GC Method Development

Simon Jones Chromatography Application Engineer Agilent Technologies, Inc. November 12, 2015

What to Consider

The Sample

Method of injection

Inlet

Detector

Carrier Gas

Column

COMPOUND REQUIREMENTS FOR GC

Only 10-20% of all compounds are suitable for GC analysis

The compounds must have:

- ✓ Sufficient volatility
- ✓ Thermal stability

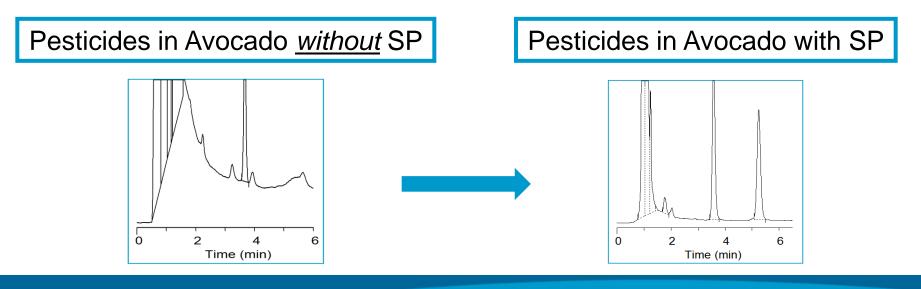
<u>NO</u> Inorganic Acids and Bases Be mindful of salts!

Sample Considerations

- Sample matrix residues? dirty samples?
- 2. Analyte Composition
 - 1. Isomers?
 - 2. Polar vs. non-Polar?
 - 3. Organic Acids?
 - 4. Light Gases?
 - 5. Nobel Gases?
 - 6. Halogens?

Sample Residues

Semi-volatile residues Bake out Back flush


Non-volatile residues Guard column Back flush

Dirty Samples Sample clean up? Back flush

Perform Sample Preparation

- To acquire desired sensitivity/selectivity
- To reduce contamination/carryover issues
- Use of sensitive and expensive instruments: <u>Protect your</u> <u>investment!!!</u>

Sample Preparation techniques comparison

- Bond Elut SPE
- Multi-step approach for highest level of sample cleanup
- Chem Elut (SLE)
- Extraction by solvent exchange, substitute for LLE
- QuEChERS (dSPE)
- Sample cleanup by extraction of bulk interferences
- Captiva ND (PPT)
- Removes precipitated proteins by in-well protein precipitation
- Captiva Filtration
- Removes particulates

Complexity

Selectivity

Cost

Enhanced Matrix Removal: EMR-Lipids

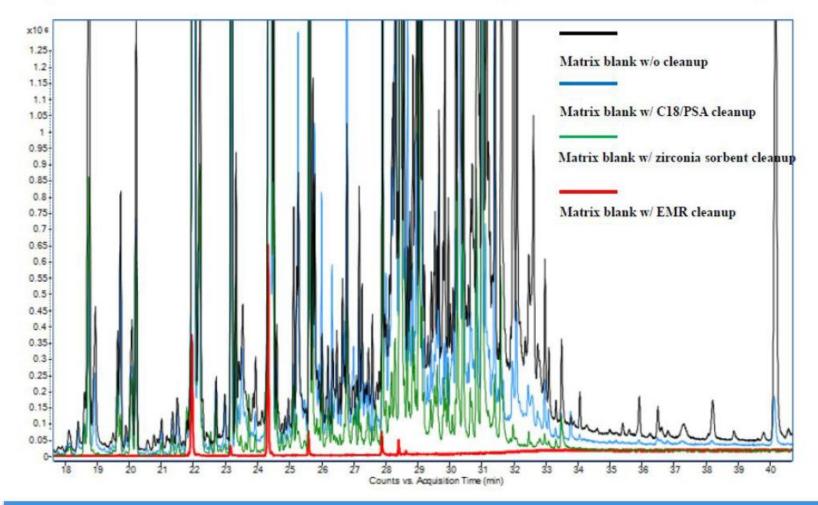
Effective Removal of lipids (fats)

Tubes containing 1g of EMR sorbent

5982-1010

Fits into existing workflows:

- after QUECHERS extraction
- after Liquid Extraction


Protocols also require a "polish" step after EMR to remove water and dissolved solids before injection

> _ Tubes containing polish salts

> > 5982-0101

Comparison of GC/MS Full-scan Chromatogram for Matrix Background

The use of EMR material cleanup provides significantly cleanup chromatographic sample background.

We have thought about the sampleWhat's next?

Let's Get the Sample Onto the Column...

- **Manual Injection**
- Liquid Injection
- Headspace
- Purge & Trap
- Gas Sampling Valve
- SPME
- **Thermal Desorption**
- Custom

The Inlet

- **Volatiles Interface**
- Cool-On-Column
- **Purged Packed**
- PTV
- Split / Splitless
- Multi-Mode

Volatiles Interface

Used for 'volatile' samples Sample is already a vapor Headspace Purge & Trap

Volatiles Interface

Mode	Sample Concentration	Sample to Column	Comments
Split	High	Very little, most is vented	
Splitless	Low	All	Can switch to split mode electronically
Direct	Low	All	Must physically disconnect split vent, plug the interface, and reconfigure the GC. Maximizes sample recovery and eliminates possibility of contamination to pneumatic system.

