Wiley Spectral Webinar Part II: Structure Searches with NIST MS Search and Using MS Interprete

12/27/20

James Little <u>tvasailor@gmail.com</u> <u>https://littlemsandsailing.wordpress.com/</u> Kingsport, TN

- ■Retired* Research Fellow, Eastman Chem. Co.
- ■42 years experience unknown identification
- Now Consultant, MS Interpretation Services

• Specialties¹ EI GC-MS, LC-MS/MS, Chemical Ionization,⁷ Accurate Mass, Derivatization,^{8,9}MS library management, SciFinder,¹⁰ Chemspider,¹⁰ Surfactant ID,¹¹ NMR, GC-IR, organic synthesis, matrix ionization effects,²¹ etc.

Eastman Chemical Company, Main Site, Kingsport, TN 50 Manufacturing Sites Worldwide, ~14,500 Employees

* https://en.wikipedia.org/wiki/Eastman_Chemical_Company

>50 Mass Specs Networked <u>Worldwide</u>

Wiley Webinar Series on Effective Use of Mass Spectral Libraries

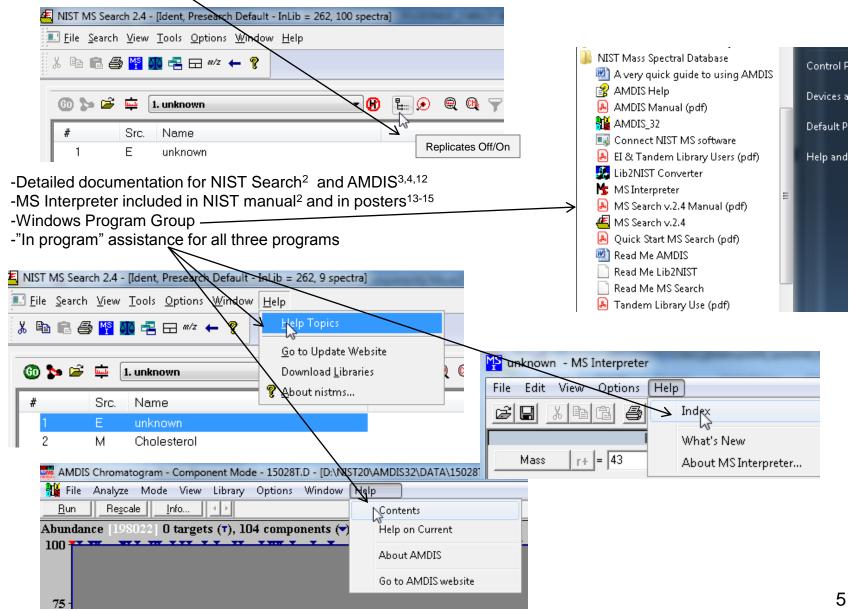
Part I: Spectral Searches² with NIST MS Search

- Part II: Structure Searches² with NIST MS Search and Using MS Interpreter^{2,13-15}
- Part III: AMDIS^{3,4,12} (NIST) for Processing EI Mass Spectral Data Files
- Part IV: Advanced NIST Hybrid Search^{16-19,22} of EI and MS/MS Spectra
- Part V: Creating and Sharing⁵ User EI and MS/MS Libraries

Note:²⁰ Handouts for *All* Sessions *Now Online*! *Google Search* "little mass spec and sailing"

Table of Contents

Торіс	Slide #
• Webinar topics	4
• Help Files for NIST Search	5
• General Windows commands/functions	6
• Primary Libraries of EI Spectra and Associated Structures	7
• Select the libraries used for Exact Structure searches	9
• Obtaining structures from chemical drawing program	10
 Search for similar structures after inserting clipboard structure 	e11
• Sending Structure from MS Search to drawing program	12
• Tips for displaying structure search results	13
• Tips for displaying related structures in structure searches	14
• Search for exact structures	15
• Using compare window to display multiple spectra	16
• View of hit list structure search options utilized	20
• MS interpreter for correlating structure to spectrum	21
• Do the 3 isomers of methyl hydroxybenzoate fragment differently?	34
• Any structure and associated spectrum sent to MS Interpreter	38
 Accurate mass spectrum correlated to structure in MS Interpreter 	39
• Webinar references	40
Acknowledgements	41


Part II: Structure Searches with NIST MS Search² and Using MS Interpreter^{2,13-15}

Webinar Topics:

- -Setting up Library Search Options for Structure Searches
- -Importing structures from vendor programs²
- -Searching for similar structures using Structure Search
- -Searching for exact structure using Library Search with InChIKey
- -Using "Compare" window to view series of spectra
- -MS Interpreter for correlating substructure and isotope ratios to ions in spectrum
- -Finding model compounds
- -Accurate mass spectra in MS Interpreter

Help Files for NIST Search

-"Hover" over Program Icon with mouse and function description displayed

NIST Software in General is "Windows Compliant"

-left click (LMB) to select an item, double LMB on that item to perform operation

-*right click (RMB)* in area or item to see operations that can be performed or to change properties of window

-LMB on first item and last item to select group while holding shift key

-LMB to select/deselect individual items while holding Ctrl button

-use up and down arrows on keyboard to step between entries

-some NIST windows such as librarian have no delete button to delete ions, *must* use delete key on keyboard!

