Understanding the GC Inlet

Which one is more appropriate for your method?

Simon Jones GC Applications Engineer

Types of Inlets

Purged Packed

Split / Splitless

Cool On Column

Programmable Temperature Vaporization

Volatiles Interface

Multi Mode Inlet

Where to Begin???

What are the requirements of the method?

Trace level analysis?

% level analysis?

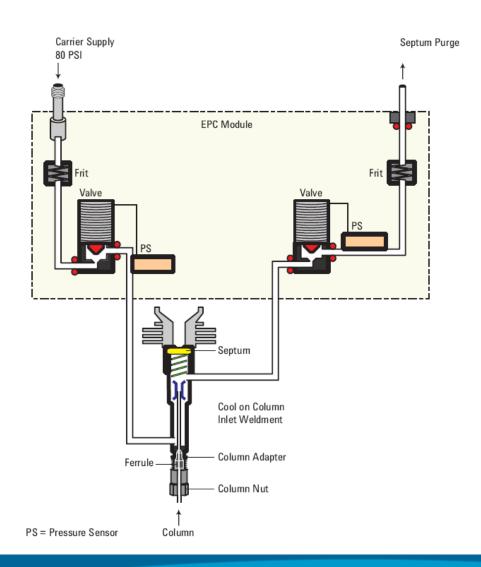
High temperature application?

Packed column??

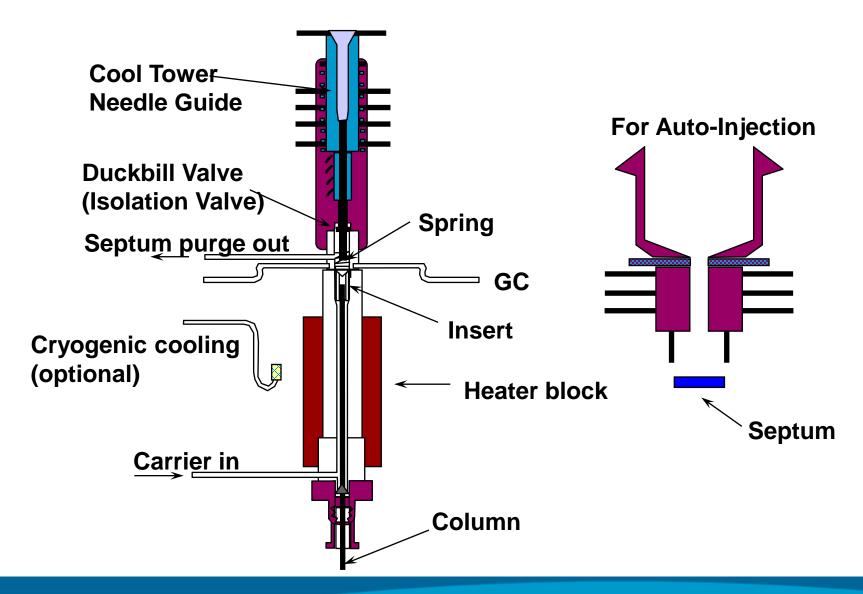
What do you know about the sample?

Dirty or clean?

Residual solvent?


Volatility range?

Inlet Use Guide


Inlet	Column	Mode	Sample Concentration	Comments	Sample to Column
Split / Splitless	Capillary	Split Purged Split Splitless Purged Splitless	High High Low Low	Most commonly used inlet. Very Flexible	Very Little Very Little All All
Cool-On-Column	Capillary	N/A	Low or labile	Minimal discrimination and decompositoin	All
Packed	Packed Large Capillary	N/A N/A	Any Any	OK if resolution is not critical	All All
Programmed Temperature Vaporizaton	Capillary	Split Pulsed Split Splitless Pulsed Splitless Solvent Vent	High High Low Low Low	Not great for HOT injections. Can concentrate analytes and vent solvent	Very Little Very Little All All Most
Volatiles Interface	Capillary	Direct Split Splitless	Low High Low	Purge & Trap / Headspace	All Very Little All
Multi-Mode	Capillary	Split Pulsed Split Splitless Pulsed Splitless Solvent Vent	High High Low Low Low	Flexibility of standard S/SL inlet and PTV	Very Little Very Little All All Most

COC Flow diagram

Cool-On-Column

COLD ON-COLUMN INJECTION PORT

COC – Mode of Operation

Oven Track Mode

Inlet temperature stays 3°C above the oven temperature

Temperature Programmed Mode

Can program 3 temperature ramps

COC Benefits

Sample Discrimination does not occur

If operated correctly, accurate and precise results are obtained

Can be used to gauge liner activity

Very Gentle sample introduction – limits decomposition of analytes. Good for Labile compounds!

Used for high temperature applications.

Biodiesel

COC inlet

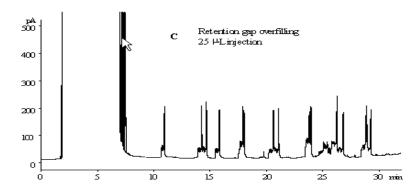
Key parameters to be used:

*Starting inlet temperature must be below the boiling point of the solvent being used!!!