Cool-On-Column

- * Good for Labile Samples
 - Sample is deposited "ON" the column
 - Temperature of inlet follows Oven Temperature
- Good for 'Active' analytes
 - Minimizes inlet discrimination
 - No inlet Liner*
- Good for Trace Analysis
- Guard Column Highly Recommended

Purged Packed

Good for HIGH flow applications

Used with Packed columns

Can be used with 0.53 mm and 0.32 mm ID columns

Has a minimal capacity for sample expansion **Back Flash

PTV (Programmable Temperature Vaporization)

Good for Large Volume Injections

Trace Level Analysis

Can be cooled to -160°C with liquid Nitrogen

Can run in hot or cold, Split or Splitless mode

PTV (Programmable Temperature Vaporization)

Good for Trace Level Analysis – Large Volume Injections

Mode	Sample Concentration	Sample to Column	Comments
Split	High	Very Little	
Pulsed Split	High	Very Little	
Splitless	Low	All	
Pulsed Splitless	Low	All	
Solvent Vent	Low	All	Multiple injections concentrate analytes and vent solvent.

Split / Splitless

Mode	Sample Concentration	Sample to Column	Comments
Split	High	Very Little	
Pulsed Split	High	Very Little	Useful with large injections
Splitless	Low	All	
Pulsed Splitless	Low	All	Useful with large injections. *better transfer of sample to column*

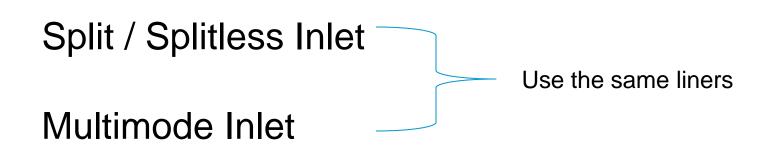
SPLIT INJECTOR Split Ratio

- Too low: Poor peak shape
 -Column overload
- Too high: Poor sensitivity

 Wastes carrier gas (gas saver)
- Usually non-linear
 <u>Do not</u> use ratio as a dilution factor

Minimum Recommended Split Ratio

Want to have 20 mL/min flow through the inlet



Multimode

Mode	Sample Concentration	Sample to Column	Discussion
Split	High	Low	
Pulsed Split	High	Low	
Splitless	Low	All	
Pulsed Splitlss	Low	All	
Solvent Vent	Low	All	Multiple Injections concentrate sample and vent solvent
Direct	Low	All	

Sample Expansion...Liners?

Packed inlet

PTV

Inlet Liners - Purpose

Glass Inlet Liners provide an "inert" space for liquid samples to be uniformly vaporized to a gas and moved to the column.

Liquid-gas phase change involves a significant change in volume.

Gaseous sample volume depends on

- the solvent type
- column head pressure
- temperature of inlet

These aspects should be optimized for your sample volume and application.

Solvent	Volume	
(1µL, ambient)	<u>(µL at 250°C and 20psig)</u>	
n-Hexane	140	
Acetone	245	
Acetonitrile	350	
Methanol	450	
Water	1010	

See "A Practical Guide to the Care, Maintenance, and Troubleshooting of Capillary GC Systems", Third Revised Edition, by Dean Rood, Wiley-VCH, New York, 2001.

Liners - 3 Key Aspects Govern Applications

Liner Volume

Liner Treatments or Deactivation

Special Characteristics (glass wool, cup, taper, etc.)

When choosing a liner for your application, consider all three aspects to give you the best chromatography.

You must also determine what type of inlet is in your GC

Then consider the application itself, and the types of liners and injection techniques used for it:

- > Split
- Splitless

Choose a liner with enough volume to accommodate the vaporized sample.

Important, especially for polar solvents with large vapor volumes.

If vapor volume of sample exceeds liner volume, samples may back up (backflash) into carrier gas supply lines, causing ghost peaks and reproducibility problems in chromatography.

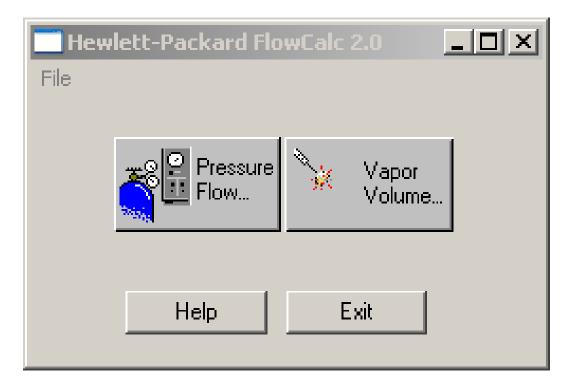
Liner Volume (contd.)

Agilent liners are primarily 2mm or 4mm in inner diameter (without tapers and additional features) and 78mm long.

