New Specialized GC Columns for the Petroleum Industry

-Integrated Particle Trap PLOTs -DB-Sulfur SCD

> Daron Decker GC Columns Technical Specialist Agilent Technologies, Inc. October 29, 2013

Porous Layer Open Tubular (PLOT) Columns

Challenges:

- Stationary phase particle shedding
- Detector spikes impacts results
- Changes restriction interferes with instrument control/tuning
- Risks switching valves, CFT devices & connectors
- Can not be combined with GCMS

Solutions for PLOT Column issue--stationary phase particle shedding

1. Install a particle trap on the end of the column

Drawbacks: set-up time, prone to leaks, clog, add labor cost...

2. Install inline filters

- Drawbacks: eventually clog and cause flow restriction over time
- 3. Just live with it majority of analysts

What is an Integrated Particle Trap PLOT Column?

PLOT columns with 2.5 meter integrated particle traps on both ends virtually eliminates the classic particle shedding problem

- Particle traps are integrated no unions and/or fittings
- Compatible with capillary GC, GC/MS and valve switching GC systems including Capillary Flow Technology (CFT)
 - Similar selectivity, plates and peak shape performance to existing Agilent J&W PLOT columns

٠

The Column and Integrated Particle Trap

No Detector Spikes Observed on PT Columns with Repeated Temperature and Pressure Cycling

FID Baseline Testing from 220°C to 280°C

Column: PoraBond Q PT, 25m×0.25mm,3um (30 meter total length) Carrier : Helium, 36cm/s @220 °C

Oven: : 220 °C for 30 min 220 °C - 280 °C at 10°C/min 280 °C for 30 min Detector: FID, 300 °C

No spikes

MSD! Baseline Testing from 220°C to 280°C

Column: PoraBond Q PT, 25m×0.25mm,3um

(30 meter total length)

Carrier : Helium, 34cm/s @220 °C Oven: : 220 °C for 30 min 220 °C - 280 °C at 5°C/min 280 °C for 30 min Detector: MSD, 280 °C Transfer line, full Scan at m/z 40-300

No spikes

"Clean" Mass Spectrum, PoraBond Q PT at 280°C

Similar Selectivity

Solvent Analysis

Carrier : Helium, 5.25 mL/min Oven: 150°C Inlet: 200 °C, split ratio=60:1 Detector: FID 250°C Inj. Vol: 0.2uL

Differences observed between our standard PLOT columns and their PLOT PT counterparts shows that the variability in results is generally within the column to column reproducibility range for PLOT column manufacturing

Similar Selectivity Important Application C2 – C3

Similar Selectivity Important Application C1 – C2

PoraPLOT U: C1-C2

Influence of integrated particle traps on selectivity (Aluminum oxide PLOT)

- First test with integrated particle traps
- Second test after removal of particle traps (pressure adjusted to correct for length difference)

Lifetime test: Porous Polymer PLOT PT columns

- Test done with PPQ, PPU, PBQ and HP-PLOT-Q
- Lifetime test performed by a high number of injections of methanol with 10% water
- 350 to 1350 injections are done
- After these injections, the columns are tested again
- No change in performance is observed

Lifetime test PoraPLOT U PT 1350 injections Methanol / 10% water

Lifetime - Retention Index

Lifetime test PoraPLOT U PT 1350 injections Methanol / 10% water

<u>Conclusion</u>: No change in performance of the column after multiple injections (Similar results for all porous polymer PLOT PT columns)

Lifetime Test Al₂O₃ – PT 50m x 0.32mm

Temperature program: 40°C + 10°C/min --> 200°C (40 min.) Carrier gas N2, 50 kPa. FID

In 3 weeks 450 runs, 300 hours at the maximum T of 200°C.