-control a (select all), control x (delete selected), control c (copy); control v (paste)

-control k copies entries into windows in tab-separated text format, e.g., paste into Excel

-F1 MS Search help

-F9 send spectrum to MS Interpreter

-LMB and zoom mass spectral windows, RMB then LMB to zoom out

Tip 3: LMB and drag to rearrange order of column headers

						K			_
#	Lib.	Name	Match	Prob. (%)	RI	R.Matoh	Syn	DBs	-
<mark>∓</mark> 1	B	Undecane	955	44.8	1100	955 W	4	8	
	М	Undecane	945	44.8	1100	945	4	8	=
⊞ 3	R	Undecane	944	44.8	1100	958	4	8	-
4	w1	Undecane	937	44.8	-	955	11	0	
5	w1	Undecane	933	44.8	-	950	11	0	-
6	w1	Undecane	932	44.8	-	939	11	0	
	lower value se in mixtu	erest e first or higher ires in example later in	<i>Tip 1:</i> When reviresults, use up an on keyboard to quarthrough results!	d down arro		Tip 2: Wh in MS Inter right arrow quickly rev	preter, us s on keyt	se left board t	and

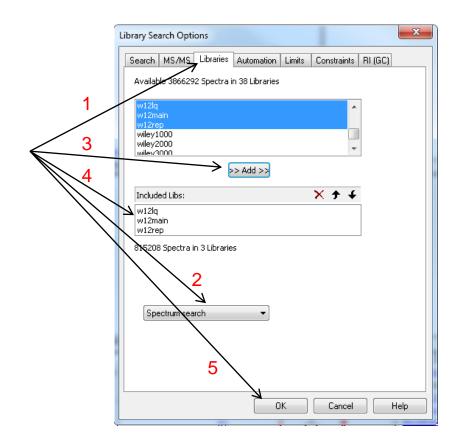
Primary Libraries of El Spectra and Associated Structures

Wiley: >815k entries

NIST: >350K entries

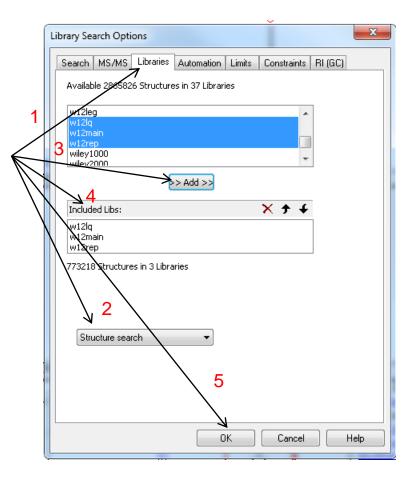
User Libraries: e.g. Eastman, >50K entries, automatically updated nightly⁵

Which Ones to Search? (My opinion, all >1,100K excluding w12leg)

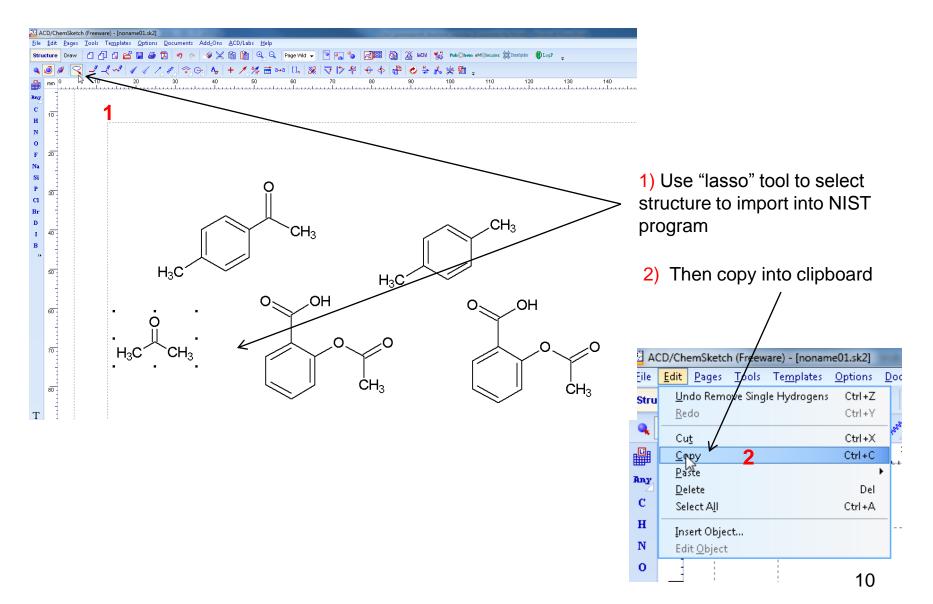

-w12main: best spectra for component
-w12rep: replicates (spectra can be instrument dependent)
-w12lq: lower quality, <4 ions per spectrum
-w12leg: spectra once present in main and rep, but removed for various reasons
-main (NIST): one best entry selected (subjective) for component
-rep (NIST): replicates for main spectrum
-user libraries: individual's or company's personal libraries

Critical Settings: Select the Libraries Used for **Exact Structure Searches**

• Exact structure searches are driven by libraries in Spectrum Search


- Somewhat surprising, but because InChIKey not actual structure used
- •LMB on the Libraries tab and make sure Spectrum Search is selected
- Select the group of libraries to be searched by Exact Structure
- >>Add>> all libraries to be searched

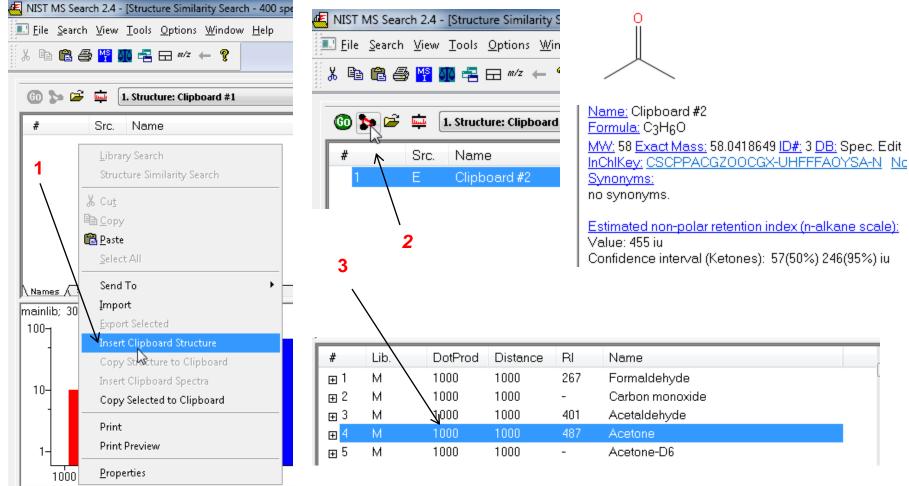
•Order of libraries normally only important in Other Search Tab which return maximum no. of hits