- Thus, 2mm liners hold approx. 0.245 mL or 245 μL of vapor 4mm liners hold approx. 0.972 mL or 972 μL of vapor

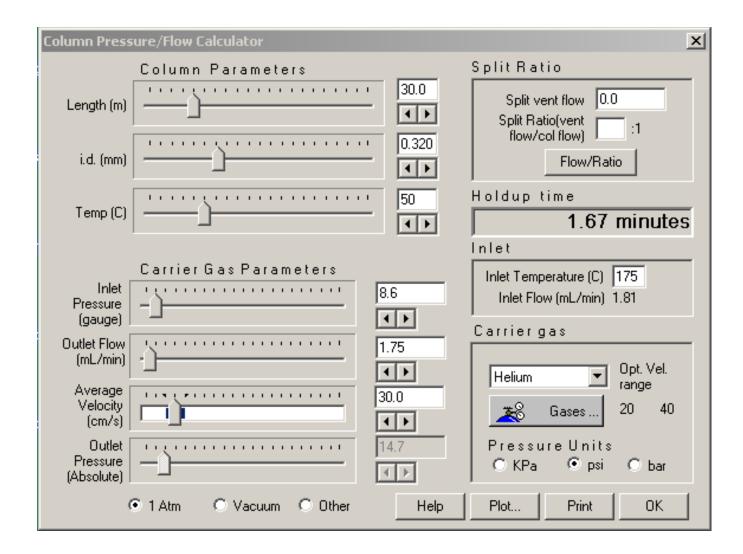
Recommended injection volumes are 1-2 μ L or less for organic solvents, 0.5 μ L for water.

Liner Volume


How Do we Calculate the Vapor Volume? Pressure / Flow Calculator

Free download from our Website <u>www.chem.agilent.com</u>

https://www.agilent.com/en-us/support/gas-chromatography/gccalculators



Pressure / Flow Calculator

Determine what the inlet pressure will be:

Determine what the inlet pressure will be:

Pressure Flow Calculator				
Length (m)	•) 30.00	•	Split Vent Flow 0.000 (mL/min)
Inner Diameter (µm)	•	320	•	Split Ratio (vent flow/col flow) 0.000 : 1
Film Thickness (µm)	•	• 0.25	÷	Holdup Time 1.66 min
Temperature (°C)	•	50	÷	Inlet Temp (°C) 250
Inlet Pressure (gauge)		8.599	÷	Inlet Liner Flow (mL/min) 2.125
Outlet Flow (mL/min)	•	1.759	÷	Liner Volume (µL)
Average Velocity (cm/s)	•	30.146	÷	Suggested Splitless Purge Time: 0.4 min
Outlet Pressure (absolute)	र	14.696	×	
Pressure Units C KPa C ps	si O bar	 1 Atm Vacuum O Other 		Carrier Gas Helium Optimum velocity range (cm/s) 20 40

Test Inlet Conditions For Solvent Expansion

Solvent Vapor Volume Calculator	×
Approximate vapor volume(ul): 669 ul	79 %
Injection Volume (ul)	Solvent Properties Methanol
Inlet Temp (C) 250	Boiling Pt (C): 64.7 Denisty (g/cm3): 0.791 Mol Wt. (amu): 32
Inlet Pressure	Solvents
Pressure Units OKPa	In jection Linter Volume (ul) 5183-4647 single-t ▼ 850
Print Help OK	Edit Liner list 75 100

Water as Solvent

Solvent Vapor Volume Calculator	x
Approximate vapor volume(ul): 1499 ul	Overload 176%
Injection Volume (ul)	Solvent Properties Water
Inlet Temp (C) 250	Boiling Pt (C): 100 Denisty (g/cm3): 0,998 Mol Wt. (amu): 18,02
Inlet Pressure	Solvents
Pressure Units ⊂ KPa ⊙ psi ⊂ bar	In jection Lin er Volume (ul) 5183-4647 single-t ▼ 850
Print Help OK	Edit Liner list 75 100

Water as Solvent Cut Injection Volume in Half

Solvent Vapor Volume Calculator	×
Approximate vapor volume(ul): 750 ul	88 %
Injection Volume (ul)	Solvent Properties
Inlet Temp (C)	Boiling Pt (C): 100 Denisty (g/cm3): 0,998 Mol Wt. (amu): 18,02
Inlet Pressure	Solvents
Pressure Units ⊂ KPa ⊙ psi ⊂ bar	In jection Lin er Volume (ul) 5183-4647 single-t ▼ 850
Print Help OK	Edit Liner list 75 100

Water as Solvent Pulsed Injection

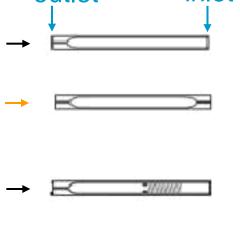
Solvent Vapor Volume Calculator	×
Approximate vapor volume(ul): 750 ul	88 %
Injection Volume (ul)	Solvent Properties Water
Inlet Temp (C) 250	Boiling Pt (C): 100 Denisty (g/cm3): 0,998 Mol Wt. (amu): 18,02
Inlet Pressure	Solvents
Pressure Units ⊂ KPa ⊙ psi ⊂ bar	In jection Lin er Volume (ul) 5183-4647 single-t ▼ 850
Print Help OK	Edit Liner list 75 100

Liner Treatments or Deactivation

- Minimizes possibility of active sample components from adsorbing on active sites on the liner or glass wool surface.
- Unwanted sample adsorption leads to tailing peaks and loss of response for polar compounds.
- Although not necessary for all applications, deactivated liners provide added insurance against possible sample adsorption.
- Deactivation of borosilicate glass liners is often done with a silylating reagent like Dimethyldichlorosilane (DMDCS)

Special Characteristics

Some liners have special features that are necessary for different injection techniques. For example: outlet inlet


Taper (gooseneck), minimizes sample contact with gold seal.

<u>Dual taper</u>, also minimizes sample contact with inlet weldment and reduces potential for backflash.

<u>Glass wool</u> and shelf to hold it in place, prevents non-volatiles from reaching column and removes residual sample from needle. Glass wool should be deactivated.