ксі	Before lifetime test After lifetime test				Na2SO4	Before lifetime test After lifetime tes			ime test		
6509506	total	st dev	total	stdev	Difference	6509513	total	st dev	total	st dev	Difference
RI ethene	234.8	0.1	234.9	0.0	0.1 RI ethene 2		242.9	0.1	243.3	0.1	0.4
RI propene	347.7	0.1	347.7	0.0	0.0	RI propene	357.4	0.0	357.8	0.0	0.4
RI ethyne	362.1	0.0	361.7	0.1	-0.4	RI propadiene	396.6	0.2	396.7	0.1	0.1
RI propadiene	385.2	0.0	385.0	0.0	-0.2	RI ethyne	400.0	0.0	400.0	0.0	0.0
RI t-2-butene	439.2	0.0	439.1	0.0	-0.1	RI t-2-butene	445.8	0.0	446.1	0.0	0.3
RI 1-butene	443.5	0.0	443.5	0.0	0.0	0.0 RI 1-butene		0.0	453.7	0.0	0.4
RI isobutene	450.6	0.0	450.6	0.0	0.0	RI isobutene	461.8	0.0	462.2	0.0	0.5
RI c-2-butene	458.7	0.0	458.7	0.0	0.0	RI c-2-butene	468.9	0.0	469.2	0.0	0.4
RI propyne	485.9	0.0	485.4	0.1	-0.4	RI 1,3-butadiene	514.9	0.0	515.2	0.0	0.4
RI 1,3-butadiene	499.3	0.0	499.3	0.0	0.0	RI propyne	522.6	0.1	523.1	0.1	0.5
N 1,3-butadiene	153264	836	155972	1105	2707	N 1,3-butadiene	150900	1001	148253	209	-2647
k 1,3 butadiene	1.5	0.0	1.5	0.0	0.0	k 1,3 butadiene	2.4	0.0	2.5	0.0	0.0
N/m 1,3-butadiene	2787	15	2836	20	49	N/m 1,3-butadiene	2744	18	2696	4	-48
u (cm/sec)	51.8	0.0	51.8	0.0	0.0	u (cm/sec)	54.2	0.0	54.2	0.0	0.0
CFR	1.0	0.0	1.0	0.0	0.0	CFR	1.1	0.0	1.1	0.0	0.0

Please note: No PDMS degradation at 200°C!

Lifetime Test Molsieve 5A 30m x 0.53 mm 50µm Molsieve 5A PT

Temperature program: 40°C + 10°C/min --> 200°C (23 min) + 10°C/min --> 300°C (5min) Carrier gas N2, 25 kPa. TCD

In 3 weeks 531 runs, with 204 hours at 200°C and 44 hours at the maximum temperature of 300°C.

	Before life	etime test	After lifet		
9278538	Average	StDev	Average	StDev	Difference
Asym Carbonmonoxide	1.49	0.00	1.55	0.04	0.05
N methane	32177	5	31037	8	-1140
K methane	2.35	0.00	2.35	0.00	0.00
Res He/Ne	1.10	0.00	1.09	0.00	-0.02
Res Ar/O2	1.17	0.00	1.16	0.00	-0.01
CFR	1.04	0.00	1.05	0.00	0.01
	Before life	etime test	After lifet		
9257038	Average	StDev	Average	StDev	Difference
Asym Carbonmonoxide	1.52	0.02	1.57	0.11	0.05
N methane	36336	13	35603	472	-733
K methane	2.41	0.00	2.41	0.00	0.00
Res He/Ne	0.97	0.00	1.11	0.01	0.14
Res Ar/O2	1.23	0.01	1.22	0.01	-0.01
CFR	1.11	0.00	1.11	0.00	0.01

Lifetime Test Conclusions

After prolonged exposure at high operating temperature there is no significant change of the chromatographic performances of the Molsieve 5A and Al_2O_3 columns.

The bleed of the particle traps (front end) has no negative effect on the PLOT phases.

Ideal for Solvent Analysis by GCMS

1.

2.