Critical Settings: Select the Libraries Used for Similar Structure Searches

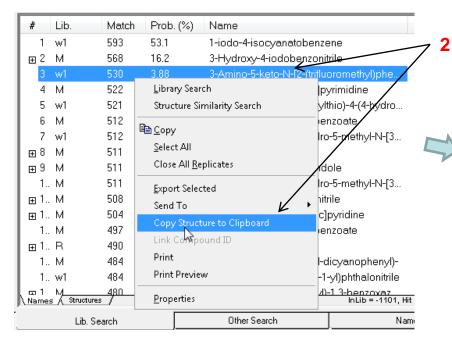
- •Similar structure searches are driven by libraries in Structure Search
- •LMB on the Libraries tab and make sure Structure Search is selected
- Select the group of libraries to be searched by Similar Structure
- >>Add>> all libraries to be searched
- •Order of libraries normally only important in Other Search Tab which return maximum no. of hits

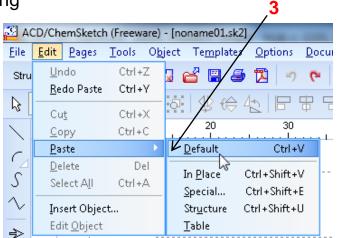
Structure Capabilities Within NIST Search Program Obtaining Structure from ChemSketch

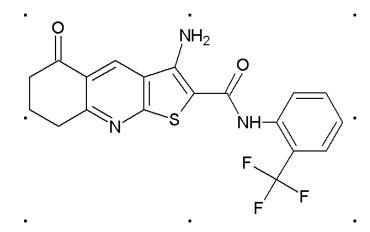


Search for Similar Structures after "Insert Clipboard Structure"

1) RMB and Insert Clipboard Structure not Paste

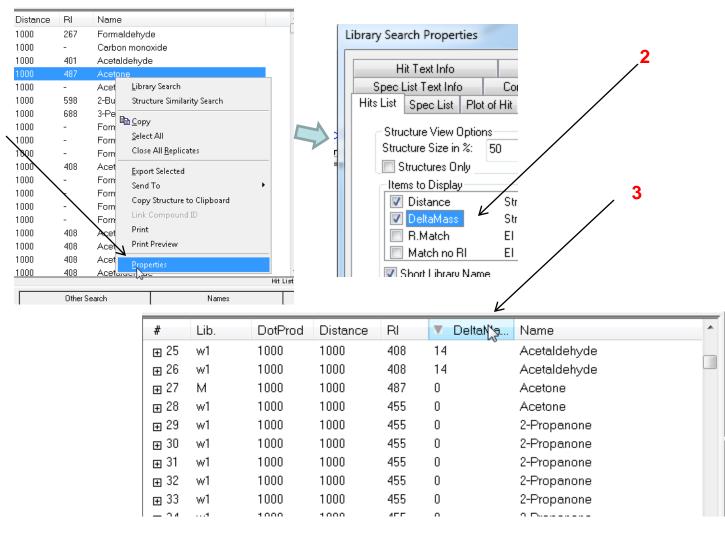

2) LMB on structure search icon to search after highlighting entry


3) Results reported in lower left window sorted by similarity (1000 good fit)



Reverse Process: Sending Structure from MS Search to Drawing Program

- 1. Any structure in MS Search Program can be sent to drawing program
- 2. LMB on entry, then RMB to "Copy Structure to Clipboard"
- 3. Then paste from Windows Clipboard into Drawing Program
- 4. Useful for modifying an existing structure for searching



Tips for Displaying Structure Search Results

- 1) RMB on display box and select properties
- 2) add delta mass to table
- 3) run similarity search again and then sort by clicking on DeltaMass header
- 4) Scroll down until group with DeltaMass=0 found

Tips for Displaying Related Structures in Structure Searches

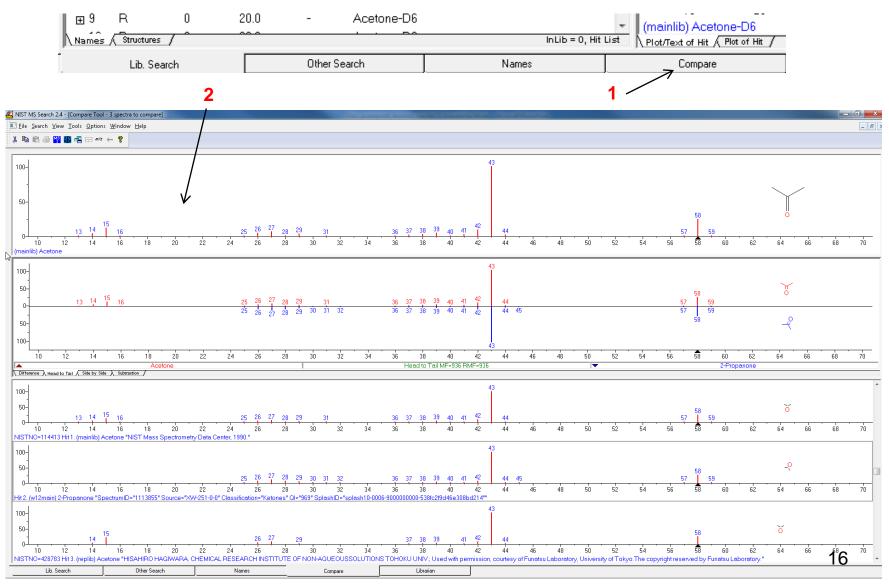
NIST MS Search 2.3 - [Ident, I	Presearch Default - InLib = 361, 8 spec	ĺ	Replicates Display Options	×	Inconsistent!
💷 <u>F</u> ile <u>S</u> earch <u>V</u> iew <u>T</u> ools	<u>O</u> ptions <u>W</u> indow <u>H</u> elp	3			
% 🖻 🖻 🎒 🌇 🛃	^{m/z} m/ <u>z</u> range Library <u>S</u> earch Options	<u>ت</u>	Display InChI Replicates InChI Options	OK	"Do see" unchecked
🝈 🕻 🖻 🚔 🚺 1. Chol	Replicates Spectrum Import Options	+	Isotope	Cancel	"Do see" checked
# Src. Name 1 w1 butyl- 2 M 1 3.8-	Pubchem Search options SOS options	ide	✓ Derivatives	Help	