<u>Jennings cup</u>, normally used for efficient sample mixing in split inlets, reduces sample discrimination and prevents non-volatiles from reaching the column. Not for very dirty samples.

<u>Press fit (direct) connection</u> end to hold capillary column firmly (virtually all sample goes onto the column). Side hole needed for Electronic Pressure Control with direct connect liners.

Special Characteristics (contd.)

Other special characteristics include:

- Baffles
- Spiral paths
- Glass or ceramic frits or beads
- Laminar cups (elongated version of Jennings cups)
- Column packings with stationary phases

All designed to provide:

- a turbulent sample flow path for sample mixing
- protrusions, barriers, or adsorbents to collect high molecular weight sample components or particles
- surfaces for efficient vaporization of sample components.

Split Injection Liners

Liner	Part No.	Comments
	5190-2294	Simplest split liner, glass wool, UI deactivation, large volume, 990µL volume. Use for general purpose. Also used for Splitless mode.
Glass nub	5190-2295	Glass wool (held near needle entrance to remove residual sample on needle), deactivated, 870µL volume. Glass nub ensures that gap remains below liner for split injection. Efficient, for most applications, including active compounds. Fail-safe insertion into injection port. Needle length is important.
	18740- 80190	Liner with Jennings cup, no glass wool, 800µL volume. Use for general purpose applications, high and low MW compounds. Reduces inlet discrimination.
	18740- 60840	Liner with Jennings cup, glass wool, and column packing, 800µL volume. For dirty samples, traps non-volatiles and particulates well. For high and low MW compounds. Not recommended for use with EPC.

Splitless Injection Liners

Liner	Part	Comments
	No.	
	5190-2292	Single taper, deactivated, 900µL volume. Taper isolates sample from metal seal, reducing breakdown of compounds that are active with metals. For trace samples, general application.
	5190-2293	Single taper, deactivated, with glass wool, 900µL volume. Glass wool aides volatilization and protects column. For trace (dirty) samples.
	5190-3983	Double taper, deactivated, 800µL volume. Taper on inlet reduces chance for backflash into carrier gas lines. High efficiency liner for trace, active samples.
	G1544- 80730 G1544- 80700	Direct connect liners, single and dual taper, deactivated. Capillary column press fits into liner end, eliminating sample exposure to inlet. Ultimate protection for trace, active samples. Side hole permits use with EPC.

GLASS WOOL Liner Packing Recommendations

Amount, size and placement must be consistent for consistent results

Can be broken upon installation into the liner, exposing active sites

Liner deactivation with glass wool plug in place is ideal

GLASS WOOL Placement in Liner

Near top of liner:

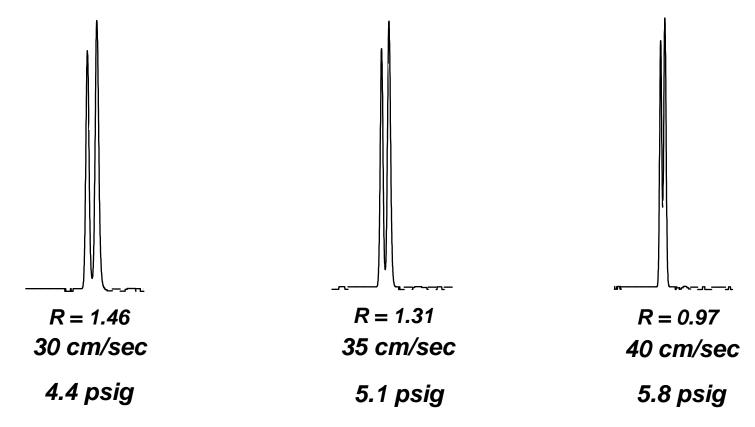
- Wipes syringe needle of sample
- Can improve injector precision
- Helps to prevent backflash

Near bottom of liner:

- Helps in volatilization of high MW components
- Increases mixing

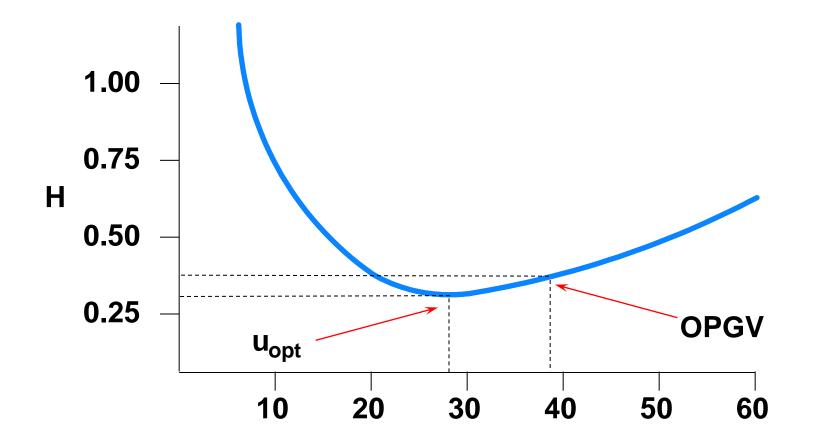
Both positions help retain <u>some</u> non-volatile residues from reaching the column

