Lower Detection Limits and Quantitate with Confidence with Breakthrough Ultra Inert Technology

> Simon Jones Application Engineer September 22, 2011

Goals of the Presentation

1. Understand what it means to be *INERT*, and why it is important to have an inert flow path

- 2. Talk about the pieces of the flow path
 - Liner
 - Column
- 3. Inert MS Source
- 4. ?????

Snapshot of Flowpath

What is meant by inert?

According to Wikipedia....

To be in a state of doing little or nothing!

As it Pertains to Chromatography....

Not Chemically Reactive

What Does GC System Inertness Look Like?

Easier question: What does poor inertness look like?

Symptoms of poor GC system inertness:

- * Tailing peaks
- * Reduced peak response
- * No peak response
- * Extra peaks!
- * Poor linearity of a peak usually at low concentrations
- * Unstable detector baseline

GC System Inertness What do we mean?

Problems with poor inertness usually limited to —ative" solutes.

Tailing or breakdown of "benign" solutes is symptomatic of a more generalized system problem, usually related to gross contamination.

GC System Inertness What do we mean?

Problems with poor inertness usually limited to —ative" solutes.

For example: Alcohols & Diols (-OH), Phenols ($\langle _ \rangle^{-OH}$), Amines (-NH3), Acids (COOH), Thiols & Sulfur in general like to tail.

Thermally labile and structurally -strained" solutes will breakdown or rearrange, e.g., DDT, Endrin, Carbamates, Nitroglycerines.

Possible Inertness Problem Areas

Inlet

- liner, liner packing, gold seal, stainless steel
 Consumables
- septa, syringe, vial, caps, inserts, solvents
 Column

GC Detector

- source geometry, material, column interface, acquisition rates
 Temperatures
- inlet, transfer line, source, quads, oven

Other method factors i.e. samples and standards preparation

What is the Surface Area Contribution to Overall <u>Flowpath</u> Inertness?

GC Flowpath Surface Areas

	L (cm)	d (cm)	π	Surface Area (cm ²)
Liner	7.85	0.4	3.142	9.86
Gold Seal		0.8	3.142	0.5
Column	3000	0.025	3.142	235.6

Let's Start at the Inlet

Liner Problems

Many chromatographic problems are blamed on the column.

Often, an active liner is the culprit.

Symptoms include:

Poor peak shape Irregular baselines Poor resolution Poor response

Extra Peaks

Degradation in the Liner

Pub: 5990-7596EN

Pesticides

Liner Deactivation

- 1. Surface PreparationTreatment
- 2. Drying of the liner
- 3. Coating
- 4. Drying

LINER DEACTIVATION

Prior to deactivation, surface must be cleaned with an acid leach step:

- Place liner in clean test tube
- Cover liner with 1N HCl or HNO₃ solution
- Soak for at least 8 hours (overnight is preferred)
- If acid solution is highly discolored, replace with clean solution and continue to soak until no color change is noted
- Do not soak liners for longer than 24 hours
- Rinse with deionized water followed by methanol
- Dry the liner at 100-150°C. Do not exceed 150°C.

LINER DEACTIVATION

Solution Silylation Procedure

Place liner in screw cap test tube

Cover liner with 10% TMCS or DMCS in toluene

Tightly seal with PTFE-lined cap

Allow to stand for at least 8 hours

Remove from solution and thoroughly rinse with toluene, then methanol

Dry the liner at 75-100°C

NOTE: Several liners can be done in one test tube, but rotate the tube several times to ensure that all surfaces are exposed to the solution.

<u>Ultra Inert</u> GC Inlet Liners – ultimate deactivation performance

- Response levels / Inertness : 2,4-Dinitrophenol recovery
 - peak shape and signal to noise at trace levels (0.5 ppm)
- Robustness : Endrin / DDT Breakdown
- < 20% breakdown of Endrin after a sequence of <u>100</u> <u>injections</u> -- not just the first injection

Reliability / Linearity: Response factors of active compounds

• over low level calibration range – 2 ng to 80 ng on column

Reliability / Quality Assurance : Ultra Inert Liner Certificate of Performance

Lot to Lot Liner Reproducibility assured:

Each Ultra Inert deactivation lot is *Certified* to ensure consistent and efficient coverage using both acidic and basic probes at trace (2 ng) levels on column

Certificate of Performance with every liner is printed on a label ready to peel and stick into your laboratory notebook for easier compliance.