Methyl Alcohol

Acetaldehyde

Column: PoraBond Q PT, 25m×0.25mm,3um (30m total length)

14. Trichloromethane

15. 2-Butanone (MEK)

27. Pyridine

28. Dimethyl Formamide (DMF)

Excellent Peak Shape for Alcohols by GCMS

Halocarbons by GCMS

Column: PoraPLOT Q PT, 25m×0.32mm,10um (P/N CP7551PT) (30m total length)

- Carrier : Helium, 42cm/s @55 °C
- Oven:: 55 °C for 5min

55 °C - 200 °C at 12°C/min 200 °C for 10min

Injection: 250 °C, splitless, 0.2min purge activation time Detector: MSD, 280 °C Transfer line, full Scan at m/z 45-185 Sample: 1uL

Fluoroform (Freon-23) 1. 1,1,1-trifluoroethane (Freon-143a) 2. Pentafluoroethane (Freon-125) 3. Bromotrifluoromethane (Freon-13b1) 4. 1,1,1,2-Tetrafluoroethane (Freon-134a) 5. 1,1-difluoroethane (Freon-152a) 6. Difluorochloromethane (Freon-22) 7. 1,1,2,2-tetrafluoroethane (Freon-134) 8. 1-chloro-1,1-difluoroethane (Freon-142) 9. 10. Bromochlorodifluoromethane (Freon-12b1) 11. Ethyl Chloride (Freon-160) 12. Fluorodichloromethane (Freon-21) 13. Trichloromonofluoromethane (Freon-11) 14. 1,1-Dichloro-1-fluoroethane (Freon-141) 15. 2,2-dichloro-1,1,1-trifluoroethane (Freon-123) 16. 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113) 17. 1,2-dibromo-1,1,2,2-tetrafluoroethane (Freon-114b2) 18. Trichloromethane (Freon-20) 19. 1,2-dichloroethane 20. 1.1.1-trichloro-ethane 21. Trichloroethylene 22. 1,1,2-trichloroethane

Coal to Chemical Process Gas Analysis

Carrier : H2, 36cm/s @32 °C Oven: : 32 °C for 5 min 32 °C - 180 °C at 15°C/min Injection: 170 °C , split ratio 5:1 Detector: TCD, 250 °C Sample: 250uL

- 1. Carbon monoxide
- 2. Methane
- 3. Carbon dioxide
 - Ethylene
- 5. Ethane
- 6. Hydrogen sulfide
- 7. Water
- 3. Propylene
- 9. Propane
- 10. Dimethyl ether
- 11. Methanol
 - 2. 1-Butene
- 13. Butane

Coal to Chemical Process Gas Analysis

Identify compounds by MSD

Column: HP-PLOT Q PT, 30m×0.32mm,20um (P/N 19091P-Q04PT) (35m total length)

Carrier : Helium, 1mL/min Oven: : 32 °C for 3 min 32 °C - 180 °C at 15°C/min Injection: 170 °C , split 5:1 Detector: MSD, 280 °C Transfer line, full Scan at m/z 10-100 Sample: 250uL

Excellent Peak Shape of Hydrogen Sulfide on HP-PLOT U PT Column

No spikes at Fixed Gases Analysis on CP-Molsieve 5Å PLOT PT column

CP-Molsieve 5Å showing spikes when particle traps are removed (Red trace). No spikes with manufacturer integrated particle trap (Blue Trace).

Agilent J&W PLOT PT Columns

Available PLOT PT columns:

- •Porous polymers:
 - PoraPLOT Q
 - PoraBOND Q
 - PoraBOND Q HT
 - HP-PLOT Q
 - GS-Q
 - PoraPLOT U
 - HP-PLOT U
- •NEW! Aluminum oxide
 - HP-PLOT AI2O3 S
 - HP-PLOT AI2O3 M
 - HP-PLOT AI2O3 KCI
 - GS-Alumina
 - GS-Alumina/KCl
 - CP-Al2O3 KCI
 - CP-Al2O3 Na2SO4
- NEW! Molsieve
 - CP-Molsieve 5A

