

Extraction and analysis of plastics in rice samples using accelerated solvent extraction and pyrolysis-gas chromatography-mass spectrometry

Authors

Jake O'Brien, Elvis Okoffo, Cassie Rauert, Kevin Thomas University of Queensland,

Brisbane, Australia

Keywords

Accelerated solvent extraction (ASE), Dionex ASE 350 Accelerated Solvent Extractor, microplastics, nanoplastics

Goal

To describe a new method for the extraction and analysis of microplastics using accelerated solvent extraction

Introduction

Increased production and use of plastics have resulted in growth in the amount of plastic debris accumulating in the environment. This plastic debris can potentially fragment into smaller pieces, with particles <5 mm and <0.1 µm defined as microplastics (MPs) and nanoplastics (NPs), respectively.¹ Over the past decades, an increasing number of studies have reported the occurrence of MPs/NPs in the aquatic and terrestrial environments, including oceans, rivers, lakes, air, soil, and dust.²⁻⁶ Most of the previously reported studies have typically relied on visual inspection and spectroscopic imaging approaches, reporting data on the size, shape, color, number, and polymer type of particles. These measurements may not reflect the total mass concentration of polymers in samples because the approaches are typically limited by size. The number of studies now reporting mass-based concentrations of common plastics is growing, as these methods can report the total plastic content of samples, including plastics in both the

thermo scientific

MPs and NPs size ranges. This is particularly important for assessing plastic contamination of food, because the extent of human exposure is relatively unknown, particularly exposure through the diet.⁷

The present study uses the extraction and analysis methods previously reported by Okoffo et al.⁸ using a Thermo Scientific[™] Dionex[™] ASE[™] 350 Accelerated Solvent Extractor (ASE system) coupled with pyrolysis gas chromatography/mass spectrometry (Pyr-GC/MS) to extract and quantify the six (6) most common polymers from rice food samples. Extraction and quantification of the polymers polyethylene (PE), polystyrene (PS), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), and polyvinyl chloride (PVC) were validated using matrix-spiked samples of store-bought rice, and a selection of common rice products from major supermarket chains was assessed for total plastic content.

Specifically, this application note describes the suitability of using the Dionex ASE 350 system to efficiently and quantitatively extract MPs/NPs to allow their measurement by Pyr-GC/MS to determine MPs/NPs contamination in consumer rice products, as previously reported.⁹ The advantage of this methodology is that it is particle size independent and provides concentrations as a total mass of plastic per sample.

Experimental

Accelerated solvent extraction of MPs/NPs

Rice samples were subjected to ASE extraction using a validated method previously reported.⁸ Samples were freeze-dried and milled to fine powder with a commercial grinder (Extech equipment Pty. Ltd., Victoria, Australia) for 30 min.⁸ Following this, 1.0 g of the homogenized sample was transferred into a pre-cleaned 10 mL stainless steel ASE extraction cell with high temperature Viton[™] O-rings (Thermo Scientific[™] Dionex[™] ASE[™] extraction cell O-Ring, P/N 056325) and glass fiber filters (Thermo Scientific[™] Dionex[™] 100/150/200/300/350 extraction cell filters, P/N 068092) in the endcaps and cell base, and the void volume filled with Hydromatrix[™] (inert diatomaceous earth sorbent, pre-cleaned with DCM). The cells were then spiked with 40 µg of deuterated polystyrene (d_e-PS) internal standard and extracted for MPs/NPs on a Dionex ASE 350 system using the parameters listed in Table 1. Samples were extracted with dichloromethane (DCM) at 180 °C and 1,500 psi with a static time of 5 min using two extraction cycles (Table 1). Immediately after extraction, 80 µL of the extract were transferred into a pyrolysis cup, evaporated for 30 min at room temperature in a fume hood, and loaded onto an autosampler for Pyr-GC/MS analysis. It was previously shown that the six polymers investigated remained sufficiently dissolved for over 2.5 hours post extraction^{8,10} thus allowing sufficient time to aliquot into the pyrolysis cups for analysis.