-Determines if replicates, isotopically labeled species, stereoisomers, and/or derivatives displayed with search results

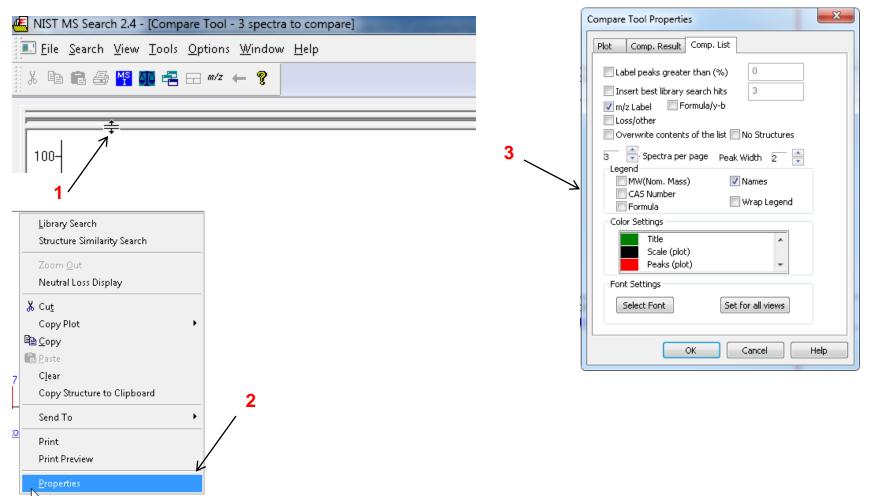
-Can toggle by "left-clicking" on + or - box

-Also affects Names Search Display

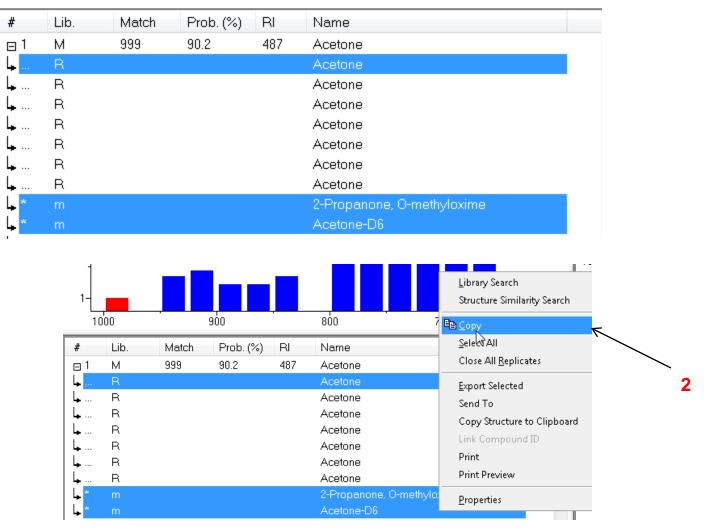
#		Lib.	Name	Match	R.Match	
Ξ	1	M	Cholesterol	999	999	
′ ⊑		R	Cholesterol			Ξ
Ļ		R	Cholesterol			
Ļ	×	m	3a-Cholesterol acetate			_
_ ↓	×	m	Cholesteryl benzoate			
_ ↓	×	r	Cholesteryl benzoate			
Ļ	×	r	Cholesteryl benzoate			
_ ↓	×	r	Cholesteryl benzoate			
4	×	m	Cholesterol, TMS derivative			
4	×	r	Cholesterol, TMS derivative			
Ļ	×	r	Cholesterol, TMS derivative			
4	×	r	Cholesterol, TMS derivative			
Ļ	×	r	Cholesterol, TMS derivative			
4	×	m	Cholest-5-en-3-ol (3β)-, acetate			
Ļ	×	r	Cholest-5-en-3-ol (3β)-, acetate			
Ļ	×	r	Cholest-5-en-3-ol (3β)-, acetate			
L,	×	r	Cholest-5-en-3-ol (3β)-, acetate			
Ļ	×	m	Cholest-5-en-3-ol (3β)-, trifluoroacetate			