Custom PLOT PT columns are available for these phases

Phase type	Part number	Description	Dimensions
PLOT Q	CP7348PT	PoraBOND Q PT	25m x 0.25mm x 3μm
	CP7351PT	PoraBOND Q PT	25m x 0.32mm x 5µm
	CP7352PT	PoraBOND Q PT	50m x 0.32mm x 5µm
	CP7353PT	PoraBOND Q PT	10m x 0.53mm x 10µm
	CP7354PT	PoraBOND Q PT	25m x 0.53mm x 10μm
	CP7550PT	PoraPLOT Q PT	10m x 0.32mm x 10µm
	CP7551PT	PoraPLOT Q PT	25m x 0.32mm x 10μm
	CP7554PT	PoraPLOT Q PT	25m x 0.53mm x 20μm
	CP7557PT	PoraPLOT Q-HT PT	25m x 0.32mm x 10μm
	115-3432PT	GS-Q PT	30m x 0.53mm
	19091P-QO3PT	HP-PLOT Q PT	15m x 0.32mm x 20μm
	19091P-QO4PT	HP-PLOT Q PT	30m x 0.32mm x 20µm
	19095P-QO3PT	HP-PLOT Q PT	15m x 0.53mm x 40μm
	19095P-QO4PT	HP-PLOT Q PT	30m x 0.53mm x 40µm
PLOT U	CP7584PT	PoraPLOT U PT	25m x 0.53mm x 20μm
	19095P-UO4PT	HP-PLOT U PT	30m x 0.53mm x 20µm
AI2O3 KCI	CP7515PT	CP-Al2O3/KCI PT	50m x 0.32mm x 5µm
deactivated	CP7517PT	CP-Al2O3/KCI PT	25m x 0.53mm x 10μm
	CP7518PT	CP-Al2O3/KCI PT	50m x 0.53mm x 10μm
	19091P-K15PT	HP-PLOT AI2O3 KCI PT	50m x 0.32mm x 8µm
	19095P-K23PT	HP-PLOT AI2O3 KCI PT	30m x 0.53mm x 15µm
	19095P-K25PT	HP-PLOT AI2O3 KCI PT	50m x 0.53mm x 15µm
	115-3352PT	GS-Alumina/KCl PT	50m x 0.53mm
Al2O3 Na2SO4	CP7565PT	CP-Al2O3/Na2SO4 PT	50m x 0.32mm x 5µm
deactivated	CP7568PT	CP-Al2O3/Na2SO4 PT	50m x 0.53mm x 10µm
	19091P-S12PT	HP-PLOT AI2O3 S PT	25m x 0.32mm x 8μm
	19091P-S15PT	HP-PLOT AI2O3 S PT	50m x 0.32mm x 8μm
	19095P-S23PT	HP-PLOT AI2O3 S PT	30m x 0.53mm x 15µm
	19095P-S25PT	HP-PLOT AI2O3 S PT	50m x 0.53mm x 15µm
Al2O3 with	115-3532PT	GS-Alumina PT	30m x 0.53mm
proprietary	115-3552PT	GS-Alumina PT	50m x 0.53mm
deactivation	19095P-M25PT	HP-PLOT AI2O3 M PT	50m x 0.53mm x 15µm
Molsieve	CP7534PT	CP-Molsieve 5A PT	30m x 0.32mm x 10µm
	CP7536PT	CP-Molsieve 5A PT	25m x 0.32mm x 30µm
	CP7538PT	CP-Molsieve 5A PT	25m x 0.53mm x 50μm
	CP7539PT	CP-Molsieve 5A PT	50m x 0.53mm x 50um

Conclusions

Agilent's integrated particle trap technology for PLOTs-

- Similar selectivity to non-PT PLOT columns

- Virtually eliminates problems due to particle shedding

- Possible to use MS detection, valves and CFT worry-free

Now Let's Switch Gears...

New DB-Sulfur SCD for GC-SCD Analysis of Sulfur Compounds

Why so much focus on Sulfur?

Sulfur Compounds

-can be corrosive to equipment, pipe lines, reactors
-can inhibit or destroy catalysts employed in downstream processing
-can impart undesirable odors to products
-in fuel pollutes the air (Environmental regulations require lower levels)

Challenges for Sulfur Analysis

Low levels often require maximum sensitivity

Matrix interference from the hydrocarbons present

Highly reactive and polar molecules

Detectors for Sulfur Analysis

Why not use an FID or MSD?