Parameter	Extraction parameters
Cell type	Stainless steel
Extraction solvent	Dichloromethane (DCM)
Extraction/Oven temperature (°C)	180
Static time (s)	5
Cycles	2
Rinse volume (%)	80
Purge time (s)	75
System rinse volume (mL)	9
Heating time (min)	9
Pressure (psi)	1,500

Table 1. Accelerated solvent extraction (Dionex ASE 350 system) settings

Pyr-GC/MS parameters

The extracts were analyzed for MPs/NPs using the double-shot component of a multi-shot micro-furnace pyrolizer equipped with an auto-shot sampler and coupled to a GC/MS single quad system.^{8,9} The first pyrolysis shot (ramped from 100 to 300 °C) of the double-shot method was used as a clean-up step to thermally desorb/remove the potentially interfering volatile and semi-volatile organic materials co-extracted from the rice samples. The second pyrolysis shot (at 650 °C) was used to quantitatively measure MPs/NPs identified in samples as previously described.^{8,9} To improve selectivity in the quantification of PET, a second aliquot of the extracted sample was derivatized by adding 10 μ L of tetramethylammonium hydroxide (TMAH; 25%)

in methanol, Sigma-Aldrich) to an additional aliquot of the sample in a pyrolysis cup, prior to analysis as previously described.¹¹

Recoveries of spiked MPs/NPs in rice samples

Recoveries of target MPs/NPs from rice were assessed through extraction of basmati rice samples (1 g each) spiked with 2 mg/g each of the six plastics (equating to 5 µg/injection). The spiked rice samples were ASE extracted as described above. Three replicates of spiked rice samples were prepared and analyzed to identify the error in the quantification. In addition, three rice samples without spiking were analyzed as blank controls to determine the background of the spiked polymers. Acceptable ideal recoveries of the target MPs/NPs in rice samples were between 81% and 130% (Table 4).

Table 2. Conditions for pyrolysis-GC/MS measurements

Parameter	Setting
Micro-furnace Multi-Shot Pyrolyzer™ (Double-Shot	t analysis) EGA/PY-3030D (Frontier Lab)
First-shot furnace temperature (thermal desorption)	Ramped from 100 °C \rightarrow 20 °C /min \rightarrow 300 °C (1 min)
Second-shot furnace temperature (pyrolysis)	650 °C
Interface temperature	320 °C
Pyrolysis time	0.20 min (12 s)
GC	
Column	Ultra Alloy [™] 5 capillary column (30 m, 0.25 mm i.d., 0.25 μm film thickness) (Frontier Lab)
Injector port temperature	300 °C
Column oven temperature program	40 °C (2 min) \rightarrow (20 °C /min) \rightarrow 320 °C (14 min)
Injector mode	Split/splitless (split 50:1)
Carrier gas	Helium, 1.0 mL/min, constant linear velocity
MS	
Ion source temperature	250 °C
Ionization energy	Electron ionization (El); 70 eV
Scan range	40 to 600 <i>m/z</i>

Table 3. List of target MPs/NPs and their respective specific ions used for quantification

Plastic type	Pyrolysis product	Indicator ions (<i>m/z</i>)	Molecular ion (<i>m/z</i>)	LOQ (µg/g)	
PP	2,4-dimethyl-1-heptene	70, 83, 126	126	1.25	
PS	5-hexene-1,3,5-triyltribenzene (styrene trimer)	91, 117, 194, 312	312	0.94	
PET	Dimethyl terephthalate* Vinyl benzoate	194, 163 105, 77, 148, 51	194 148	2.86	
PC	Bisphenol A (BA)	213, 119, 91, 165, 228	242	1.73	
PE	n-alkene (C ₁₀ , C ₁₂ , C ₁₄)	83, 111, 140	140, 196	3.95	
PVC	Naphthalene	128, 132, 146, 116, 102	128	3.97	
Internal standard					
Polystyrene-d ₅	Styrene monomer	109, 82, 54, 107, 108			

*Only after TMAH treatment

Table 4. Summary of recovery (%) results

	PE	PP	PET (VB)	PET*	PS	PVC	PC
Spike 1	95	96	99	91	86	80	128
Spike 2	75	75	97	66	96	73	131
Spike 3	86	78	97	87	90	93	132
Avg	85	83	97	81	90	82	130
St Dev	10	11	1	13	5	10	2

*After TMAH treatment, VB: quantification using vinyl benzoate

Table 5. The concentrations of MPs/NPs detected among the different rice treatments and samples