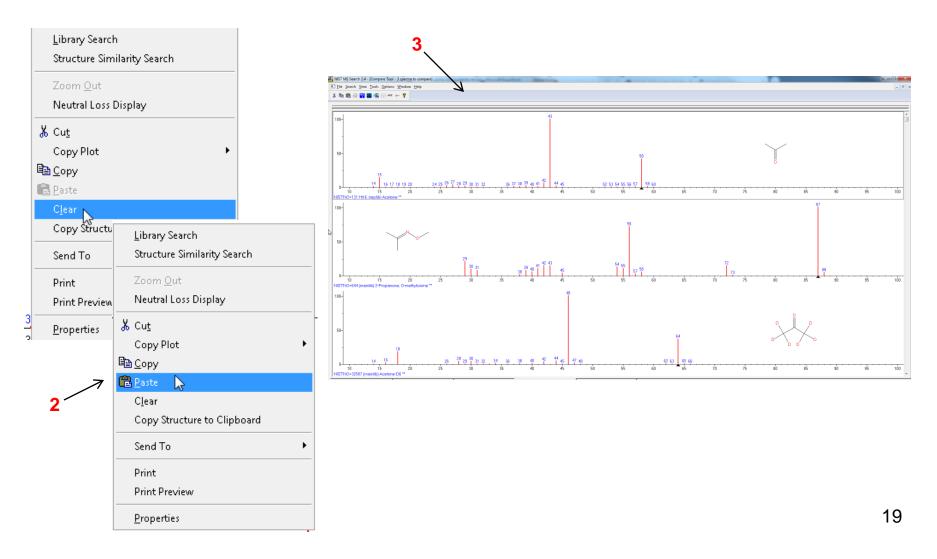

Search for Exact Structures

1) LMB on Library Search Options

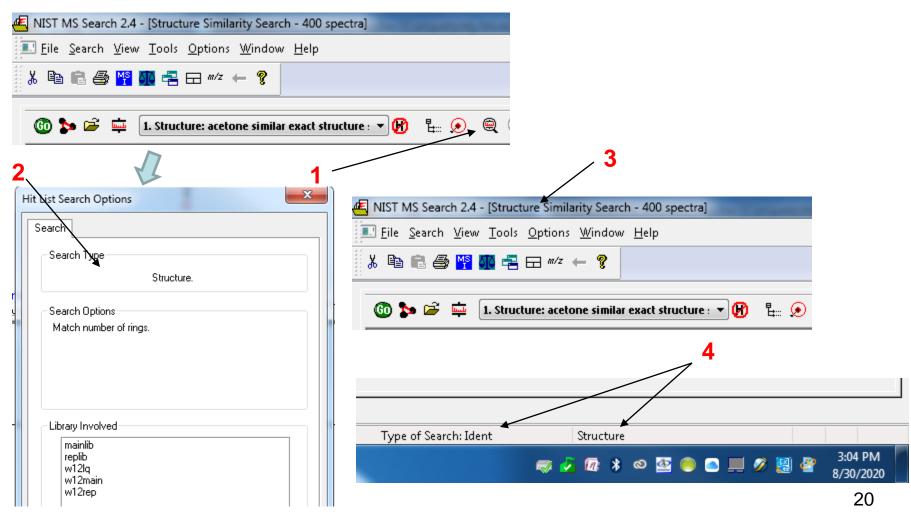

- 2) select **Search tab** and select **InChIKey**
- 3) Click on Library Search not Structure Search icon
- 4) Process results using tips used for similarity search
- 5) Much simpler results when NOT looking for similar structures

NIST MS Search 2.4 - [Structure Similarity Search - 400 spectra]								
Eile Search View Tools Options Window Help	ł	🔄 NIST M	S Search 2.4	- [Structure Si	milarity	Search - 400 spect	a]	
‰ 🖻 🕼 🎒 🎇 🚝 🖂 ա/շ ← 💡		04 02		<u>T</u> ools <u>O</u> pti				_
🔞 🝃 🚔 🛄 1. Structure: Clipboard #2 🔹 🗸	-			1. Structure: (- B	Ē
# Src. Name			Q.e.	blama				_
1 E Clipboard #2		#	Src.	Name	40			
			E	Clipboard	#2			
Library Search Options			3					
Search MS/MS Libraries Automation Limits C	#	Lib.	Match	Prob. (%)	RI	Name		
	⊞ 1	М	0	20.0	-	Acetone-D6		
Spectrum Search Type	⊞ 2	M	0	20.0	-	Acetone		
	_ L ∎	R				Acetone		
El Normal 🗸 🗹 in spectrum	ь Г	R R				Acetone Acetone		
Spectrum Search Options	ц.	R		R		Acetone		
🛛 🔲 Reverse Search 👘 Penalize rare compo	L	R		\backslash		Acetone		
Match Ion Mode (Tandem)	Ļ	R		\backslash		Acetone		
Presearch	١.	R				Acetone		
Default Fast Off MW 1				4, 5				
NChlKey								
blank = match search spectrum InChIKey								15

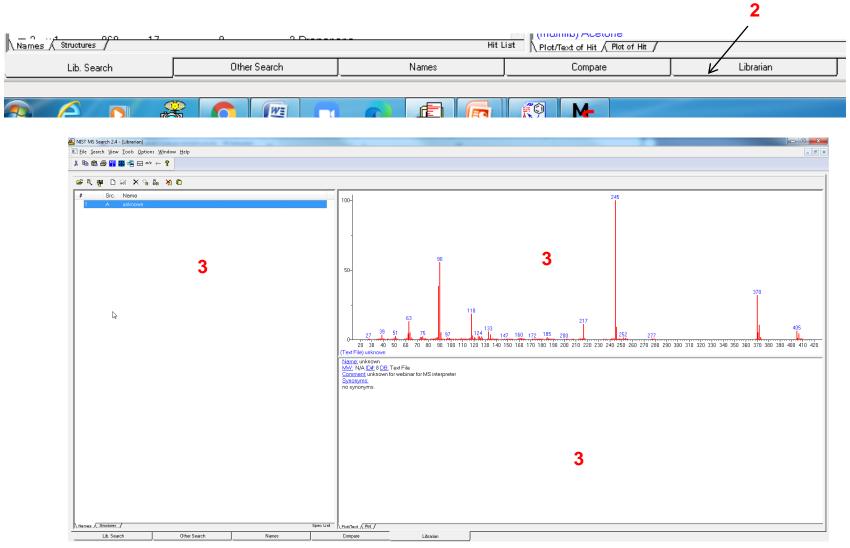

- 1) Select *Compare* tab at bottom of program
- 2) Normally setup to transfer the 3 best library hits for comparison as shown below


- 1) Compress top two windows by selecting bar with left mouse click and scrolling closed with mouse
- 2) Select prosperities window in bottom windows and then select Properties with LMB
- 3) Setup options as shown below

- Select three spectra, e.g., from your exact search of acetone using control left mouse click while holding control key on keyboard
- 2) RMB somewhere within blue highlighted area and select copy with left mouse button