Guard column / Retention Gap strongly recommended to help protect the analytical column, and focus the sample

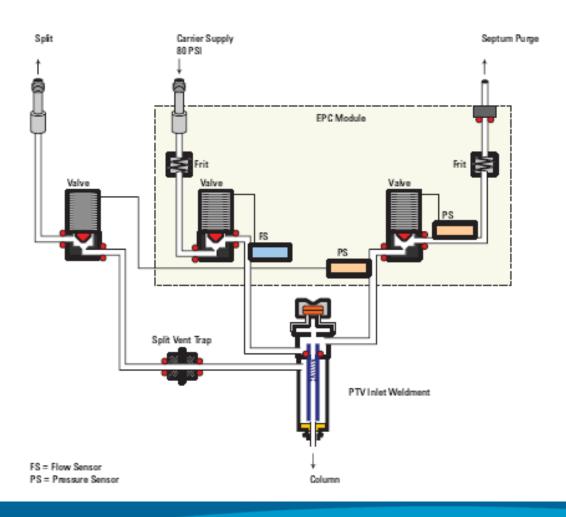
COC Troubleshooting Tips

Bent needles


- using the wrong size needle or insert
- insert has burrs

Plugged needles due to septum coring

Lost peak shape


 examine inlet end of column with a magnifier and flashlight, looking for discoloration or particles