Sulfur Detection

Detector	GC-FPD	GC-PFPD	GC-SCD
Supplier	Agilent	OI	Agilent
MDL Sulfur	3.6 pg/sec	1 pg/sec	<0.5 pg/sec
Selectivity	10 ⁶	10 ⁶	10 ⁷
Dynamic Range	10 ³	10 ³	10 ⁵
Quenching	yes	yes	no
Equimolar response	Νο	No	yes
Packed Col Compatible	yes	No, < 1ml/min	yes
Other Elements	P, Sn	Р	Ν
Cost	\$	\$\$	\$\$\$

SCD for Sulfur Analysis

Basis for several ASTM methods

Very sensitive but....

- Slow to stabilize
- "tricky" to operate

Method	Description
ASTM D6228	Volatile sulfur in C1, C2, C3 and C4 monomers and LPG
ASTM D6628	Volatile Sulfur in NGA, fuel gas
ASTM D5504	Sulfur in gas fuels by SCD
ASTM D5623	Sulfur in light petroleum liquids by SCD

255 NCD

355 SCD

About SCD Maintenance....

Ceramic reaction tube fouling/ "coking"

Typical costs in the US:

- Price per incident preventative maintenance service call for GC-SCD: \$1755 USD
- Cost of SCD ceramics: G6602-67000 \$356 USD
- Dual plasma burner kit: G6602-60037 \$459 USD.

Plus the self repair time of 4 hours and several days to stabilize.

SCD Ceramic Combustion Tubes & Burner

What is required of GC column for Sulfur Analysis?

Introducing DB-Sulfur SCD

New optimized low polarity column with low bleed and exceptional inertness to sulfur even at trace levels

Developed with Dow Chemical and other leading companies

Excellent for a broad range of sulfur compounds from light sulfur gasses to sulfur containing hydrocarbons out to C24

Optimized for the lowest possible contribution to SCD reaction tube fouling.

DB-Sulfur SCD

Easy to change from existing columns but with:

- Greatly improved SCD performance
- Increased stability
- Less frequent burner tube maintenance

Part Number	Description	Temperature limits
G3903-63001	DB-Sulfur SCD 60m, 0.32mm, 4.2um	250°/270°C
G3903-63002	DB-Sulfur SCD 40m, 0.32mm, 0.75um	270°/290°C
G3903-63003	DB-Sulfur SCD 70m, 0.53mm, 4.3um	250°/270°C
G3903-63004	DB-Sulfur SCD 40m, 0.32mm, 3um	250°/270°C

DB-Sulfur SCD:

sulfur standards in Toluene Good resolution of H2S and COS at room temperature

Thiophene and 2-Methyl-1-propanethiol can be baseline separated

Typical chromatogram of Sulfur compounds in Light Petroleum Liquids by ASTM D5623

... the industry standard

DB-Sulfur SCD: Real Samples

DB-Sulfur SCD: Sulfur Sensitivity

Peak No.	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
S/N	3.0	3.1	2.7	4.4	2.8	2.1	2.9	3.3	3.5	3.0	3.8	3.5	6.3	3.2	4.4	6.3	3.1	2.9
15 μV																		
1200 -	Sample: 400ppb sulfur standard																	
1000 -	Split ratio: 160:1																	
800-	Approximately 2.5pg for each compound on column (calculated)																	
600-											Low	/ blee	eding	j at 2	50 °C	2		
400-							15		18									
200	nd je gan frankrige av fil soole		3	4 6 5 7	10 9 8	11 13 12	14 16	17 Malany malayahi	upersonal restrict	, waa ay he waa had a waa waa waa waa waa waa waa waa waa	n jerinal Martineta	1	9 20		endered from a light of the	when knoweds	te ln ywrteyfe	
0		5			10		15			20		25			30		min	

