9 → 111               | 10         |
| Monocrotophos               | 20.87       | 127.1 → 109             | 10         | 127.1 → 95                | 15         |
| Acetochlor                  | 21.21       | 174 → 146.1             | 10         | 222.9 → 147.2             | 5          |
| Chlorothalonil              | 21.43       | 263.8 → 168             | 25         | 263.8 → 229               | 20         |
| Alachlor                    | 21.59       | 188.1 → 160.2           | 10         | 160 → 132.1               | 10         |
| Pirimiphos-methyl           | 21.82       | 290 → 125               | 20         | 232.9 → 151               | 5          |
| Paraoxon-methyl             | 21.88       | 229.9 → 136.1           | 5          | 229.9 → 106.1             | 15         |
| Vinclozolin                 | 22.04       | 187 → 124               | 20         | 197.9 → 145               | 15         |
| Metribuzin                  | 22.23       | 198 → 82                | 15         | 198 → 55                  | 30         |
| Metalaxyl                   | 22.30       | 234 → 146.1             | 20         | 220 → 192.1               | 5          |
| Thiobencarb                 | 22.57       | 100 → 72                | 5          | 124.9 → 89                | 15         |
| Metolachlor                 | 22.95       | 238 → 162.2             | 10         | 162.2 → 133.2             | 15         |
| Formothion                  | 22.97       | 170 → 93                | 5          | 197.9 → 92.9              | 10         |
| o,p'-Dicofol                | 23.29       | 139 → 111               | 15         | 250.9 → 138.9             | 15         |
| Bromophos                   | 23.38       | 330.8 → 315.8           | 15         | 328.8 → 313.8             | 15         |
| Fenthion                    | 23.50       | 278 → 169               | 15         | 278 → 109                 | 15         |
| Heptachlor epoxide B (ISTD) | 23.86       | 352.8 → 262.9           | 15         | $354.8 \Rightarrow 264.9$ | 15         |
| Triadimefon                 | 24.11       | 208 → 181.1             | 5          | 208 → 111                 | 20         |
| Parathion                   | 24.25       | 290.9 → 109             | 10         | 138.9 → 109               | 5          |
| Isofenphos-methyl           | 24.34       | 199 → 121               | 10         | 241.1 → 199.1             | 10         |
| Phorate Sulfoxide           | 24.66       | $96.9 \rightarrow 64.9$ | 20         | $96.9 \rightarrow 78.9$   | 15         |
| Isofenphos                  | 24.68       | 212.9 → 121.1           | 10         | 212.9 → 185.1             | 5          |
| Quinalphos                  | 24.89       | 146 → 118               | 10         | 146 → 91                  | 30         |
| Endosulfan-1                | 24.97       | 236.8 → 118.9           | 25         | 194.9 → 160               | 5          |
| Penconazole                 | 25.15       | 248 → 192.1             | 15         | 248 → 157.1               | 25         |
| Mecarbam                    | 25.46       | 130.9 → 86              | 10         | 130.9 → 74                | 5          |
| Fosthiazate                 | 25.58       | 195 → 103               | 5          | 195 → 60                  | 20         |
| DDE-p,p'                    | 25.73       | 246.1 → 176.2           | 30         | 315.8 → 246               | 15         |
| Fenothiocarb                | 25.86       | 160.1 → 72.1            | 10         | 72 <b>→</b> 56            | 10         |
| Terbufos sulfone            | 26.12       | 198.9 → 143             | 10         | 152.9 → 96.9              | 10         |
| DEF (Tribufos)              | 26.17       | 202 → 147               | 5          | 169 → 57.1                | 5          |
| Mepanipyrim                 | 26.18       | 223.2 → 222.2           | 10         | 222.2 → 207.2             | 15         |
| Bromfenvinfos               | 26.45       | 266.9 → 159.1           | 15<br>-    | 268.9 → 161.1             | 15         |
| Pretilachlor                | 26.57       | 262 → 202               | 5          | 162.1 → 132.2             | 20         |
| DDD-o,p'                    | 26.78       | 235 → 165.2             | 20         | 237 → 165.2               | 20         |
| Ditalimfos                  | 26.88       | 130 → 102.1             | 10         | 148 → 130.1               | 10         |
| Kresoxim-methyl             | 26.89       | 116 → 89                | 15         | 116 → 63                  | 30         |
| Oxadiazon                   | 26.94       | 174.9 → 112             | 15         | 174.9 → 76                | 35         |