Injection volume too large

PTV Flow Diagram

Programmable Temperature Vaporization

PTV modes of operation

Split Major component analysis

Pulsed Split Best used with low split flows

Splitless Trace level analysis

Pulsed Splitless More efficient sample transfer

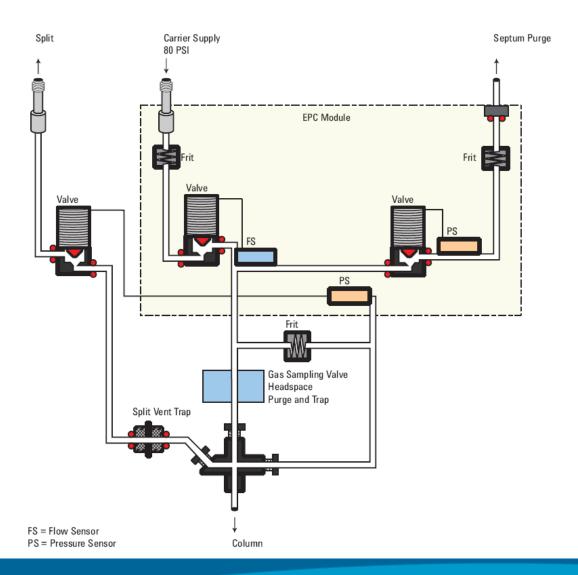
Solvent Vent Large Volume injections

PTV Inlet

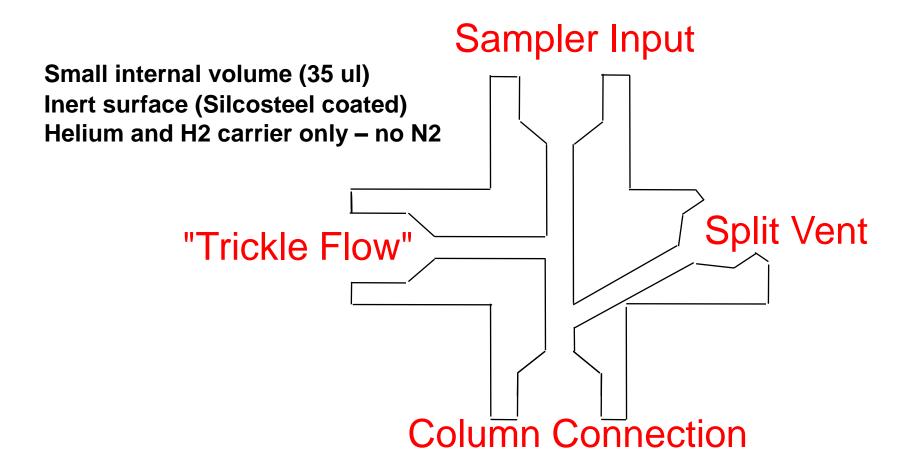
Not good for Hot injections

Minimal inlet discrimination – closest to COC

Large volume injections


Solvent vent mode

Can eliminate volatile components of the sample


Rapid Heating and Cooling

Cold trapping of Gas Injection

Volatiles Interface

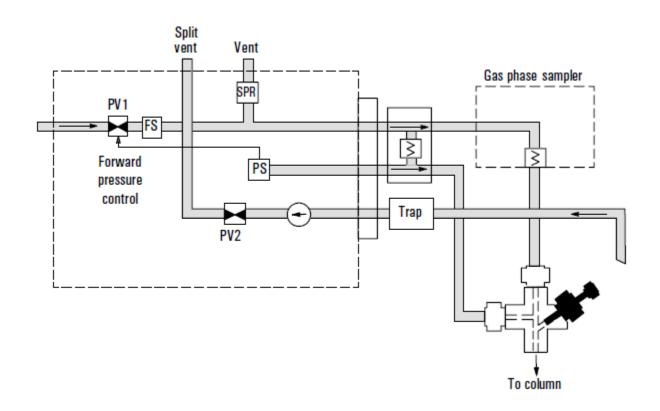
Volatiles Interface

Volatiles Interface Modes of Operation

Split

Splitless

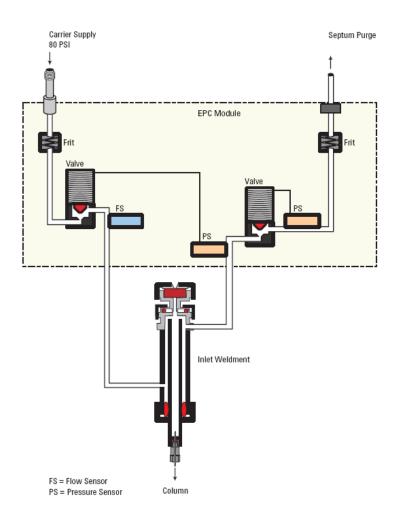
Direct

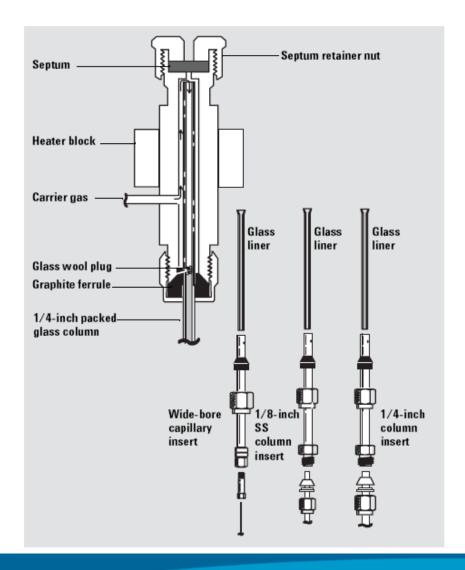

Volatiles Interface

Splitless Injection

Split Vent **SPR** Pre-Run to Sampling End Vent SPR Frit block Sampler Carrier Supply **∑**j **Total Flow** control loop Trap Valve closed **EPC Module Trickle** Flow Switches to Forward Flow **Pressure** Sense Control to provide pneumatic Line stability during "Desorb" To Column - while the sampler **Cryo-Focus** Recommended trap is in the carrier flow path.

Volatiles Interface


Direct Injection -- idle


Volatiles Interface -- Uses

Used for direct connection between Headspace / Purge & Trap Cannot do Manual Injections!

Purged Packed Inlet

Purged Packed

PP Inlet Uses

Packed columns

Can be used with 0.53 mm, or 0.32 mm ID columns when high flows ~10 mL/min are used

When column dimensions are not defined, the inlet functions in a 'flow' mode

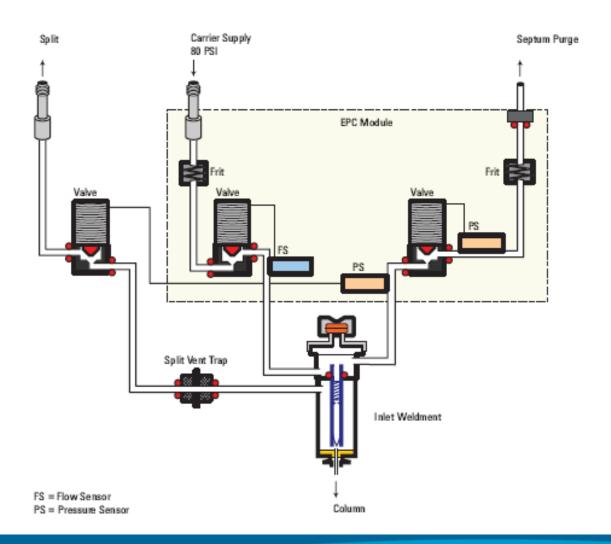
Packed columns best run in flow mode, capillary columns preferred to run in pressure mode.

PP Inlet

Very small expansion volume

More active than most inlets

Glass liner helps minimize activity


Glass packed columns have best reproducibility

Small surface area of the liner minimizes the amount of active sites

Not Recommended for Capillary Columns smaller than 0.53 mm

Split/Splitless Inlet

S/SI Modes of Operation

Split

Pulsed Split

Splitless

Pulsed Splitless

Split Injections - Considerations

Dirty Samples are OK - backflushing Wide Analyte Boiling Range

Solvent Properties

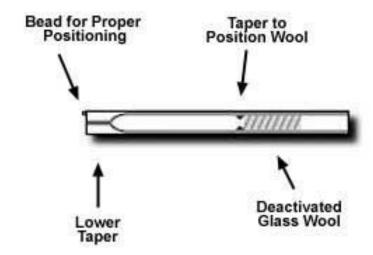
- Wide Boiling Point Range
- Wide Polarity Range