Carrier Gas Considerations


• Carries the solutes down the column

Selection and velocity influences efficiency and retention time

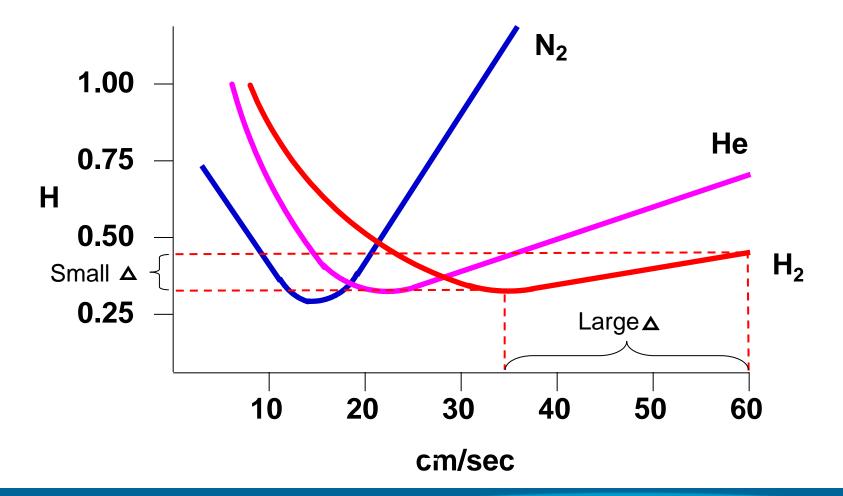
RESOLUTION VS. LINEAR VELOCITY


Helium Resolution of 1.5 = baseline resolution

DB-1, 15 m x 0.32 mm ID, 0.25 um 60°C isothermal 1,3- and 1,4-Dichlorobenzene

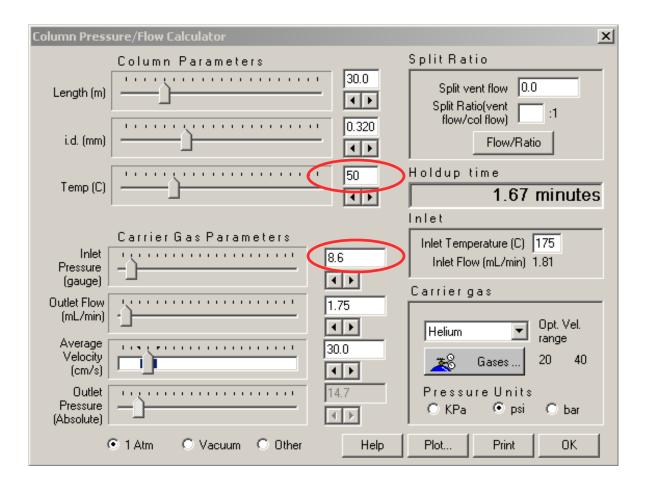
VAN DEEMTER CURVE

 $\overline{\mathbf{U}}_{opt}$ and OPGV

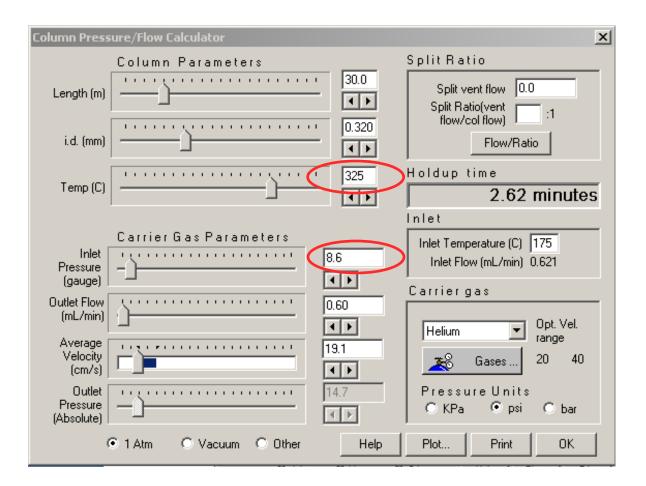

U_{opt}: Maximum efficiency

OPGV: Optimal practical gas velocity Maximum efficiency per unit time

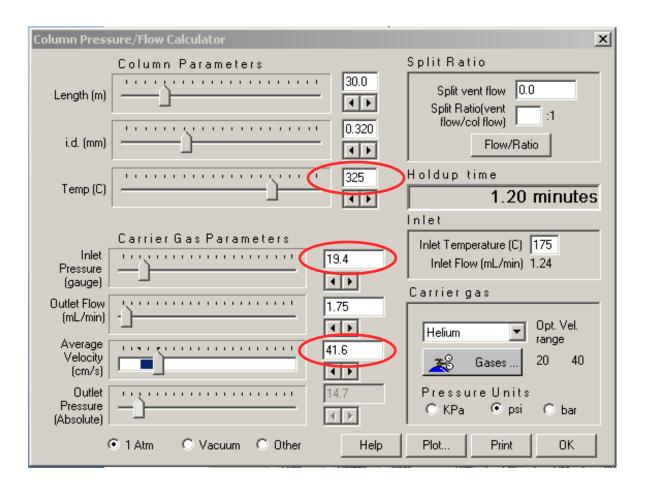
$$1.5 - 2 \times \overline{U}_{opt}$$



VAN DEEMTER CURVES



What Happens to the Flow as Oven Temp Increases?