Acquisition and Chromatographic Parameters for the Selected Pesticides (cont.)

| Pesticides           | RT<br>(min) | MRM<br>transition 1 | CE1<br>(V) | MRM<br>transition 2      | CE2<br>(V) |
|----------------------|-------------|---------------------|------------|--------------------------|------------|
| DDT-o,p'             | 27.36       | 235 → 165.2         | 20         | 237 → 165.2              | 20         |
| Cyflufenamid         | 27.62       | 188.1 → 88          | 35         | 118.1 → 89               | 25         |
| Imazalil             | 27.65       | 214.9 → 173         | 5          | 216.8 → 175              | 5          |
| Mephosfolan          | 27.69       | 196 → 139.9         | 15         | 196 → 59.9               | 30         |
| Bupirimate           | 27.85       | 272.9 → 193.1       | 5          | 272.9 → 108              | 15         |
| Oxyfluorfen          | 28.08       | 252 → 196           | 20         | 252 → 146                | 30         |
| Isoxathion           | 28.19       | 177.1 → 130         | 10         | 177.1 → 116.1            | 15         |
| Chlorthiophos        | 28.21       | 324.8 → 268.9       | 10         | 296.8 → 268.9            | 5          |
| Flutolanil           | 28.21       | 173 → 145.1         | 15         | 280.9 → 173              | 10         |
| DDD-p,p'             | 28.41       | 234.9 → 165.1       | 20         | 236.9 → 165.2            | 20         |
| Carbophenothion      | 28.45       | 153 → 96.9          | 10         | 199 → 143                | 10         |
| Endosulfan-2         | 28.49       | 206.9 → 172         | 15         | 276.7 → 240.9            | 10         |
| Quinoxyfen           | 28.76       | 237 → 208.1         | 30         | 271.9 → 237.1            | 10         |
| Aclonifen            | 28.85       | 212.1 → 182.2       | 10         | 264.1 → 194.2            | 15         |
| Trifloxystrobin      | 28.88       | 116 → 89            | 15         | 116 → 63                 | 30         |
| Bioresmethrin        | 29.10       | 171 → 128           | 15         | 143 → 128                | 10         |
| Piperonyl butoxide   | 29.18       | 176.1 → 103.1       | 25         | 176.1 → 131.1            | 15         |
| Edifenphos           | 29.53       | 172.9 → 109         | 5          | 201 → 109                | 10         |
| Fensulfothion        | 29.60       | 140 → 125           | 10         | 291.8 → 156              | 15         |
| Triazophos           | 29.71       | 161.2 → 134.2       | 5          | 161.2 → 106.1            | 10         |
| Bifenthrin           | 29.76       | 181.2 → 165.2       | 25         | 181.2 → 166.2            | 10         |
| Tebufenpyrad         | 30.28       | 275.9 → 171.1       | 10         | 332.9 → 171              | 15         |
| Bromopropylate       | 30.46       | 183 → 155           | 15         | 185 → 157                | 15         |
| Epoxiconazole        | 30.50       | 192 → 138.1         | 10         | 192 → 111                | 25         |
| Tetramethrin         | 30.63       | 164 → 107.1         | 10         | 164 → 77.1               | 25         |
| Tebuconazole         | 30.64       | 250 → 125           | 20         | 125 → 89                 | 15         |
| Pyriproxyfen         | 30.95       | 136.1 → 96          | 15         | 136.1 → 78.1             | 20         |
| Piperophos           | 30.99       | 320 → 122           | 10         | 140 → 98.1               | 10         |
| EPN                  | 31.07       | 169 <b>→</b> 141.1  | 5          | 169 → 77.1               | 25         |
| Hexazinone           | 31.08       | 171 → 71.1          | 10         | 171 → 85.1               | 10         |
| Fenamidone           | 31.17       | 238 → 237.2         | 10         | 268 <b>→</b> 180.2       | 20         |
| Tetradifon           | 31.47       | 226.9 → 199         | 15         | 158.9 → 131              | 10         |
| Anilofos             | 31.54       | 225.9 → 184         | 5          | 225.9 → 157              | 10         |
| Fenamiphos-sulfoxide | 31.80       | 304 → 196           | 15         | 196 → 93                 | 15         |
| Fenarimol            | 32.20       | 251 → 139.1         | 10         | 219 → 107.1              | 10         |
| Permethrin           | 32.20       | 183.1 → 168.1       | 10         | 183.1 → 153              | 10         |
| Pyridaben            | 32.53       | 147.2 → 117.1       | 20         | 147.2 → 132.2            | 10         |
| Prochloraz           | 33.50       | 180 → 138           | 10         | $195.9 \rightarrow 96.9$ | 30         |
| Cypermethrin         | 33.88       | 163 → 127           | 5          | 163 → 91                 | 10         |
| Boscalid             | 34.60       | 140 → 112           | 10         | 140 → 76                 | 25         |
| Fenvalerate          | 35.17       | 167 → 125.1         | 5          | 224.9 → 119              | 15         |
| Deltamethrin         | 36.75       | 252.9 → 93          | 15         | 181 → 152.1              | 25         |
| Group B              |             |                     |            |                          |            |
| Ethiolate            | 6.82        | 100 → 72            | 5          | 161 → 72                 | 15         |
| Naled                | 8.41        | 184.9 → 109         | 15         | 108.9 → 79               | 5          |