Discrimination can be due to liner or inlet temperature

Split Injections - Inertness

More inert than splitless

- Higher velocity through the inlet
- Less exposure to inlet hardware


Glass wool is a compromise

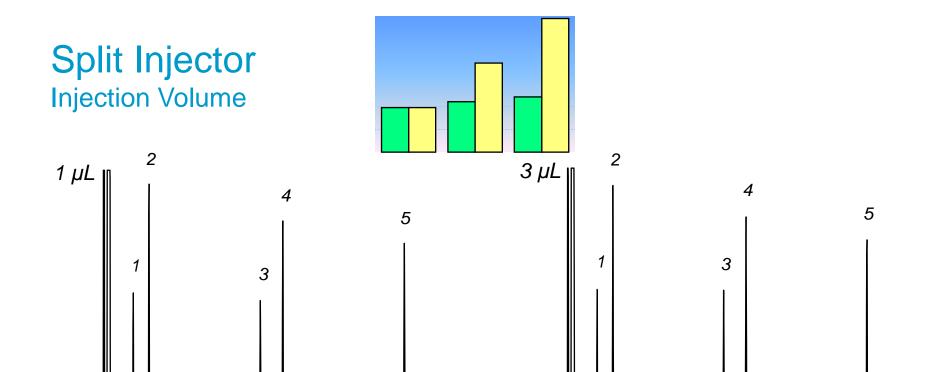
- Exhibits some activity
- Greatly improves fluidic performance mixing of the vaporized sample is important for uniform splitting

Split Injections - recommended Liners

Agilent p/n 5190-2295 Wiped needle improves

- precision
- peak shape
- discrimination

Split Injections - Maximizing Sensitivity


Increase Injection Volume

- liner dependent (use the Pressure-Volume Calculator)
- 2 uL maximum

Reduce Split Ratio

- go from 50:1 to 10:1
- 5:1 practical lower limit for liquid injections (for 250 320 um i.d. columns)
- 1:1 possible for gas injections with correct liner

Use Pulsed Injection

DB-1, 15 m x 0.25 mm I.D., 0.25 µm 60°C for 1 min, 60-180°C at 20°/min; Helium at 30 cm/sec 1. n-heptane 2. toluene 3. n-decane 4. n-butylbenzene 5. n-tridecane

5

Time (min.)

6

5

Time (min.)

Split Injections - Pulsed

May be easiest approach for active analytes (example: 2,4 dinitrophenol)

Using "pulsed mode" may result in peak doublets due to system ramping down at 99 psi/min

Instead, use "ramped pressure" or "ramped flow" mode to do your pulse

- set initial pressure (or flow) to 3x-5x your normal starting setpoint
- hold this higher pressure for 0.1 0.3 min
- ramp at 20 psi/min (or 10 mL/min/min) down to your normal starting setpoint

Split Injections - Fast GC Considerations

Faster than splitless because you can start at a higher initial oven temp, thereby decreasing cycle time

Easiest of the injection techniques to speed up

For 100 um i.d. and smaller columns

narrower i.d. liners may be necessary to maintain input peak width

Using higher flows with normal columns

- Loose some resolution
- Better inertness
- Larger injections possible

Split Injections - Troubleshooting

Column pressures <10 psi

 The pressure pulse from evaporating solvent can cause discrimination and poor precision

Liner residence times < 0.5 sec (> 200 ml/min)

poor mixing will cause discrimination

No glass wool

Solvents with high expansion ratio Backflash

Column position - top to bottom, side to side

Large bore, short columns with a high split ratio

Splitless Injections - Considerations

Dirty samples are OK - backflushing

Analyte Boiling Range - Wide (but narrower than split)

- early eluters need bp difference vs solvent
 Solvent Properties
- Wide Boiling Point Range
 - but consider bp of earliest eluting analyte
- Wide Polarity Range (but narrower than split)
 - Water and Methanol worst choices
 - Greater Sample Residence Time
 - Lower Inlet Temperatures can be used
 - Better for Labile Compounds

Splitless Injections - Inertness

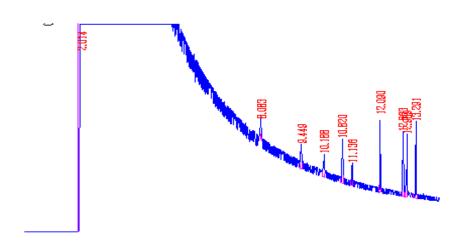
Less inert than COC

liner and inlet interaction

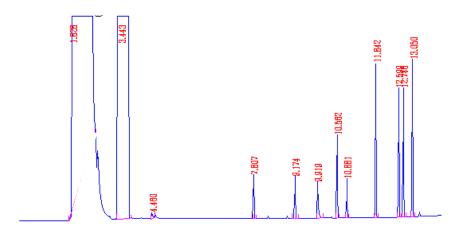
Less inert than Split

- longer residence time in inlet and on glass wool
- used for trace analysis, so there's a greater chance of analyte loss