Traceability: Deactivation lot number and glass lot numbers are on the Certificate Part Number is permanently identified on the liner for fast and easy re-ordering

Certificate of Performance

5190-2293 Ultra I	nert Liner
Splitless, Sngl taper, (Gass Wool
Liner Body Lot:	0023A
Deactivation Lot:	B11002

More Benefits of Ultra Inert Deactivated Liners

Unequalled Reproducibility

- •Lot testing ensures reproducible coverage of deactivation
 - QC test with probes selected to reveal activity
 - QC method tailored to test liner -- not column or system -- inertness
- Lab notebook friendly Certificate of Performance on a sticker shipped with each liner
- Ease of Use with exclusive -Touchless" packaging...
- •Plasma treated Non-Stick O-ring is preinstalled on the liner
- •Packaging is Pharmaceutical grade PTEG tubing approved by GCMS extraction testing for cleanliness
- •Install new liner with O-ring without touching or risk contaminating the new, clean Ultra Inert liner

Robustness: Endrin Decomposition Test

Pass/Fail criteria : < 20% degradation

Agilent Ultra Inert deactivation passes Endrin/DDT decomposition test after 100 injections

Semi Volatile critical component : 2, 4 DNP Comparison of splitless single taper liners without wool

Response Factors (FID) over calibration range (2-80 ng on column)

Glass Wool, or No Glass Wool?

Provides a lot of additional surface area to help with sample mixing and volatilization

Helps trap non-volatile residues which minimizes the amount that gets into the column

Provides a lot of additional surface area

Semivolatile Activity Comparison

Figure 6. Performance comparison of Agilent Ultra Inert deactivated liner with wool (p/n 5190-2293) and Ultra Inert deactivated liner without wool (p/n 5190-2292).

PUB: 5990-7381EN

Robustness: Endrin Breakdown on Liners with Wool

Exceptional inertness maintained through a sequence of 100 injections

Just Because you can't see it, doesn't mean it's not there.....

Ultra Inert Liners Available for non-Agilent GC's

We currently support:

- Bruker, Varian*
- CTC
- PerkinElmer
- Shimadzu
- Thermo Scientific
- And more coming soon

Where does column activity come from?

Sterically difficult to —ap? all of them—estimates 40-65% capped with traditional deactivation.

Non-traditional sources such as trace impurities in starting materials and manufacturing lines.

Traditional Deactivations

Dichlorodimethylsilane, various silizanes, etc... -endqas"

Traditional deactivation has gaps in surface coverage due to bulky TMS type moieties, and tight fused silica lattice, and is somewhat inert and chemically resistant.

DB-5ms and HP-5ms Engineered Deactivations

Polymeric Deactivation Technology

-Bids" at multiple points with many silanols

-Blanetts" sterically hindered active silanols, fewer silanols

What does Column Activity look like?

What are the specific benefits of High Inertness?

Greater sensitivity for traditional trace active analytes meet RRF requirements with greater ease more runs before maintenance

Greater reliability for ultra-trace non-traditionally active analytes (<100 ppb PAHs, Chlorinated dioxins, etc...)

Who benefits from 'Ultra' Inert Columns?

Anyone doing trace analysis of active analytes

- Environmental semivolatile analysts
- Pesticide residue analysts
- Forensic/Drugs of abuse analysts
- Anyone in Industry, Government, or Academia interested in ultratrace amounts of even modestly active analytes

Test Probes and Column Activity QC Testing

- Test probes are vital to ensure the quality and reproducibility of GC columns
 - Properly deactivated
 - Contain the correct amount of stationary phase
 - consistent batch-to-batch relative retention time
- Test probes can either highlight or mask the deficiencies of a column, normally include:
 - An organic acid (peak tailing or lost response of acid indicates the column is basic)
 - A base (peak tailing or lost response of base indicates the column is acidic)
 - An alcohol (gives indication of any oxygen damage or exposed silanols)
 - Non-active probes (e.g. alkanes)
- Good test probes allows the probative portion of the test module to penetrate and fully interact with the columns stationary phase and surface.
 - Low molecular weight
 - Low boiling points
 - No steric shielding of active group