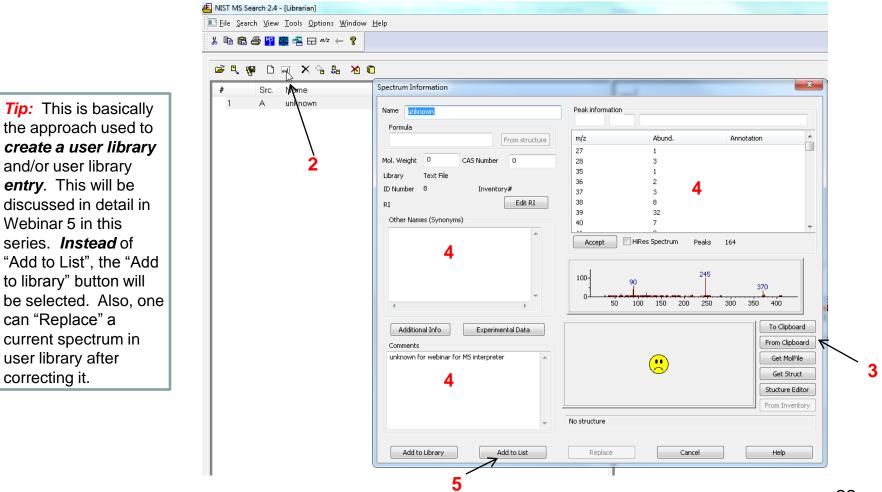


- 1) Go to Compare window by selecting tab at bottom of Search Display Window
- 2) **RMB** in window and then **LMB** on **Clear** to delete spectra present
- 3) RMB spectra of acetone related species should appear in window for comparison


View of Hit List Structure Search Options Utilized

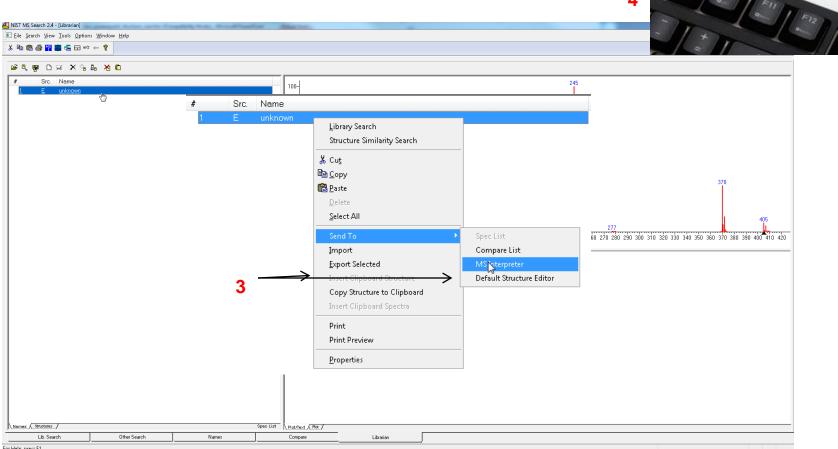
- 1. LMB the "View Hit List Search Options"
- 2. See details of the last search performed
- 3. Also, an abbreviated description of the last search noted at top of NIST search window
- 4. Furthermore, at the *bottom* of the screen, *respectively* displayed, are the types of searches that will be performed and the type of results currently displayed

MS Interpreter for Correlating Structure to Spectrum: Adding a Structure to a Spectrum


- 1) Import the mass spectrum from instrument data system
- 2) Open Librarian tab at bottom of MS Search Window
- 3) View in Librarian tab

21

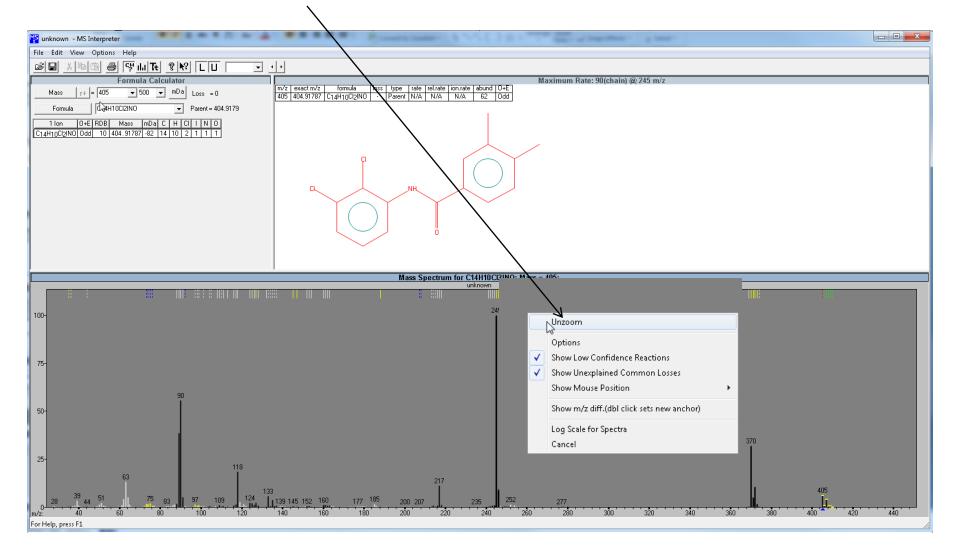
MS Interpreter for Correlating Structure to Spectrum: Adding a Structure to a Spectrum


- **Draw** the proposed structure with drawing program and **copy** into clipboard 1)
- Open Librarian tab and select "ed " icon with left mouse click 2)
- 3) LMB on From Clipboard to associate structure with spectrum
- Modify name fields, synonyms, comments fields, or even edit spectrum 4)
- 5) Add to List

Webinar 5 in this series. Instead of "Add to List", the "Add to library" button will be selected. Also, one can "Replace" a current spectrum in user library after correcting it.