Splitless Injections - Discrimination

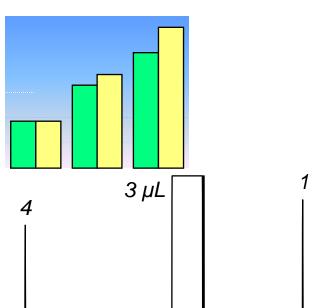

Improper purge time

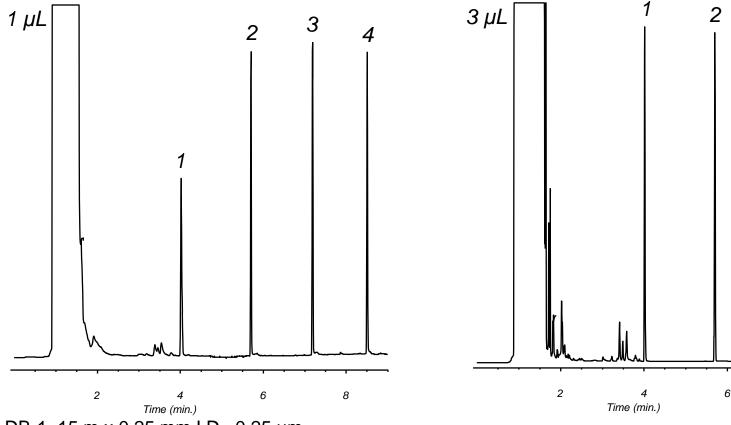
- short purge times cause loss of late eluters
- long purge times cause solvent tail interference with early eluters


Improper initial oven temp

- too high of a temp prevents solvent effect and a loss of early eluters
- too low of a temp extends run time

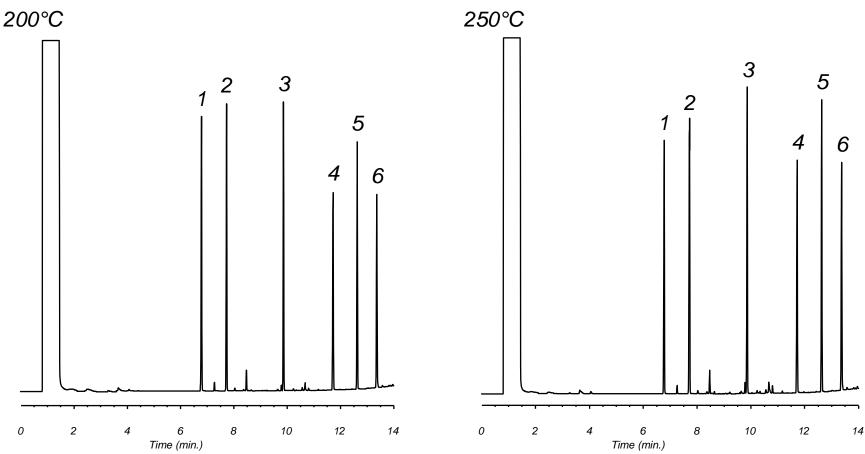
Splitless Injections – Splitless Time (purge time on)




Purge time too long results in large solvent tail

0.75 min purge time clips solvent tail

Splitless Injector Injection Volume



DB-1, 15 m x 0.25 mm I.D., 0.25 µm 60°C for 1 min, 60-180°C at 20°/min; Helium at 30 cm/sec 1. n-decane 2. n-dodecane 3. n-tetradecane 4. n-hexadecane

Splitless Injector

Injector Temperature

DB-1, 15 m x 0.25 mm l.D., 0.25 μm 50°C for 0.5 min, 50-325°C at 20°/min

50°C for 0.5 min, 50-325°C at 20°/min; Helium at 30 cm/sec

Phthalates: 1. dimethyl 2. diethyl 3. dibutyl 4. benzylbutyl 5.bis(2-ethylhexyl) 6. dioctyl

Splitless Injector Sample Re-focusing

Sample re-focusing improves efficiency

Use low column temperature to refocus solvent

- called the solvent effect

Use cold trapping

Splitless Injector Solvent Effect

Initial column temperature at least 10°C below sample solvent boiling point

Required to obtain good peak shapes unless cold trapping occurs

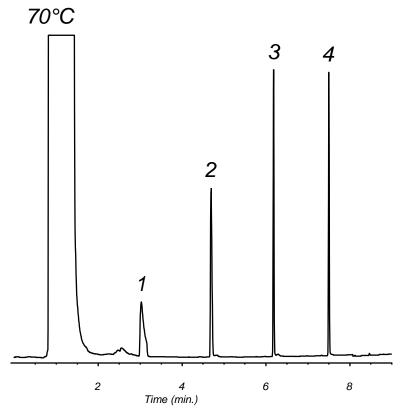
Rule of thumb, if solute BP >150°C above initial column temperature, the solute will cold trap

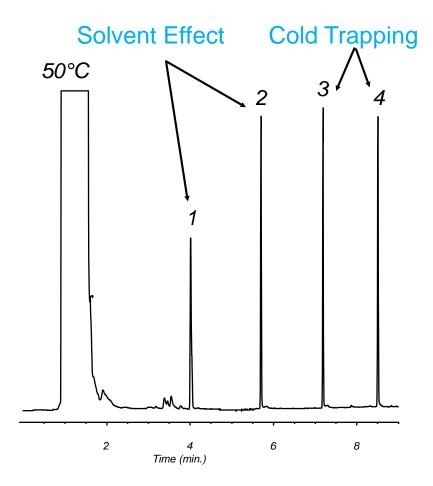
Cold trapping has greater efficiency than solvent effect