Repeatability

		10 ppm	1ppm	0.1ppm
No	Compound	RSD%	RSD%	RSD%
1	Methyl mercaptan	2.94	4.46	5.12
2	Ethyl mercaptan	2.53	3.00	4.38
3	Methyl sulfide	2.53	2.79	4.79
4	Carbon disulfide	2.13	3.29	5.43
5	2-Propanethiol	2.49	3.98	4.85
6	2-Methyl-2-propanethiol	2.89	4.47	4.41
7	1-Propanethiol	2.81	3.88	4.91
8	Ethyl methyl sulfide	2.34	4.17	5.24
9	Thiophene	2.24	3.06	3.49
10	2-Methyl-1-propanethiol	1.87	2.31	5.86
11	Diethyl sulfide	2.00	2.97	4.80
12	1-Butanethiol	2.46	3.36	6.47
13	Methyl disulfide	3.62	4.15	4.23
14	2-Methylthiophene	3.59	4.62	5.95
15	3-Methylthiophene	2.85	3.90	4.90
16	Diethyl disulfide	2.74	3.16	6.34
17	3-Methylbenzothiophene	2.48	4.87	5.29
18	5-Methylbenzo(b)thiophene	2.42	4.25	7.37

N=6

DB-Sulfur SCD: Sulfur Sensitivity

Linearity

Compound	Concentration Range	Linearity (R²)	Compound	Concentration Range	Linearity (R ²)
Hydrogen sulfide	2ppm-25ppm	0.9976	Thiophene	0.1ppm-50ppm	0.9997
Carbonyl sulfide	2ppm-25ppm	0.9990	2-Methyl-1-propanethiol	0.1ppm-10ppm	0.9991
Methanethiol	0.1ppm-10ppm	0.9987	Diethyl sulfide	0.1ppm-10ppm	0.9992
Ethanethiol	0.1ppm-50ppm	0.9998	1-Butanethiol	0.1ppm-10ppm	0.9990
Dimethyl sulfide	0.1ppm-10ppm	0.9991	Methyl disulfide	0.1ppm-10ppm	0.9987
Carbon disulfide	0.1ppm-10ppm	0.9990	2-Methylthiophene	0.1ppm-50ppm	0.9991
2-Propanethiol	0.1ppm-50ppm	0.9999	3-Methylthiophene	0.1ppm-50ppm	0.9996
2-Methyl-2- propanethio	0.1ppm-10ppm	0.9989	Diethyl disulfide	0.1ppm-10ppm	0.9990
1-Propanethiol	0.1ppm-10ppm	0.9990	5-Methylbenzothiophene	0.1ppm-10ppm	0.9984
Ethyl methyl sulfide	0.1ppm-50ppm	0.9998	3-Methylbenzothiophene	0.1ppm-50ppm	0.9988

Configuration to test SCD Quenching Issue

Traditional PDMS column– SCD Ceramic Reaction Tube Deactivation

Traditional PDMS column- Coking (desensitization) of Reactor Tubes

Overlay of before (green) and after 2 x 2 uL neat toluene Injection (red)

New DB-Sulfur SCD column

Last Three Runs of the day (n=20, 100 ppmv std)

Sulfides and Thiophenes (n=5)

Chromatograms of 50 ppm_v each of sulfides and mercaptans and 500 ppm_v each of hydrocarbons in nitrogen

Chromatogram of carbon disulfide and alkyl mercaptans

Chromatogram of sulfides, disulfides, thiophene, alkyl thiophenes, benzothiophene, and alkyl benzothiophenes

Chromatogram volatile sulfur odorants in commercially available natural gas

Conclusions

The new Agilent J&W DB-Sulfur SCD with low bleed and excellent inertness can provide:

- Excellent resolution and peak shape
- Excellent linearity at ppm to ppb levels
- Excellent repeatability
- Less ceramic tube fouling/less detector maintenance
 Before detector maintenance every 3 weeks

Now – over 6 months, no SCD maintenance!

Application Notes and Literature:

ASTM D5623 and ASTM D5504

Brochure number 5991-2977EN

New Column Summary

PLOT PT columns

- Similar selectivity to non-PT columns
- Virtually eliminates problems due to particle shedding
- Possible to use MS detection, valves and CFT worry-free

DB-Sulfur SCD columns

- Perfect for dependable volatile sulfur compound analysis utilizing the SCD