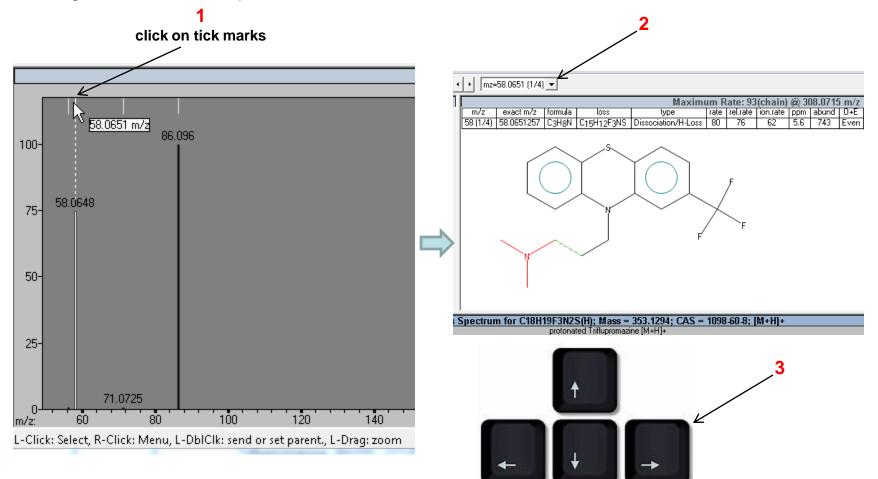
MS Interpreter for Correlating Structure to Spectrum: Sending to MS Interpreter

- 1) Entry is now ready to send to MS interpreter
- 2) Program has automatically calculated nominal molecular weight, exact mass, molecular formula, and InChIKey
- 3) Right mouse click on selected entry, then LMB on Send to/MS Interpreter
- 4) An *alternative* to step 3, is to *send* the entry to MS interpreter *using F9* key


MS Interpreter for Correlating Structure to Spectrum: Spectrum and Structure in MS Interpreter

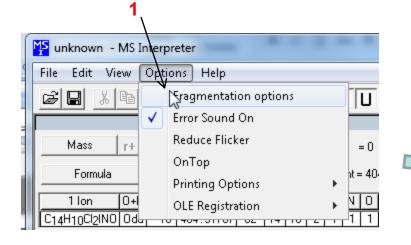
-All ions in black, yellow, and red correlated to structure including isotopes automatically

-lons in white are not assigned


-Spectrum can be expanded like any spectrum in NIST programs by LMB and dragging to form box

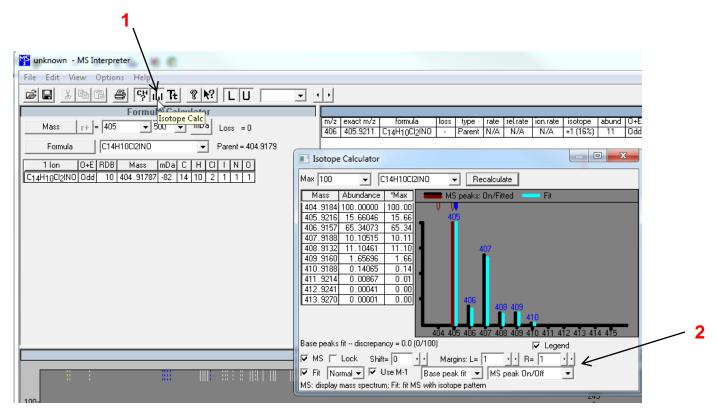
-RMB and then LMB Unzoom to return to original size

MS Interpreter for Correlating Structure to Spectrum: Stepping Through More Than One Proposed Structure

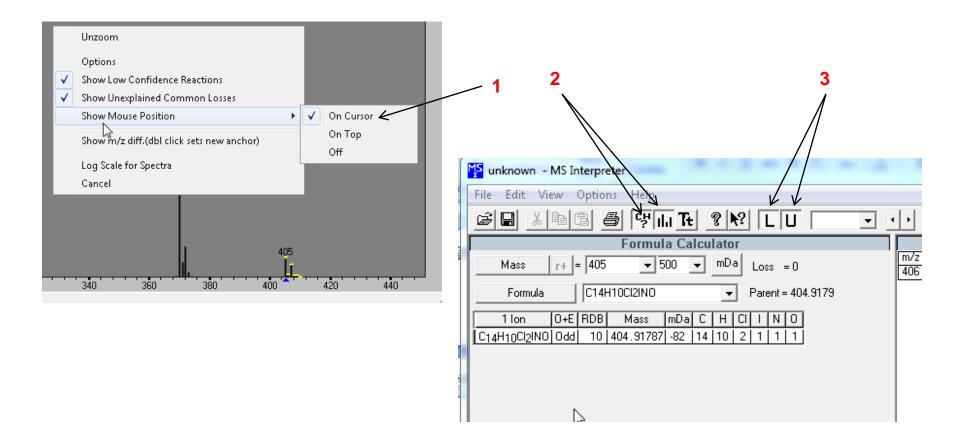

- 1) LMB on the tick mark for ion of interest, the display will toggle through all 4 in this example
- 2) If more than one is present, the box will indicate the number, in this case 1/4
- 3) Also, you can select one of the tick marks with LMB then use your *left* and *right* arrows *on keyboard* to step through the assigned ions in the mass spectrum

MS Interpreter for Correlating Structure to Spectrum: Suggested Default Settings for Electron Ionization