1. Solvent and solutes

Solvent film

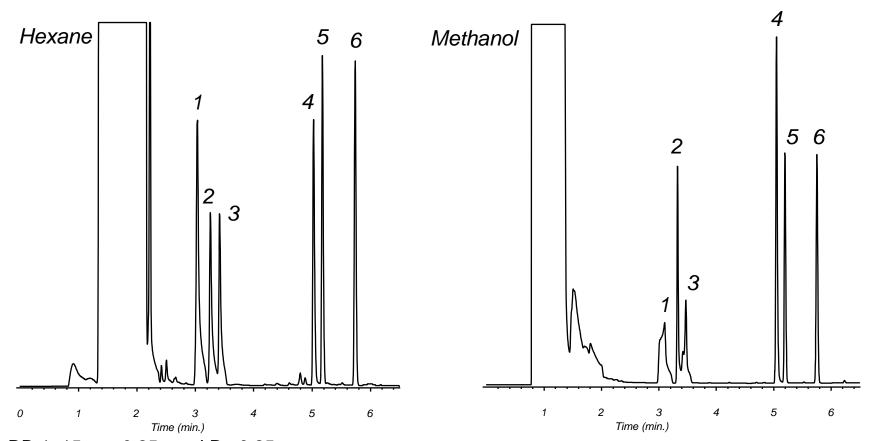
3.


0 0 0

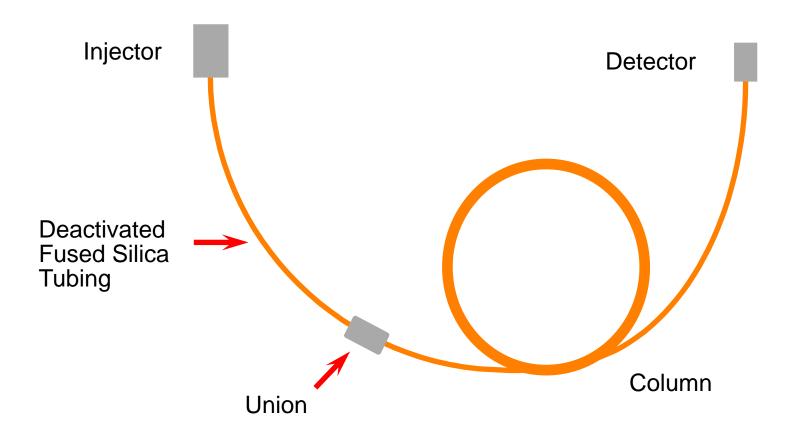

4.

Splitless Injector

Initial Column Temperature Hexane Solvent (BP = 68-69°C)



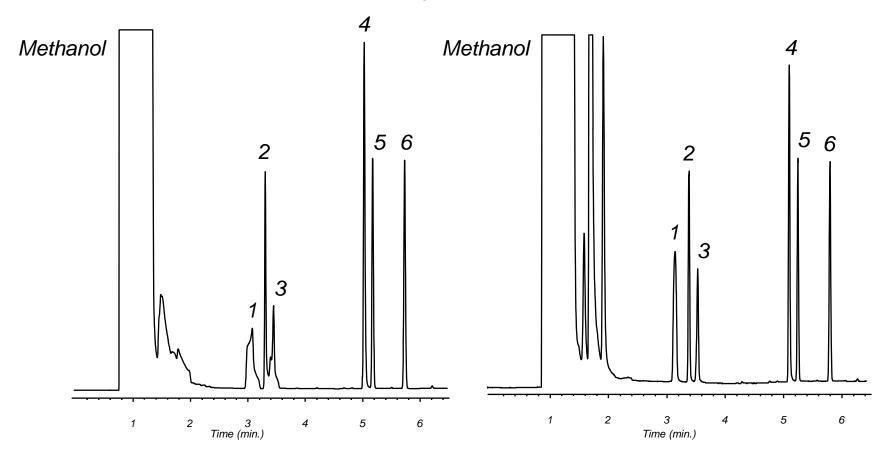
DB-1, 15 m x 0.25 mm I.D., 0.25 µm 50°C or 70°C for 0.5 min, to 210°C at 20°/min; Helium at 30 cm/sec 1. n-decane 2. n-dodecane 3. n-tetradecane 4. n-hexadecane


Splitless Injector

Reverse Solvent Effect/Polarity Miss-Match

DB-1, 15 m x 0.25 mm I.D., 0.25 μ m 50°C for 1 min, 50-210°C at 20°/min; Helium at 30 cm/sec 1.1,3-DCP 2.3-hexanol 3. butyl acetate 4.1-heptanol 5.3-octanone 6.1,2-dichlorobenzene

Retention Gap Also Called A Guard Column



Usually 2-10 meters long and same diameter as the column (or larger if needed)

Splitless Injector

3 m x 0.25 mm I.D. Retention Gap

DB-1, 15 m x 0.25 mm I.D., 0.25 μ m 50°C for 1 min, 50-210°C at 20°/min; Helium at 30 cm/sec 1. 1,3-DCP 2. 3-hexanol 3. butyl acetate 4. 1-heptanol 5. 3-octanone 6. 1,2-dichlorobenzene

EPC for Splitless Pulsed Injection

Pressure Pulse contains sample expansion and transfers analytes to the column faster.