Acquisition and Chromatographic Parameters for the Selected Pesticides (cont.)

| Pesticides              | RT<br>(min) | MRM<br>transition 1 | CE1<br>(V) | MRM<br>transition 2 | CE2<br>(V) |
|-------------------------|-------------|---------------------|------------|---------------------|------------|
| Biphenyl                | 9.88        | 154.1 → 153.1       | 15         | 153.1 → 152.1       | 15         |
| Etridiazole             | 11.26       | 211.1 → 183         | 10         | 183 → 140           | 15         |
| Chloroneb               | 13.19       | 206 → 191.1         | 10         | 208 → 193.1         | 10         |
| Tecnazene (TCNB)        | 14.52       | 260.9 <b>→</b> 203  | 10         | 214.9 → 179         | 10         |
| Thionazin               | 15.53       | 143 → 79            | 10         | 175 <b>→</b> 79     | 10         |
| Diphenylamine           | 16.08       | 169 → 168.2         | 15         | 168 → 167.2         | 15         |
| Fenobucarb              | 16.26       | 121 → 77            | 20         | 121 → 103.1         | 15         |
| Benfluralin             | 16.65       | 292 → 264           | 5          | 292 → 206           | 10         |
| Chlorpropham            | 17.26       | 153 → 125.1         | 10         | 153 → 90            | 25         |
| Pentachloronitrobenzene | 17.69       | 236.9 → 118.9       | 25         | 236.9 → 142.9       | 30         |
| Omethoate               | 18.20       | 155.9 → 110         | 5          | 109.9 → 79          | 15         |
| Atraton                 | 18.44       | 211 → 169.1         | 5          | 169 → 154.1         | 5          |
| Diazinon                | 18.50       | 137.1 → 84          | 10         | 137.1 → 54          | 20         |
| Clomazone               | 18.65       | 204.1 → 107.1       | 20         | 125 → 89            | 15         |
| Dicrotofos              | 18.72       | 127 → 109           | 15         | 127 → 95            | 15         |
| pyrimethanil            | 19.00       | 198 → 183           | 15         | 198 → 118           | 35         |
| BHC-gamma               | 19.19       | 216.9 → 181         | 5          | 181 → 145           | 15         |
| Carbofuran              | 19.38       | 164.2 → 149.1       | 10         | 149.1 → 121.1       | 5          |
| Etrimfos                | 19.39       | 181 → 153.1         | 5          | 168 → 153.1         | 5          |
| Atrazine                | 19.52       | 214.9 → 58.1        | 10         | 214.9 → 200.2       | 5          |
| Simazine                | 19.62       | 201.1 → 173.1       | 5          | 201.1 → 186.2       | 5          |
| Terbuthylazine          | 19.78       | 228.9 → 173.1       | 5          | 172.9 → 172         | 5          |
| Monolinuron             | 20.00       | 214 → 61            | 10         | 155 → 127           | 10         |
| Isazofos                | 20.27       | 161 → 119.1         | 5          | 161 → 146           | 5          |
| Pentachloroaniline      | 20.38       | 262.8 <b>→</b> 192  | 20         | 264.9 → 194         | 20         |
| Pronamide               | 20.44       | 173 → 145           | 15         | 175 → 147           | 15         |
| Chlorpyrifos-methyl     | 20.82       | 285.9 → 92.9        | 20         | 287.9 → 92.9        | 20         |
| Aldrin                  | 21.17       | 262.9 → 192.9       | 35         | 254.9 → 220         | 20         |
| Ronnel (Fenchlorphos)   | 21.32       | 285 → 269.9         | 15         | 286.9 → 272         | 15         |
| Desmetryn               | 21.39       | 213 → 58.1          | 10         | 213 → 171.2         | 5          |
| Tolclofos-methyl        | 21.44       | 265 → 250           | 15         | 265 → 93            | 25         |
| Prometryn               | 21.88       | 226 → 184.2         | 10         | 199 → 184.1         | 5          |
| BHC-beta                | 22.10       | 216.9 → 181         | 5          | 181 → 145           | 15         |
| Chlorpyrifos            | 22.36       | 198.9 → 171         | 15         | 196.9 → 169         | 15         |
| Ametryn                 | 22.37       | 227 → 170.1         | 10         | 227 → 58.1          | 10         |
| Terbutryn               | 22.37       | 241.1 → 170.2       | 15         | 185 → 170.1         | 5          |
| Malaoxon                | 22.68       | 126.9 → 99          | 5          | 126.9 → 55          | 5          |
| Trichloronat            | 22.71       | 296.8 → 268.9       | 10         | 298.8 → 270.9       | 10         |
| Dipropetryn             | 22.79       | 255.1 → 222.1       | 10         | 255.1 → 180.1       | 20         |
| BHC-delta               | 22.99       | 217 → 181.1         | 5          | 181 → 145           | 15         |
| Parathion-methyl        | 23.10       | 232.9 → 109         | 10         | 262.9 → 79          | 30         |
| Pirimiphos-ethyl        | 23.10       | 318.1 → 166.1       | 10         | 318.1 → 182         | 10         |
| Phosphamidon            | 23.13       | 127 → 95            | 15         | 127 → 109           | 10         |
| Malathion               | 23.30       | 172.9 → 99          | 15         | 157.8 → 125         | 5          |
| Fenitrothion            | 23.50       | 277 → 260           | 5          | 277.1 → 109         | 15         |