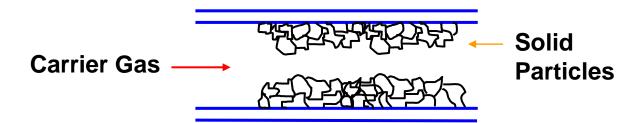


Carrier Gas: Constant Pressure

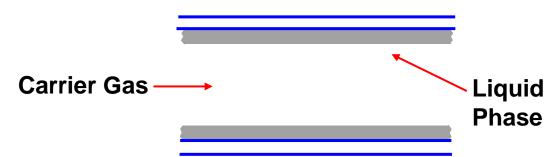
Carrier Gas: Constant Flow

Detectors

Detector	Dynamic I	Range	MDL
TCD	10 ⁵	Universal	400 pg Tridecane
FID	10 ⁷	Responds to C-H bonds	1.8 pg Tridecane
ECD	5x10 ⁵	Responds to free electrons	6 fg/mL Lindane
NPD	10 ⁵	Specific to N or P	0.4 pgN/s 0.06 pg P /s
FPD	10 ³ S, 10 ⁴ P	Specific to S or P	60 fg P/s 3.6 pg S/s
SCD	10 ⁴	Specific & Selective to S	0.5 pg S/s
NCD	10 ⁴	Specific & Selective to N	3 pg N/s
MSD		Universal	S/N 400:1 1 pg/uL OFN


Selecting the RIGHT Column

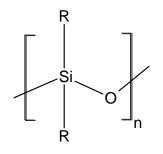
Understanding the Stationary Phase



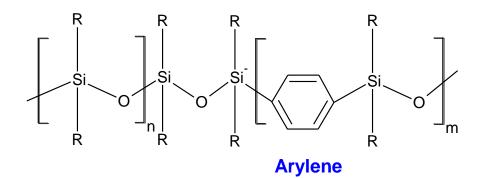
CAPILLARY COLUMN TYPES

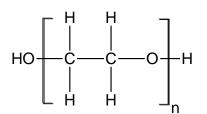
Porous Layer Open Tube (PLOT)

Wall Coated Open Tube (WCOT)



Agilent Technologies


Group/Presentation Title Agilent Restricted


STATIONARY PHASE POLYMERS

R= methyl, cyanopropyl, cyanopropylphenyl, trifluoropropyl

Siloxane

Polyethylene glycol backbone

Agilent Technologies

Group/Presentation Title Agilent Restricted

Selectivity Interactions

- Dispersion
- Dipole
- Hydrogen bonding

Group/Presentation Title Agilent Restricted

Selectivity Interaction Strengths

Phase	Dispersion	Dipole	H Bonding
Methyl	Strong	None	None
Phenyl	Strong	None	Weak
Cvanopropyl	Strong	Strong	Moderate
Trifluoropropyl	Strong	Moderate	Weak
PEG	Strong	Strong	Moderate

Selecting the Correct Column

Match analyte polarity to column polarity 'Like dissolves like'

Look for unique interactions that analytes may have with a phase

Use preexisting information

Use the Agilent GC Application Support Team: <u>gc-column-support@agilent.com</u>

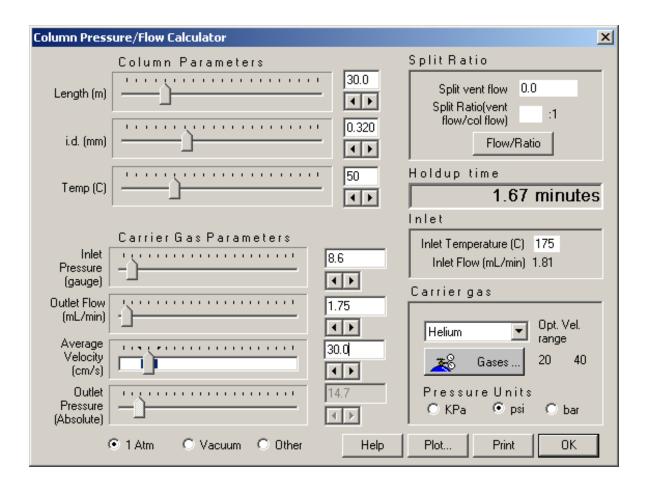
Now Let's Apply What We Have Learned

Sample List (drugs)

1. Cadaverine	H ₂ N NH ₂	11. Phenelzine	H. NH2
2. Cyclopentamine	HZ CH3 CH3	12. Phenylpropanolamine	OH CH ₃
3. Amphetamine	NH ₂	13. Clortermine	CI NH ₂
4. Phenethylamine	NH ₂	14. Chlorphentermine	
5. Phentermine	NH ₂	15. Ephedrine	
6. Propylhexedrine	HN_CH ₃	16. Pseudoephedrine	CH3 HNCH3
7. Methamphetamine	HZ /	17. Phendimetrazine	
8. Methenamine		18. MDA	
9. Amantidine	NH ₂	19. Ecgonine methyl ester	
10. Mephentermine	₩, K	20. diethylpropion	