Pulsed Splitless

- sample containment more critical than in split injection
- sharper peaks than in traditional splitless injection
- two new parameters to set:
 - pulse pressure and pulse time

Typical starting point

- Pulse pressure = double resting pressure
- Tie pulse time to purge time

Splitless Injections – Fast GC Considerations

Slower than split because you must start at a lower initial oven temp, thereby increasing cycle time

Difficult to use with 100 um i.d. columns

- smaller injection size
- smaller liner volume
- retention gap

Using higher flows with normal columns

- Loose some resolution
- Better inertness
- Larger injections possible

Splitless Injections – Starting

Injection Volume = 1 uL

Check the Pressure-Volume Calculator

Initial Oven Temp = 10°C < solvent boiling point

Purge Flow = 20 to 60 mL/min

Purge Time = 0.75 min

Sweep with 2 liner volumes of carrier gas

No pulse

Try to avoid water and methanol as solvents

Splitless Injections – Troubleshooting Tips

Injecting too much

- column overload = poor peak shape
- inlet overload = poor reproducibility
 - ghost peaks in subsequent blanks are possible

No glass wool

- poor mixing
- dirt on column

Glass wool

reacts with trace components

Splitless Injections – Troubleshooting Tips

If you think you have an inlet issue related to splitless injections

then

Run a 10:1 split injection

• or

Make up a standard at 10x concentration and run a 10:1 split injection

When I changed from split to splitless I didn't see an increase in response!!!

Purge Time set to '0'

Split Vent Trap

What is it???

Where is it???

Improved S/SI inlet Inertness

Ultra Inert Gold Seal

Guard Chip

Gold Seal **Guard Column**

Split vs. Splitless Injection Technique - Summary

SPLIT:

- -Best Injection Efficiency
- -Less sensitive
- -Prone to discrimination
- -Proper liner choice more important

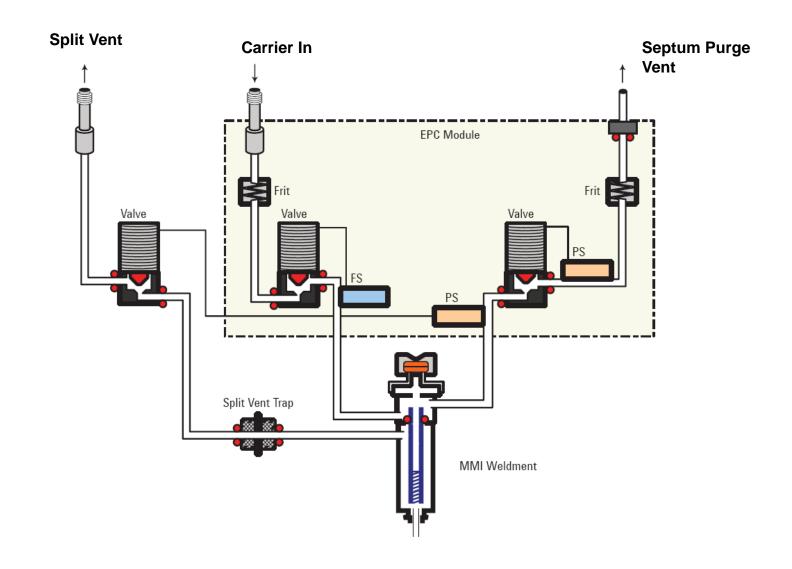
SPLITLESS:

- -Poor Injection efficiency
 - -solvent effect
 - -retention gap
- -Good for Trace level detection
- -Solvent/column polarity match more critical

but...what if you are already running maximum injection volume, pulsed splitless and still need more sensitivity...

MultiMode Inlet

7890 standard pneumatics


7890 standard capillary fitting

7890 turn-top

Uses 7890 S/SL liners, septa and o-rings

MMI Inlet

Programmable Temperature Vaporizing (MMI) Inlet – injection modes

Hot split/splitless (also pulsed)

- similar to the S/SL inlet using the same liners
- all previous S/SL discussions apply here

Cold split/splitless (also pulsed)

- Significantly more inert than hot splitless
- Can inject 3-5 uL with no solvent venting
- Better sensitivity than hot splitless because large vapor cloud is not formed which travels outside the liner and portions are lost

LVI-Solvent Vent

- An extension of cold splitless
- Large volume injection for maximum sensitivity

Direct Mode

Uses a Direct Connect Liner – simulates COC * NO purge

MultiMode (MMI) Inlet Features

Hardware

Temperature range of -160C to 450C

Heating @ 15C/sec (900C/min)

Septum/Liner Easily Exchangeable using Turn Top Inlet

Injection Modes: Hot S/SL, Cold S/SL, all in pulsed mode, solvent vent mode, residue removal mode

Support for single stroke injections from 0.1 μ L to 250 μ L

EPC Compatible with Packed Liners

Compatible with 7890A, 5975C, 7683, CTC Combi PAL

Software

Ten temperature ramps

Wizard for setting up large volume injections

Fully integrated into ChemStation, MSD ChemStation, EZChrom, MassHunter

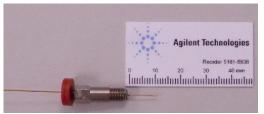
MultiMode Inlet Solves Many Problems

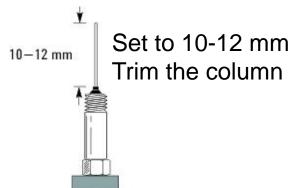
Performing large volume injection (LVI) of relatively clean samples?