Acquisition and Chromatographic Parameters for the Selected Pesticides (cont.)

| Pesticides                  | RT<br>(min) | MRM<br>transition 1       | CE1<br>(V) | MRM<br>transition 2 | CE2<br>(V) |
|-----------------------------|-------------|---------------------------|------------|---------------------|------------|
| Methoprene                  | 23.60       | 153 → 111.1               | 5          | 111.1 → 55          | 15         |
| Ethofumesate                | 23.76       | 206.9 → 161.1             | 5          | 161 → 105.1         | 10         |
| Cyprodinil                  | 23.78       | 225.2 → 224.3             | 10         | 224.2 → 208.2       | 20         |
| Heptachlor epoxide B (ISTD) | 23.86       | 352.8 → 262.9             | 15         | 354.8 → 264.9       | 15         |
| Isofenphos oxon             | 24.10       | 229 → 200.9               | 10         | 229 <b>→</b> 121    | 25         |
| Pendimethalin               | 24.15       | 251.8 → 162.2             | 10         | 251.8 → 161.1       | 15         |
| Dimepiperate                | 24.33       | 118 → 117.1               | 10         | 119 → 91            | 10         |
| DDE-o,p'                    | 24.43       | 246 → 176.2               | 30         | 248 <b>→</b> 176.2  | 30         |
| Bromophos-ethyl             | 24.66       | 358.7 → 302.8             | 15         | 302.8 → 284.7       | 15         |
| Propanil (DCPA)             | 24.70       | 161 → 99                  | 30         | 161 → 90            | 25         |
| Chlorfenvinphos             | 24.88       | 266.9 → 159.1             | 15         | 322.8 → 266.8       | 10         |
| Chlordane-trans (gamma)     | 24.97       | 372.8 → 265.8             | 15         | 271.7 → 236.9       | 15         |
| Tetraconazole               | 25.39       | 336 → 217.9               | 20         | 170.9 → 136         | 10         |
| Butachlor                   | 25.53       | 236.9 → 160.2             | 5          | 176.1 → 147.1       | 10         |
| Prothiofos                  | 25.78       | 266.9 <b>→</b> 239        | 5          | 266.9 <b>→</b> 221  | 20         |
| Tetrachlorvinphose          | 26.10       | 328.9 → 109               | 22         | 330.9 → 109         | 22         |
| Dieldrin                    | 26.17       | 277 → 241                 | 5          | 262.9 → 193         | 35         |
| Beflubutamid                | 26.27       | 221 → 193.1               | 5          | 176.1 → 91.1        | 10         |
| Methidathion                | 26.40       | 144.9 → 85                | 5          | 144.9 → 58.1        | 15         |
| Butamifos                   | 26.89       | 285.9 → 202               | 15         | 200 → 92            | 10         |
| Hexaconazole                | 26.96       | 231 → 175                 | 10         | 256 → 82.1          | 10         |
| Chlorfenson                 | 27.22       | 175 → 111                 | 10         | 111 → 75            | 15         |