Weak Probes vs. Strong Probes

Grob-Type Mix - QC Testing of the 80s

ion: FID at 325 °C, 450 ml/min. air, 40 ml/min. hydrogen, 45 ml/min. nitrogen makeup

DB-5ms Test Mix – QC Testing of the 90s

Competitor X Inert 5ms 30m x 0.25mm x 0.25um

1. 2-Ethylhexanic acid

2. 1,6-Hexanediol

3. 4-Chlorophenol

4. Tridecane

5. 1-Methylnaphthalene

6. 1-Undecanol

7. Tetradecane

8. Dichlorohexylamine

 Carrier:
 Hydrogen constant pressure 38 cm/s

 Inlet:
 25°0C Split flow 75 mL/min

 Liner:
 Deactivated single taper w/wool (5183-4647)

 Oven:
 125°C Isothermal

 Detector:
 FID, 320°C. 450 mL/min Air, 40 mL/min H₂, 45 mL/min N₂ Makeup

Ultra Inert Test Mix – QC Testing for Today's Demanding Applications

		Column	
Probe	(ng on column)	functional test	Carefu
1. 1-Propionic acid	1.0	Basicity	deman
2 1-Octene	0.5	Polarity	depth
3. n-Octane	0.5	Hydrocarbon marker	inertne
4. 4-Picoline	1.0	Acidity	 Test te
5. n-Nonane	1.0	Hydrocarbon marker	(isothe
6. Trimethyl phosphate	1.0	Acidity	norma
7. 1,2-Pentanediol	1.0	Silanol	tests
8. n-Propylbenzene	1.0	Hydrocarbon marker	
9. 1-Heptanol	1.0	Silanol	
10. 3-Octanone	1.0	Polarity	
11. n-Decane	1.0	Hydrocarbon marker	

Carefully selected very demanding test probes for indepth evaluation of column inertness

Test temperature 65° C (isothermal), well below that normally used in conventional tests

Sampler: Agilent 7683B, 0.5 µL syringe (Agilent part # 5188-5246), 0.02 µL split injection

- Carrier: Hydrogen constant pressure, 38 cm/s
- Inlet: Split/splitless; 250 °C, 1.4 ml/min. column flow, split flow 900 ml/min., gas saver flow 75 ml/min. on at 2.0 min.
- Liner: Deactivated single taper w glass wool (Agilent part # 5183-4647)

Oven: 65 °C isothermal

Detection: FID at 325 °C, 450 ml/min. air, 40 ml/min. hydrogen, 45 ml/min., nitrogen makeup

Ultra Inert Test Mix on Competitor X Inert 5ms

All highlighted peaks have poor peak shape – poor column deactivation

- The Competitor X column showed very poor performance when tested against the Über One test mix.
- Less demanding test probes masked the column activity for this column.
- The same column performed well with Grob-type test mix and DB-5ms test mix

Ultra Inert Test Mix on Agilent J&W DB-5ms Ultra Inert

Increased peak heights for accurate integration and detection of trace samples
 Routine analysis of demanding analytes now feasible

Same Selectivity – No Method Re-Development

- DB-5ms Ultra Inert columns have the same selectivity as their DB-5ms counterparts
- HP-5ms Ultra Inert columns have the same selectivity as their HP-5ms counterparts

DB-35ms Ultra Inert Exhibits the Same Selectivity as DB-35ms

Application Examples

- Semi Volatile Analysis
- Brominated Fire Retardants
- Drugs of abuse
- Pesticides in Orange Oil
- PAHs
- PBDEs