- programmable injection slows solvent evaporation and maximizes analyte transfer into the column/detector
- decrease MDL by injecting more sample

Injecting dirty samples?

- matrix vent, backflush and easy liner changing minimize dirty sample affects


Performing analyses of high molec. wt. and/or thermally labile compounds?


- temperature programming of Multimode inlet elutes analytes at the lowest possible temperature, minimizing breakdown and absorption
- discrimination of high molec. wt. compounds is minimal allowing HT GC

MultiMode GC Inlet - Cold Injections

- No syringe-needle discrimination; Minimal inlet discrimination
- No special syringes, liners or consumables
- Large volume injection (5ul to 250ul) lower detection limits
- Solvent vent/matrix vent decrease interference / maintenance
- Flexibility (hot/cold split/splitless, temperature programmed vaporization)
- Cold trapping in liner improves chromatographic peak shape, resolution
- Capillary column backflush with CFT decreases cycle time, maintenance

MMI Column Installation

- Graphite ferrules are recommended over Vespel
- No SilTite Ferrules

Thread the column into the column adapter – Stabilize the column adapter with a 5/16" wrench

Tighten the column with a 1/4" wrench – continue to hold the column adapter with a 5/16" wrench

MMI –Intuvo GC

Still Same function

Uses Same Liners as 7890

Uses a Guard chip

Acts like a gold seal

Inlet Column Installation Guide

Inlet	Diagram	Procedure
Split/Splitless	4-6 mm	Place a septum over the column, then the column nut and ferrule. Trim the end of the column with a column cutter. Pull the column back so that 4-6 mm of column is extending past the end of the ferrule. Thread the column nut and column into the inlet and tighten slightly past where the column grabs
Purged Packed	1-2 nm ¥	- retighten after heating. Place a septum over the column, then the column nut and ferrule. Trim the end of the column with a column cutter. Pull the column back so that 1-2 mm of column is extending past the end of the ferrule. Thread the column nut and column into the inlet and tighten slightly past where the column grabs – retighten after heating.
Multimode	10-12 mm	NOTE: Make sure the column adapter nut on the inlet base is fully threaded on and spinning freely – Collar Up! Make sure the collar Up! Tighten with two wrenches - 1/4" and 5/16" To prevent damage the inlet threads.
Cool On Column		Insert the column all the way into the inlet until you feel the spring tension – do not withdraw. The column cut is critical. Tighten with two wrenches - '4" and 5/16" to avoid damaging the inlet.
PTV	Mark column here	There should be 17mm of column above the graphpak ferrule – the graphpak ferrule should be installed with the graphite end towards the inlet base. The column nut is slotted. Use a 5 mm wrench to tighten the fitting.
Volatiles Interface	- Gam	There is a longer column nut for the VI so that you don't have to remove the inlet block. Part Number - G3504-20504

Column Installation / Pre-swaging tool

Inlet Liners

Split/Splitless -- MMI Liners

Description		Volume (µL)	ID (mm)
Split Inlet Liners			. ,
- : : : : : : : : : : : : : : : : : : :	Low pressure drop, Ultra Inert Liner with glass wool	870	4
	Straight, Ultra Inert Liner with glass wool	990	4
Splitless Inlet Liners			
K	Single taper, Ultra Inert Liner	900	4
	Single taper, Ultra Inert Liner with glass wool	900	4
\vdash	Splitless, double taper Ultra Inert Liner, no wool	800	4
¥ _A ∀as id	Dimpled, splitless, Ultra Inert Liner	200	2
■ · • • V rd			
	Splitless, straight, Ultra Inert Liner	250	2
<u>,</u>	Straight, Ultra Inert Liner	60	1
-	Straight Ultra Inert Liner for SPME	35	0.75

Purged Packed Inlet liner

Disposable glass liner, 170 µL internal volume

PTV liners

ID (mm)	Volume (µL)				
Liners for Septumless PTV Inlet, G3501A, G3502A, G3503A					
2	180				
2	200				
1.8	150				
1.5	112				
3.4	713				
3.4	668				
	2 2 1.8 1.5				

Inlet Tools

http://www.agilent.com/en-us/support/gas-chromatography/gccalculators

Conclusions

Try to understand the sample as much as you can.

Residues, concentrations, solvent expansion

Packed columns are used with a PP inlet only

MMI or PTV for large volume injections (trace analysis)

MMI, PTV or COC for Labile compounds, or high bp compounds

SSL inlet is the most common

MMI is a combination of the SSL and PTV gives more flexibility does have issues with cleaning – Intuvo addresses that

Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 Option 3, Option 3:

Option 1 for GC/GCMS Columns and Supplies

Option 2 for LC/LCMS Columns and Supplies

Option 3 for Sample Preparation, Filtration and QuEChERS

Option 4 for Spectroscopy Supplies

Available in the USA 8-5 all time zones

gc-column-support@Agilent.com

<u>lc-column-support@agilent.com</u>

spp-support@agilent.com

spectro-supplies-support@agilent.com