Starting Method Parameters

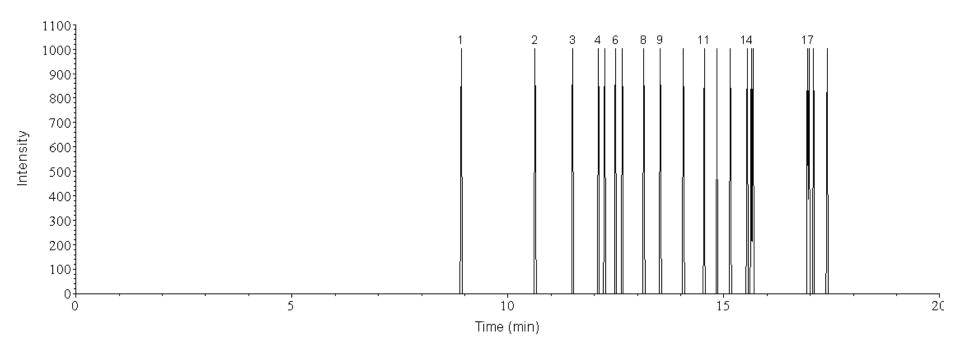
Column: DB-5 30m X 0.32mm X 0.25um


- S/SI Inlet: Split 50:1 Temp 250°
- FID: Temp 350°
- Carrier: He

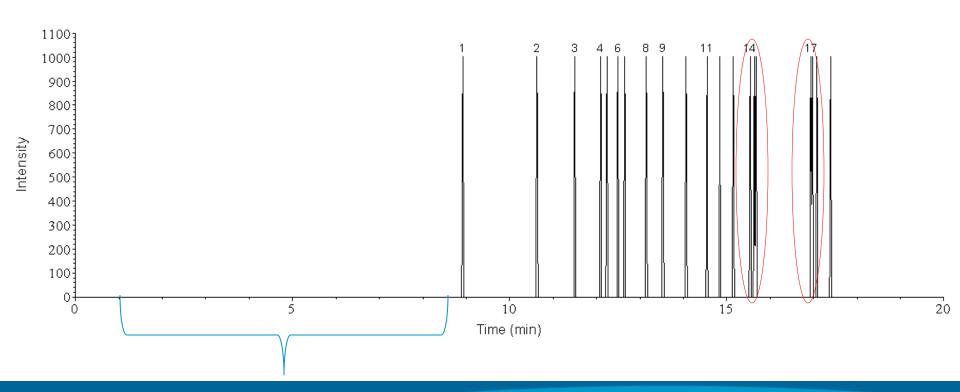
Constant flow 30 cm/sec

Oven: 50°C Hold for 5 min 10°C/min to 325°C Hold for 5 min

Am I Going to Have Backflash?


Injection Volume / Solvent Expansion

Solvent Vapor Volume Calculator	x
Approximate vapor volume(ul): 669 ul	79 %
Injection Volume (ul)	Solvent Properties
	Methanol
Inlet Temp (C)	Boiling Pt (C): 64.7
250	Denisty (g/cm3): 0,791
	Mol Wt. (amu): 32
Inlet Pressure	Solvents
Pressure Units	Injection Liner Volume (ul)
OKPa 💿 psi O bar	5183-4647 single-t 💌 850
Print Help OK	Edit Liner list 75 100


Developing Temperature Program Initial Run

Initial Temp: 50°C Hold for 5 min Ramp 10°C/min to 325°C Hold for 5 min

Developing Temperature Program Initial Run - Define Areas for Improvement

Next Step...

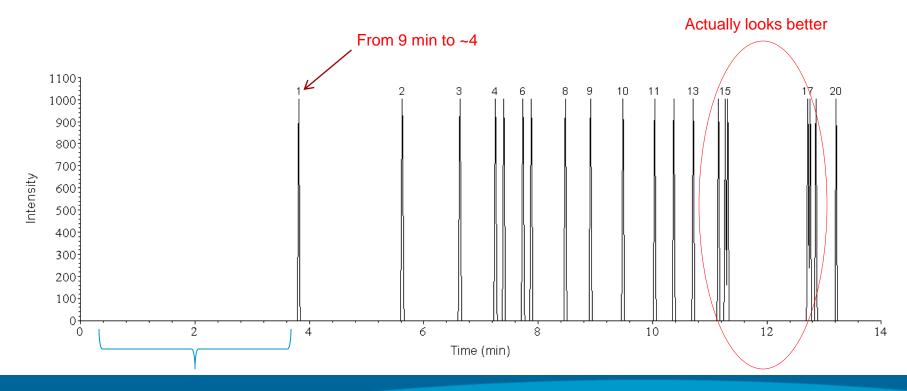
When does the first peak come out?

~9 minutes

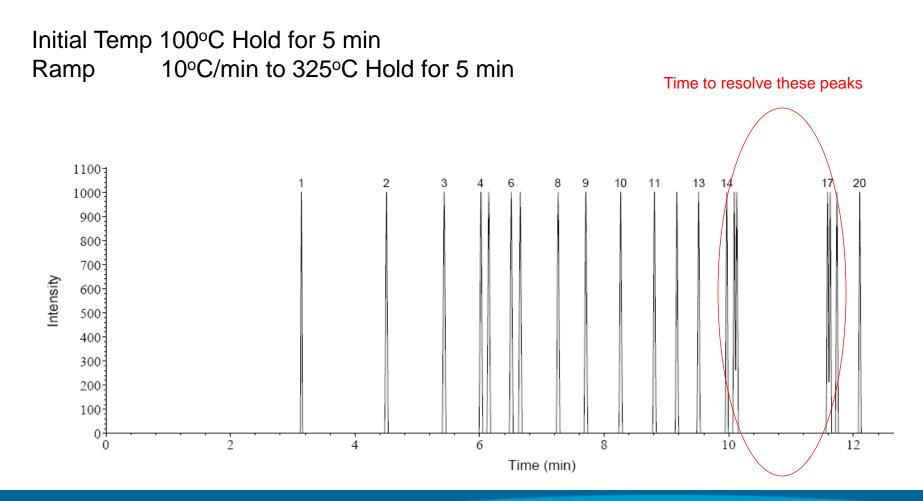
What temperature does it come out at?