| Paclobutrazol               | 27.35       | 236 → 125.1               | 10         | 125.1 → 89          | 20         |
| Fluazifop-butyl             | 27.44       | 281.9 → 238               | 20         | 281.9 → 91          | 20         |
| Isoprothiolane              | 27.52       | 162.1 → 85                | 20         | 162.1 → 134         | 5          |
| Chlorobenzilate             | 27.97       | 251.1 → 139.1             | 15         | 139.1 → 111         | 10         |
| Nitrofen                    | 28.17       | 202 → 139.1               | 20         | 282.9 → 253         | 10         |
| Disulfoton sulfone          | 28.33       | 213 → 153                 | 5          | 213 → 96.9          | 15         |
| Cyproconazole               | 29.01       | 139 → 111                 | 15         | 139 → 75            | 30         |
| DDT-p,p'                    | 29.02       | 235 → 165.2               | 20         | 237 → 165.2         | 20         |
| Ethion                      | 28.45       | 230.9 → 129               | 20         | 230.9 → 175         | 10         |
| Fluorodifen                 | 28.68       | 190 → 126.1               | 10         | 190 → 75            | 20         |
| Diniconazole                | 28.87       | 267.9 → 232.1             | 10         | 269.9 → 232.1       | 10         |
| Myclobutanil                | 28.98       | 179 → 125.1               | 10         | 179 → 90            | 30         |
| Benalaxyl                   | 29.05       | 148 → 77                  | 35         | 148 → 105.1         | 20         |
| Methoxychlor- o,p'          | 29.11       | 227.1 → 121.1             | 10         | 227.1 → 91.1        | 35         |
| Diclofop-methyl             | 29.51       | $339.9 \Rightarrow 252.9$ | 10         | 253 → 162.1         | 15         |
| Propiconazole               | 29.53       | 172.9 → 74                | 45         | 258.8 → 69          | 10         |
| Fenthion sulfoxide          | 29.71       | 279 → 109                 | 15         | 278 → 109           | 15         |
| Fenthion sulfone            | 30.07       | 309.9 → 105               | 10         | 135.9 → 92          | 10         |
| Fludioxonil                 | 30.28       | 248 → 154.1               | 20         | 248 → 182.1         | 10         |
| Oxadixyl                    | 30.35       | 163 → 132.1               | 5          | 163 → 117.1         | 25         |
| Phenothrin                  | 30.41       | 183 → 168                 | 10         | 183 → 155.1         | 5          |
| Etoxazole                   | 30.45       | 141 → 63.1                | 30         | 141 → 113           | 15         |
| Famphur                     | 30.57       | 218 → 109                 | 15         | 217 → 92.9          | 10         |
|                             |             |                           |            |                     |            |

Acquisition and Chromatographic Parameters for the Selected Pesticides (cont.)