Semi Volatile Analysis

1. 2. 3. 4. 5. 6.	N-nitrosodimethylamine Aniline 1,4 dichlorobenzene-D4 Benzoic acid Naphthalene- D8 Acenapthene-D10	GC : Sampler : Carrier: Inlet: Inlet Liner: Column: Oven: Detection:	Agilent 6890 Agilent 7683 column Helium cons Split/splitles off Deactivated DB-5ms Ultr 40% C (1 min MSD source	N/5975B MSD B, 5.0 μL syrin stant flow 30 c s; 260% C, 53 single taper v a Inert 30m x n) to 100%C (1 at 300% C, qu	nge (Agilent part # 5188-5246), m/s .7 ml/min. total flow, purge flow y glass wool (Agilent part # 518 0.25mm x 0.25µm (Agilent part 5% C/min), 10% C to 210% C (adrupole at 180% C, transfer li	1.0 μL splitless injection w 50 ml/min. on at 0.5 μ 33-4647) # 122-5532UI) 1 min), 5% C/min. to 3 ⁷ ine at 290% C, scan ra	on, 5 ng on nin., gas saver 10% C (8 min) nge 50-550 AMU
7.	2,4-dinitrophenol		6	11	12	16	17
8.	4-nitrophenol	:	5	11	12		
9.	2-methyl-4,6-dinitrophenol						
10.	pentachlorophenol	3				14	18
11.	4-aminobiphenyl						
12.	Penanthrene-D10						
13.	Benzidine						
14.	Chrysene-D12						
15.	3,3'-dichlorobenzidine			10	13	15	
16.	Benzo [b] fluoroanthene			10			
17.	Benzo [k] fluoroanthene						
18.	Perviene-D12						
				9			
	1			8			
			7				
		4	1				
	,					I	

15.00

25.00

30.00

20.00

5.00

10.00

"Large Mix" 5 ng on Column AccuStandard 8270 Mixes 1,2,3,4a,4b,5 &6 (93 Compounds) Select compound highlighted

- 1. n-Nitrosodimethylamine
- 2. 2-methyl pyridine
- 3. Benzidene
- 4. Flouranthene
- 5. Benzo (g,h,i) perylene

GC/MSD ConditionsColumn: DB-5ms Ultra Inert 30 m x 0.25 μm part # 122-5532UICarrier: He 30 cm/sec constant flowOven: 40% C (1min) to 100 % C (15 % C/min), 10 % C /min to 210% C (1min), 5 % C/min to 310% C (8 min)Inlet: splitless 260 % C purge flow 50 % ml/min at 0.5 min, gas saver 80 ml/min on at 1 minuteMSD: transfer line 290 % C, source 300 % C, quad 180 % C

Pesticides and Fire Retardants (US EPA 527)

	GC/MSD Conditions			
1,2-Dimethyl-2-nitrobenzene Acenaphthalene-D10	Sample:	Pesticide/PBDE standards 1 ng with 5ng IS/SS on column		
Dimethoate	Column:	DB-5MS Ultra Inert 30m x 0.25mm x 0.25um (Agilent part # 122-5532UI)		
Propazine	Carrier:	Helium 52cm/sec, constant flow		
Anthracene-D10	Oven:	60°C (1min) to 210°C (25º/min), 20ºC/min to 310ºC (3 min)		
Prometryne	Injection:	Splitless, 250°C, purge flow 50ml/min at 1min, gas saver 80ml/min on at 3 min		

9. Bromacil

1.

2.

3.

4.

5.

6.

7.

8.

- 10. Malathion
- 11. Thiazopyr
- 12. Dursban
- 13. Benthiocarb
- Parathion 14.
- 15. **Terbus sulfone**
- 16. **Bioallethrin**
- 17. Oxychlordane
- 18. Fenamiphos
- 19. Nitrophen
- 20. Norflurazone
- 21. Kepone
- 22. Hexazinone
- **Triphenyl phosphate** 23.
- 24. Bifenthrin
- 25. Chrysene-D12
- 26. BDE-47
- 27. Mirex
- 28. **BDE-100**
- 29. **BDE-99**
- 30. Perylene-D12
- 31. Fenvalerate
- 32. Esfenvalerate
- 33. Hexabromobiphenyl
- 34. **BDE-153**

9.00

Transfer Line 290°C, Source 300°C, Quad 180°C

9-14

17

15,16

ᄮ

18

19

10.00

8

7

3

4,5

8.00

6

2

MSD:

1

5.00

6.00

7.00

25

26

27

28 29

12.00

30

32

83

31

13.00

34

23

24

20

121

22

11.00

Page 45

Drugs of Abuse

Column:	DB-5ms Ultra Inert 30 m x 0.25 mm x 0.25 µm (Agilent part # 122-5532UI)
Carrier:	Helium 43.8 cm/sec constant flow
Oven:	120% C (2min) 20 % C/min to 180 % C (6 min hold), 18 % C /min to 270% C (2min),
	25 % C/min to 325% C (2 min)
Inlet:	split 30:1, ~ 1 ng on column 250 %C, single taper liner (Agilent # 5181-3316)
MSD:	transfer line 300 % C, source 280 % C, quad 200 % C, full scan m/z 50-450

