Application Note: ANCCSPETHYULCOL

Analysis of Petroleum Hydrocarbons Standard for Underground Storage Tank Monitoring on a Thermo Scientific Ultrafast Column

Bob Wiedemer, Thermo Fisher Scientific, Bellefonte, PA, USA

Key Words

- Ultrafast
- Petrochemical
- Environmental
- Hydrocarbon
- GC

Abstract

Underground storage tanks (UST) used to store various petroleum-based substances such as gasoline, diesel fuel, and fuel oil are monitored for leaks as authorized by the Resource Conservation and Recovery Act (RCRA). Gas chromatography is used for the analysis of these samples which often have a wide range of molecular weights.

Introduction

Underground storage tanks (UST) used to store various petroleum-based substances such as gasoline, diesel fuel, and fuel oil are monitored for leaks as authorized by the Resource Conservation and Recovery Act (RCRA). Leaking underground storage tanks (LUST) contaminate ground water and soil and besides the environmental impact there is a significant financial impact involved with fines and cleanup. UST monitoring is usually done by gas chromatography (GC) with a flame ionization detector (FID). These petrochemicals often have a wide molecular weight range which necessitates a temperature programmed run in order to get adequate retention of components with higher volatility and later eluting the high molecular weight components in the same chromatographic run. The chromatographic run time of these types of samples typically takes more than 20 minutes. Thermo Scientific UltraFast technology makes it possible to reduce the total analysis time to less than four minutes. A Total Recoverable Petroleum Hydrocarbons (TRPH) analytical standard mixture is representative of the molecular weight range typically found in UST samples.

Experimental Details

Chemicals and Reagents

Florida TRPH Standard

Peak ID

1.	n-Octane (C8)	2.	n-Decane (C10)
3.	n-Dodecane (C12)	4.	n-Tetradecane (C14)
5.	n-Hexadecane (C16)	6.	n-Octadecane (C18)
7.	n-Eicosane (C20)	8.	n-Docosane (C22)
9.	n-Tetracosane (C24)	10.	n-Hexacosane (C26)
11.	n-Octacosane (C28)	12.	n-Triacontane (C30)
13.	n-Dotriacontane (C32)	14.	n-Tetratriacontane (C34)
15.	n-Hexatriacontane (C36)	16.	n-Octatriacontane (C38)
17.	n-Tetracontane (C40)		

Sample Handling Equ	Part Number	
Vials and closures: 2 mL clear vial and Si/PTFE seal		60180-599
Separation Condition	S	Part Number
Instrumentation:	Thermo Scientific Trace IIItra GC	

Instrumentation:	Thermo Scientific Trace Ultra GC (Ultrafast configuration) with TriPlus A	utosampler
Column:	UFC-M1, 2.5 meter X 0.1 mm UFMC00 ID X 0.4 µm film UltraFast Column	0000010906
Septum:	Thermo Scientific BTO 12.7 mm septa	31303228
Liner:	PTV Siltek Metal Liner, 2 X 2.75 X 120 mm	45302044
Injection syringe:	10 µL fixed needle, Thermo Scientific	36520060
Carrier gas:	Helium	
Split flow:	100 mL/minute	
Column flow:	0.5mL/minute	
Split ratio:	200:1	
Oven temperature:	50 °C (0.5 minute hold) -340 °C (2 min 200 °C /minute	ute hold) at

Injector type:	PTV
Injector mode:	Constant temperature
Injector temperature:	330 °C
Detector details:	
FID parameters:	
Temperature:	350 °C
Air flow:	350 mL/minute
Hydrogen flow:	35 mL/minute
Nitrogen makeup flow:	30 mL/minute

Separations Conditions (using conventional column) Part Number

TG-1MS 15m x 0.32mm x 0.10	26099-0360
Helium,	
1.5	
300 °C, split 40:1	
1	
40 °C (2 minute hold)-330 °C (1 m 15 °C /minute	inute hold) at
	Helium, 1.5 300 °C, split 40:1 1 40 °C (2 minute hold)-330 °C (1 m

Data Processing

	2 a.a			
Software: ChromQuest	Software:	oftware:	ftware:	romQuest

Results

Thermo Scientific Ultrafast column technology can be used to achieve fast analysis of a wide molecular weight range of petroleum hydrocarbons such as those found in Underground Storage Tank monitoring. Excellent separation of a mixture of even numbered alkanes from C8 (n-octane) to C40 (n-tetracontane) was accomplished in less than 3.5 minutes (Figure 1). Analysis of these types of samples on a conventional GC capillary column requires >20 minutes (Figure 2). Since temperature programming is required for this analysis the time needed for the GC oven to cool down to the initial temperature also needs to be considered. The time required to cool down the Ultrafast from 340°C to 50°C for this analysis is approximately 90 seconds, where the time required to cool down a conventional GC oven for the same temperature range is approximately 4 minutes, thus further decreasing the overall run-to-run time. Laboratories doing UST analysis can do approximately five times more analyses per day using Ultrafast technology versus conventional GC columns.

References

http://www.epa.gov/oust/ http://www.epa.gov/oust/eparecovery/ http://www.floridadep.org/waste/categories/tanks/

Conclusions

Analysis of sample containing a wide molecular weight range of hydrocarbons such as those found in Underground Storage Tanks (UST) monitoring can be done in slightly more than three minutes with the use of a Thermo Scientific Ultrafast column. This is approximately five times faster than doing the same analysis using conventional GC capillary columns. five times more analyses per day using Ultrafast technology versus conventional GC columns.

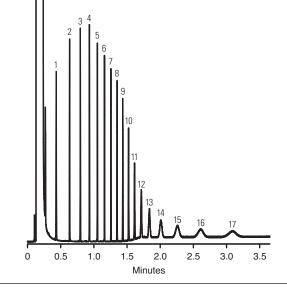


Figure 1. Ultrafast Analysis of Petroleum Hydrocarbons

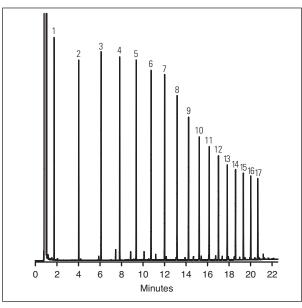


Figure 2. Petroleum Hydrocarbons for UST Monitoring-Conventional GC Capillary

In addition to these offices, Thermo Fisher Scientific maintains a network of representative organizations throughout the world.

North America USA and Canada +1 800 332 3331

Europe France +33 (0)1 60 92 48 34

Germany +49 (0) 2423 9431 -20 or -21

United Kingdom +44 1928 534110

Asia Japan +81 3 5826 1615

China +86-21-68654588 or +86-10-84193588 800-810-5118

India +91-22-6742 9494

Thermo Fisher Scientific Australia Pty Ltd 1300 735 292 (free call

Thermo Fisher Scientific New Zealand Ltd 0800 933 966 (free call domestic)

All Other Enquiries +44 (0) 1928 534 050

Technical Support

North America 800 332 3331 Outside North America +44 (0) 1928 534 440

www.thermoscientific.com/chromatography

© 2012 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