| Pesticides           | RT<br>(min) | MRM<br>transition 1       | CE1<br>(V) | MRM<br>transition 2 | CE2<br>(V) |
|----------------------|-------------|---------------------------|------------|---------------------|------------|
| Fenpropathrin        | 30.69       | 264.9 → 210               | 10         | 207.9 → 181         | 5          |
| Leptophos            | 30.96       | 171 → 77.1                | 15         | 154.9 → 77.1        | 15         |
| Pyridaphenthion      | 31.03       | 340 → 199                 | 5          | 204 → 203.1         | 5          |
| Phosmet              | 31.33       | 160 <b>→</b> 77.1         | 20         | 160 → 133.1         | 10         |
| Bifenox              | 31.49       | $340.9 \Rightarrow 309.9$ | 10         | 189.1 → 126         | 20         |
| Acrinathrin          | 31.88       | 207.8 → 181.1             | 10         | 181 → 127           | 30         |
| Cyhalothrin (lambda) | 31.88       | 208 → 181                 | 5          | 181.1 → 152         | 25         |
| Phosalone            | 31.89       | 182 → 111                 | 15         | 182 → 102.1         | 15         |
| Mefenacet            | 32.05       | 192 → 136.1               | 15         | 192 → 109.1         | 30         |
| Pyraclofos           | 32.49       | 194 → 138                 | 15         | 138.9 → 97          | 5          |
| Azinphos-ethyl       | 32.56       | 132 → 77.1                | 15         | 160 → 77.1          | 20         |
| Fluquinconazole      | 32.98       | 340 → 298                 | 15         | 108 → 57            | 15         |
| Coumaphos            | 33.75       | 361.9 → 109               | 15         | 210 → 182           | 10         |
| Cyfluthrin           | 33.88       | 162.9 → 127               | 5          | 198.9 → 170.1       | 25         |
| Flucythrinate        | 34.31       | 156.9 → 107.1             | 15         | 198.9 → 157         | 10         |
| Fenbuconazole        | 34.78       | 197.9 → 129               | 5          | 128.9 → 102.1       | 15         |
| Fluvalinate-tau      | 35.83       | 250 → 55                  | 40         | 250 → 200           | 40         |
| Difenoconazole       | 36.42       | 322.8 → 264.8             | 15         | 264.9 → 202         | 20         |

#### References

- 1. China, National food safety standard. *Maximum residue limits for pesticides in food*, vol. GB 2763-2014 (2014).
- M. Anastassiades, S. J. Lehotay, D. Stajnbaher,
  F. J. Schenck. "Fast and easy multiresidue method employing acetonitrile extraction/partitioning and
  dispersive solid-phase extraction for the determination of
  pesticide residues in produce" Journal of AOAC
  International 86(2), 412-431 (2003).
- S. Walorczyk. "Development of a multi-residue screening method for the determination of pesticides in cereals and dry animal feed using gas chromatography—triple quadrupole tandem mass spectrometry" *Journal of Chromatography A* 1165(1), 200-212 (2007).

- S. Walorczyk, D. Drożdżyński. "Improvement and extension to new analytes of a multi-residue method for the determination of pesticides in cereals and dry animal feed using gas chromatography—tandem quadrupole mass spectrometry revisited" *Journal of Chromatography A* 1251, 219-231 (2012).
- K. Mastovska, K. J. Dorweiler, S. J., Lehotay, J. S. Wegscheid, K. A. Szpylka. "Pesticide Multiresidue Analysis in Cereal Grains Using Modified QuEChERS Method Combined with Automated Direct Sample Introduction GC-TOFMS and UPLC-MS/MS Techniques" Journal of Agricultural and Food Chemistry 58(10), 5959-5972 (2009).
- Z. He, L. Wang, Y. Peng, M. Luo, W. Wang, X. Liu. "Multiresidue analysis of over 200 pesticides in cereals using a QuEChERS and gas chromatography-tandem mass spectrometry-based method" *Journal of Food* Chemistry 169(2015), 372-380 (2015).
- E. C. Dg-Sanco. "Method validation and quality control procedures for pesticides residues analysis in food and feed" In, vol. SANCO/12571/2013 (2014).

#### For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

#### www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice

© Agilent Technologies, Inc., 2015 Printed in the USA March 2, 2015 5991-5553EN