	Cor	ncentration (µg/g	of polyethy g dw)	lene	Concentration of polypropylene (µg/g dw)				Concentration of polyethylene terephthalate (μg/g dw)				Overall (μg/g dw)			
	Not shaken		Shaken		Not shaken		Shaken		Not shaken		Shaken		Not shaken		Shaken	
Sample	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed	Not washed	Washed
1	317	143	207	166	3	3	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<></td></lod<>	<lod< td=""><td>320</td><td>146</td><td>217</td><td>166</td></lod<>	320	146	217	166
2	314	132	260	209	3	<lod< td=""><td>3</td><td><lod< td=""><td>4</td><td><lod< td=""><td>8</td><td>17</td><td>322</td><td>132</td><td>272</td><td>226</td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td>4</td><td><lod< td=""><td>8</td><td>17</td><td>322</td><td>132</td><td>272</td><td>226</td></lod<></td></lod<>	4	<lod< td=""><td>8</td><td>17</td><td>322</td><td>132</td><td>272</td><td>226</td></lod<>	8	17	322	132	272	226
З	64	47	55	51	105	<lod< td=""><td><lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<></td></lod<>	<lod< td=""><td>168</td><td>47</td><td>55</td><td>54</td></lod<>	168	47	55	54
4	94	51	56	51	14	10	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<></td></lod<>	<lod< td=""><td>108</td><td>61</td><td>56</td><td>51</td></lod<>	108	61	56	51
5	60	45	56	45	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<></td></lod<>	<lod< td=""><td>64</td><td>45</td><td>56</td><td>45</td></lod<>	64	45	56	45
6	57	48	67	53	3	<lod< td=""><td>7</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	7	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<></td></lod<>	<lod< td=""><td>61</td><td>48</td><td>74</td><td>53</td></lod<>	61	48	74	53
7	55	58	55	54	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<></td></lod<>	<lod< td=""><td>59</td><td>58</td><td>55</td><td>54</td></lod<>	59	58	55	54
8	60	46	57	46	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<></td></lod<>	<lod< td=""><td>63</td><td>46</td><td>57</td><td>46</td></lod<>	63	46	57	46
9	60	54	57	54	3	<lod< td=""><td>3</td><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<></td></lod<>	<lod< td=""><td>63</td><td>54</td><td>61</td><td>54</td></lod<>	63	54	61	54
10	63	53	54	50	0	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<></td></lod<>	<lod< td=""><td>63</td><td>56</td><td>54</td><td>50</td></lod<>	63	56	54	50
11	79	51	47	45	3	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<></td></lod<>	<lod< td=""><td>82</td><td>54</td><td>47</td><td>45</td></lod<>	82	54	47	45
12	68	52	63	56	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<></td></lod<>	<lod< td=""><td>71</td><td>52</td><td>63</td><td>56</td></lod<>	71	52	63	56
13	51	51	48	60	3	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<></td></lod<>	<lod< td=""><td>54</td><td>51</td><td>48</td><td>60</td></lod<>	54	51	48	60

dw = dry weight

Plastic contamination in commercial rice

Rice samples purchased from a supermarket chain in southeast Queensland, Australia, were extracted using the above method for the target MPs/NPs and in previously published work.9 Different processing conditions were also tested, including shaking the rice in the package in which it was bought (simulating rough transport) or comparing washing the rice and not washing the rice before sample processing. All rice samples contained MPs/NPs (Table 5). Polyethylene was detected in all the samples at concentrations ranging from 45 to 317 µg/g dw. 40% of samples contained polypropylene at a maximum concentration of 105 µg/g dw. Polyethylene terephthalate was quantifiable in 6% of samples, with the highest concentration of 17 μ g/g dw. Polycarbonate, polystyrene, and polyvinyl chloride were not detected in any sample. The predominant polymer by mass was polyethylene (95%), followed by polypropylene (4%) and polyethylene terephthalate (1%). Plastic concentrations in rice samples were differentiated by whether the type of rice was washed/unwashed and shaken/not shaken.

Conclusion

This application note demonstrates that accelerated solvent extraction can extract a variety MPs/NPs including PS, PP, PE, PP, PC, and PVC from rice samples. Combined with Pyr-GC/MS, the Dionex ASE 350 system provides an improved alternative for the identification and mass quantification of MPs/NPs in rice samples. This reduces processing and labor time needed to pre-treat and isolate MP/NP particles from samples before identification or quantification. The approach described here was applied to rice samples that were found to contain between 17 and 317 µg/g dw of MPs/NPs and has been applied elsewhere.^{7,8,10-15} Accelerated solvent extraction shows high potential for effective extraction of the ever-growing list of MPs/NPs from a wide range of environmental samples. It should be noted that the method as presented in this application note is applicable for samples with low (<3%) lipid content when quantifying PE. However, an ASE extraction and analysis of PE in samples with medium to high lipid content (>3%) is optimized elsewhere.7