Temp program:

50°C for 5 minutes


10°C to 325°C

1st Peak comes out at 90°C


Developing Temperature Program 2nd Try

Initial Temp 90°C Hold for 5 min Ramp 10°C/min to 325°C Hold for 5 min

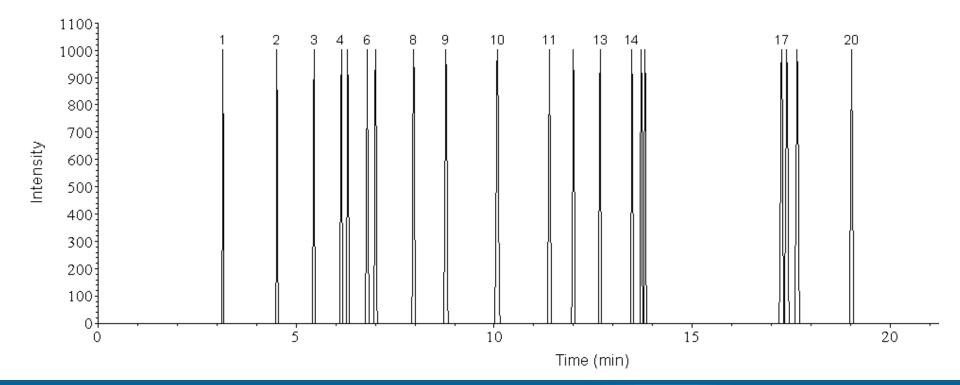
Developing Temperature Program 3rd Try

Resolve Co-elutions

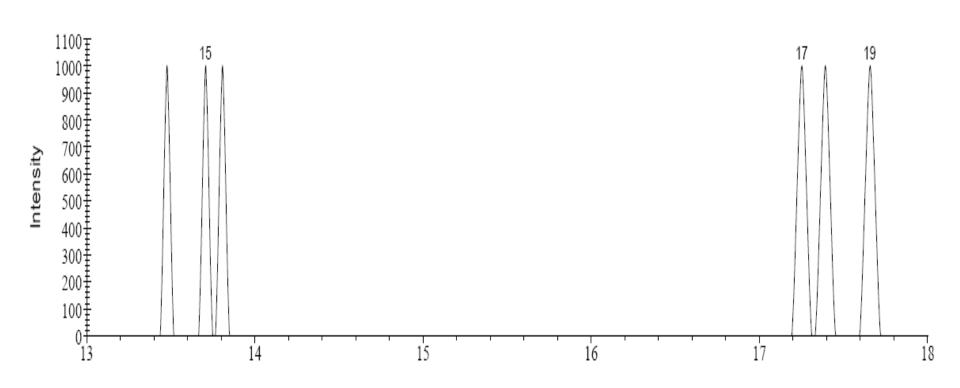
Add a hold 20-30° below the elution temperature

Co-elutions occur at 10 minutes

100°C hold for 5 minutes 10°C/min to 325°C


Co-elutions occur at 150°C

Set hold at 130°C


Developing a Temperature Program

Oven: 100°C Hold for 5 minutes 10°C/min to 130°C hold for 5 min 10°C/min to 325°C

Developing a Temperature Program

Conclusions:

Think about the sample first **Is it chromatographable by GC? sample composition sample clean up level of detection

Use information sources first when choosing a column

Mild oven program to begin with

Utilize Technical Support

Conclusions: Starting Parameters

- --Assuming S/SI FID system
- Inlet Temp: 250°C
 - Split 50:1
- Carrier Gas: Helium ~ 30 cm/sec, Hydrogen ~45 cm/sec
- Oven Temp: 40°C hold for 5 minutes
 - 10°C/min Ramp to Isothermal Limit of column
 - hold for 5-10 minutes
- Detector Temp: 20°C above the highest oven temp

Additional Resources and Application Support

Sample preparation eSeminar Series

https://www.agilent.com/en-us/training-events/eseminars/sample-preparation

Reference Materials and Guides:

Agilent Enhanced Matrix Removal – Lipid Brochure (Publication Number: 5991-6052EN)

https://www.agilent.com/cs/library/brochures/EMR%20Brochure%20CPOD%20Final_LoResSgl Pgs.pdf

https://www.agilent.com/en-us/products/sample-preparation/sample-preparationmethods/sample-preparation-methods/enhanced-matrix-removal-lipid

Agilent Sample Preparation Landing Page

https://www.agilent.com/en-us/products/sample-preparation/sample-preparationmethods

Agilent Sample Preparation Catalog (Publication Number: 5991-1057EN)

http://www.agilent.com/cs/library/catalogs/public/5991-1057EN%20Sample%20Prep%20Catalog.pdf

Agilent J&W Scientific Technical Support

800-227-9770 (phone: US & Canada)*

GC column/application support* Select option 3..3..1.

Sample Prep Supplies/Support Select option 3..3..3

gc-column-support@agilent.com

spp-support@agilent.com

866-422-5571 (fax)

www.agilent.com