Bezodiazepines

Pesticides in Orange Oil

Analysis was carried out on the Agilent 7890A/5975 GC/MS or 7890A/7000 GC/MS/MS equipped with either a 7683 or 7683B Series ALS, split/splitless injection port and triple-axis detector. An Agilent J&W DB-5ms Ultra Inert 15 m x 0.25 mm x 0.25 um column (Agilent part # 122-5512UI) was used. The initial GC oven temperature was 70° C, which was held for 0.67 minutes. The oven was then ramped by 75° C/minute to 150° C, held for 0 minutes and ramped by 9° C/minute to 200° C and held for 0 minutes before ramping by 24° C/minute to 280° C and holding for 3 minutes. A six-minute post-run at 320° C was used. Pressure was held constant at 10 psi throughout the run and a split ratio of 10:1 for a 1uL injection. An open ended 4 mm helical liner was used (Agilent #5188-5396). The inlet temperature was 250° C and transfer line was set to 280° C. In the case of both detectors the source temperature was set to 300° C and the analyzer to 180° C.

PAH Analysis

GC/MSD Conditions

Sample:

1.

2. 3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15. 16. 10ug/ml PAH Standard

DB-5ms Ultra Inert 30m x 0.25mm x 0.25um (Agilent part # 122-5532UI) Column:

- Carrier: Helium 45cm/sec, constant flow
- 55°C (1min) to 320°C (25°/min), hold 3 min Oven:

Injection: Pulsed splitless, 300°C, 40psi until 0.2 min, purge flow 30ml/min at 0.75 min

Gas saver 80ml/min on at 3 min

MSD: Transfer Line 280°C, Source 300°C, Quad 180°C

PBDE Analysis

GC/MS conditions

Column:	DB-5ms Ultra Inert 15 m × 0.25 mm × 0.25 µm (Agilent part # 122-5512UI)
Carrier:	Carrier Helium 72 cm/s, constant flow
Oven:	150 to 325 °C (17 °C/min), hold 5 min
Injection:	Pulsed splitless; 325 °C, 20 psi until 1.5 min, purge flow 50 mL/min at 2.0 min
MSD:	Source at 300 °C, Quadrupole at 150 °C, transfer line at 300 °C, scan range 200–1000 amu

PBDE Analysis

GC/MS conditions

Column:	DB-5ms Ultra Inert 15 m × 0.25 mm × 0.25 µm (Agilent part # 122-5512UI)
Carrier:	Carrier Helium 72 cm/s, constant flow
Oven:	150 to 325 °C (17 °C/min), hold 5 min
Injection:	Pulsed splitless; 325 $^\circ$ C, 20 psi until 1.5 min, purge flow 50 mL/min at 2.0 min
MSD:	Source at 300 °C, Quadrupole at 150 °C, transfer line at 300 °C, scan range 200–1000 amu

Linearity is excellent across the range studied (0.5 ng/mL to 1,000 ng/mL, except for BDE-209 at 2.5 to 1,000 ng/mL range), giving R² values of 0.997 or greater in all cases and demonstrating highly inert surface of the column.

Inert MSD Source

Mass chromatograms for the pesticide Fenitrothion acquired via the inert source (upper) and a standard source design (lower). The black line indicates the ion abundance of the molecular ion of Fenitrothion (m/z 277) and the green line is attributed to a degradation product (m/z 247).

Inert MSD Source

Improved spectral integrity. New inert source eliminates surface activity reactions, resulting in more reliable library matches.

Don't Forget About....

- Sample Discrimination
- Sample Stability
- Carrier Gas
- Sample Prep
- Sample Vials

Conclusions.....

Inert flow path gives better peak shapes for _active'compounds allowing for lower detection limits

Agilent Ultra Inert liners are packed with <u>Touchless</u>' packaging **Available for non-Agilent Systems

Both the Agilent UI Liners and Columns go through rigorous testing to ensure performance as well as column to column, or liner to liner reproducibility.

For more information, please visit this website:

http://www.chem.agilent.com/en-US/Products/columns-supplies/gc-gcmscolumns/Pages/ultrainerthome.aspx

Agilent/J&W Technical Support

800-227-9770 (phone: US & Canada)*

* Select option 3..3..1

866-422-5571 (fax)

email: gc-column-support@agilent.com

www.agilent.com/chem