References

- Redondo-Hasselerharm, P.E.; Gort, G.; Peeters, E.T.H. M.; Koelmans, A.A., Nano- and microplastics affect the composition of freshwater benthic communities in the long term. *Science Advances* **2020**, *6*, (5), eaay4054.
- Zhang, S.; Wang, J.; Liu, X.; Qu, F.; Wang, X.; Wang, X.; Li, Y.; Sun, Y., Microplastics in the environment: A review of analytical methods, distribution, and biological effects. *TrAC Trends in Analytical Chemistry* **2019**, *111*, 62–72.
- Chen, G.; Feng, Q.; Wang, J., Mini-review of microplastics in the atmosphere and their risks to humans. *Science of The Total Environment* 2019, *703*, 135504.
- Ng, E.-L.; Huerta Lwanga, E.; Eldridge, S.M.; Johnston, P.; Hu, H.-W.; Geissen, V.; Chen, D., An overview of microplastic and nanoplastic pollution in agroecosystems. *Science of The Total Environment* 2018, *627*, 1377–1388.
- Okoffo, E.D.; O'Brien, S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Rauert, C.; O'Brien, J. W.; Tscharke, B. J.; Wang, X.; Thomas, K. V., Plastic particles in soil: state of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. *Environmental Science: Processes & Impacts* 2021, *23*, 240–274
- Okoffo, E.D.; O'Brien, S.; O'Brien, J.W.; Tscharke, B.J.; Thomas, K.V., Wastewater treatment plants as a source of plastics in the environment: a review of occurrence, methods for identification, quantification and fate. *Environmental Science: Water Research & Technology* **2019**, *5*, (11), 1908–1931.
- Rauert, C.; Pan, Y.; Okoffo, E.D.; O'Brien, J.W.; Thomas, K.V., Extraction and Pyrolysis-GC-MS analysis of polyethylene in samples with medium to high lipid content. *Journal* of Environmental Exposure Assessment **2022**, *1*, (2), 13.
- Okoffo, E.D.; Ribeiro, F.; O'Brien, J.W.; O'Brien, S.; Tscharke, B.J.; Gallen, M.; Samanipour, S.; Mueller, J.F.; Thomas, K.V., Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography–mass spectrometry. *Science of The Total Environment* 2020, *715*, 136924.

- Dessì, C.; Okoffo, E.D.; O'Brien, J.W.; Gallen, M.; Samanipour, S.; Kaserzon, S.; Rauert, C.; Wang, X.; Thomas, K. V., Plastics contamination of store-bought rice. *Journal of Hazardous Materials* **2021**, *416*, 125778.
- Ribeiro, F.; Okoffo, E.D.; O'Brien, J.W.; Fraissinet-Tachet, S.; O'Brien, S.; Gallen, M.; Samanipour, S.; Kaserzon, S.; Mueller, J.F.; Galloway, T.; Thomas, K.V., Quantitative Analysis of Selected Plastics in High-Commercial-Value Australian Seafood by Pyrolysis Gas Chromatography Mass Spectrometry. *Environmental Science & Technology* **2020**, *54*, (15), 9408–9417.
- Okoffo, E.D.; O'Brien, S.; O'Brien, J.W.; Tscharke, B.J.; Rauert, C.; Rødland, E.S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Mueller, J.F.; Thomas, K.V., Does size matter? Quantification of plastics associated with size fractionated biosolids. *Science of The Total Environment* **2021**, *811*, 152382.
- O'Brien, S.; Okoffo, E.D.; Rauert, C.; O'Brien, J.W.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Wang, X.; Thomas, K.V., Quantification of selected microplastics in Australian urban road dust. *Journal of Hazardous Materials* **2021**, *416*, 125811.
- Okoffo, E.D.; Donner, E.; McGrath, S.P.; Tscharke, B.J.; O'Brien, J.W.; O'Brien, S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Rauert, C.; Samanipour, S.; Mueller, J.F.; Thomas, K.V., Plastics in biosolids from 1950 to 2016: A function of global plastic production and consumption. *Water Research* 2021, 201, 117367.
- Okoffo, E.D.; Tscharke, B.J.; O'Brien, J.W.; O'Brien, S.; Ribeiro, F.; Burrows, S.D.; Choi, P.M.; Wang, X.; Mueller, J.F.; Thomas, K.V., Release of Plastics to Australian Land from Biosolids End-Use. *Environmental Science & Technology* **2020**, *54*, (23), 15132–15141
- 15. Ribeiro, F.; Okoffo, E.D.; O'Brien, J.W.; O'Brien, S.; Harris, J.M.; Samanipour, S.; Kaserzon, S.; Mueller, J.F.; Galloway, T.; Thomas, K.V., Out of sight but not out of mind: Size fractionation of plastics bioaccumulated by field deployed oysters. *Journal of Hazardous Materials Letters* **2021**, *2*, 100021.

Learn more at www.thermofisher.com/ASE

General Laboratory Equipment – Not For Diagnostic Procedures. ©2022 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Viton is a trademark of The Chemours Company FC, LLC. Hydromatrix is a trademark of Agilent. Multi-Shot Pyrolyzer and Ultra Alloy are trademarks of Frontier Lab. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms, and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. cn-001201-na-en 09/22

thermo scientific