

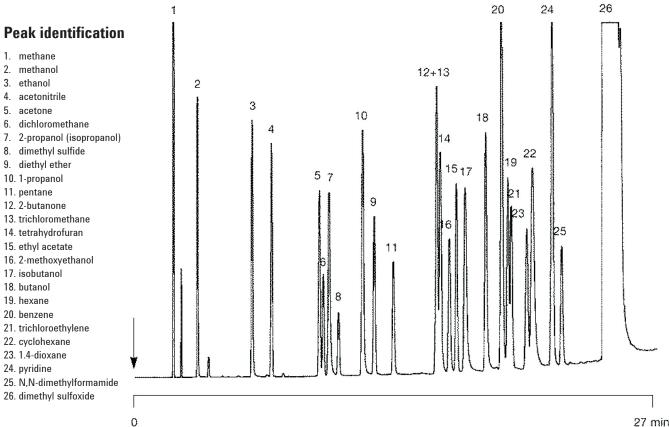
Solvents

Application Note

BioPharma

Authors

Agilent Technologies, Inc.


Introduction

Agilent PoraBOND Q is a porous polymer that combines high retention with high inertness. This results in a high separation efficiency for solvents. Compared to chemically bonded phases it has the advantage of a better peak shape and better separation for the more volatile solvents specified by the Pharmacopoeia/USP. The high purity of the PoraBOND Q also results in a maximum temperature of 320 °C making quick bake-out and short analysis times possible. There are no particles present in the PoraBOND Q as the porous layer is chemically bonded, allowing direct valve injections or switching applications.

Conditions

Technique	:	GC-wide-bore
Column	:	Agilent PoraBOND Q, 0.53 mm x 25 m fused silica PLOT (df = 10 $\mu m)$ (Part no. CP7354)
Temperature	:	100 °C (2 min) \rightarrow 300 °C. 5 °C/min
Carrier Gas	:	He, 25 kPa (0.25 bar, 3.5 psi)
Injector	:	Split, T = 250 °C
Detector	:	FID, T = 250 °C
Sample Size	:	0.5 µL
Concentration Range	:	0.1% per compound
Solvent Sample	:	DMSO

27 min

www.agilent.com/chem

This information is subject to change without notice. © Agilent Technologies, Inc. 2011 Printed in the USA 31 October, 2011 First published prior to 11 May, 2010 A01424

Agilent Technologies