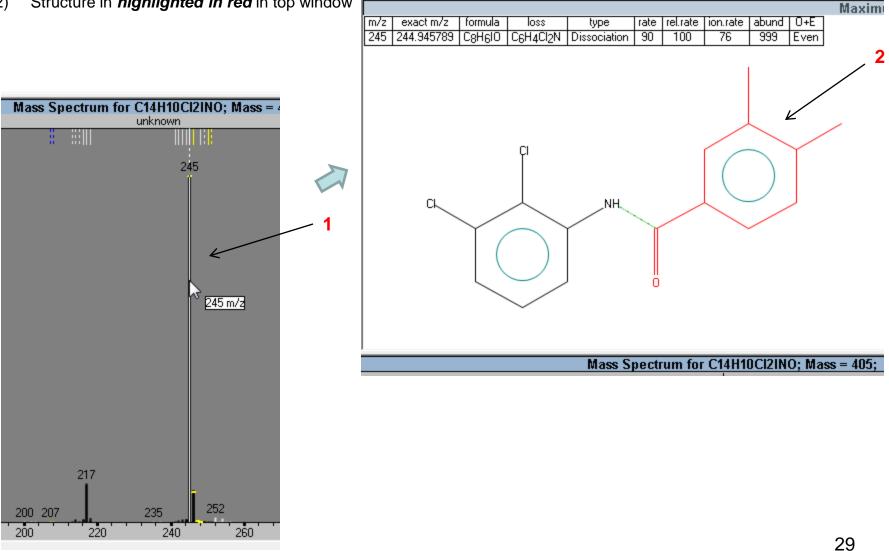
2


- 1) Select **Options** with **left mouse** click then **Fragment options**
- 2) Setup options as noted in window

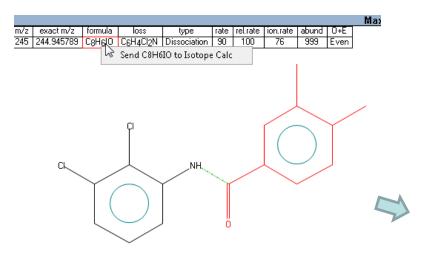
2	
Options	
 ✓ Display ✓ Show fragments ✓ Show fragments w ✓ Highlight unfiltered ✓ Mark Isotope Peal ✓ Show Ion for Near 	l peaks ks
Show Rates Absolute Relative Inn	Import Innized Protonated Deprotonated
✓ Show up to 99✓ Highlight if relativeCancel	

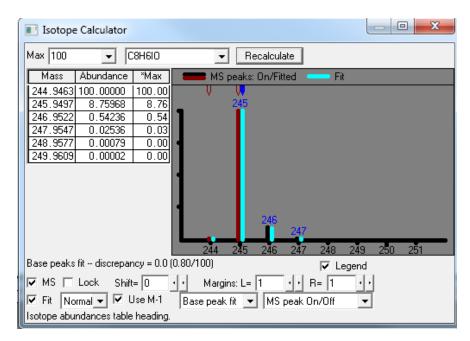

MS Interpreter for Correlating Structure to Spectrum: Suggested Default Settings for Electron Ionization

- 1) Select Isotopes Calc icon
- 2) Carefully set the menu options as noted in displayed Isotope Calculator Window below

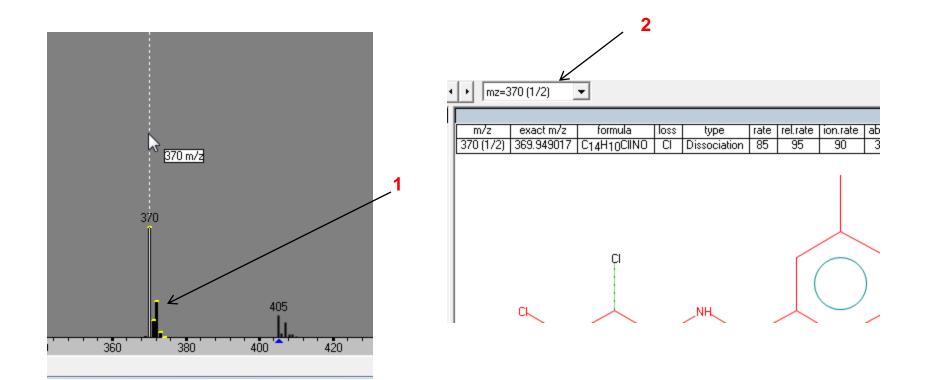

MS Interpreter for Correlating Structure to Spectrum: Suggested Default Settings for Electron Ionization

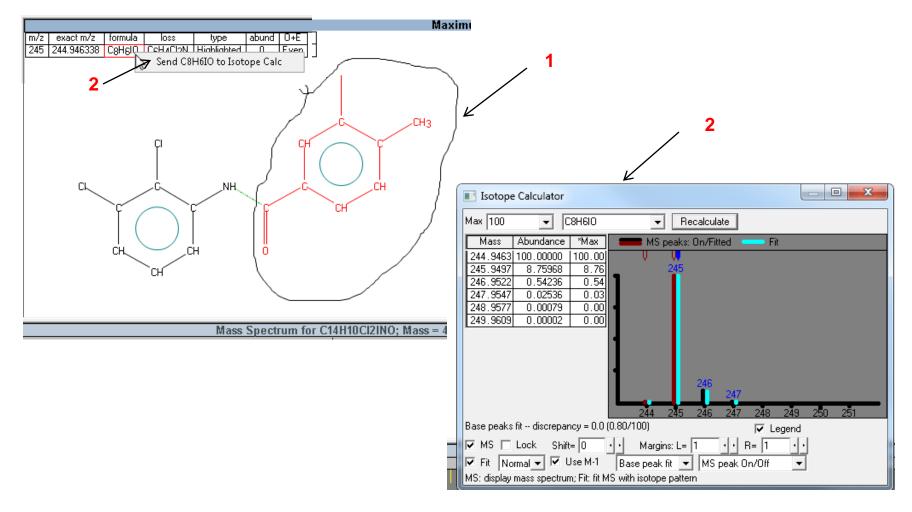
- 1) RMB in spectrum window, then LMB to select Show Mouse Position/On Cursor
- 2) Usually have the Formula Calc and Isotope Calc buttons depressed to display windows
- 3) Low confidence mechanism and unknown mechanism buttons depressed to show additional fragmentation


MS Interpreter for Correlating Structure to Spectrum: Displaying the Proposed Structures

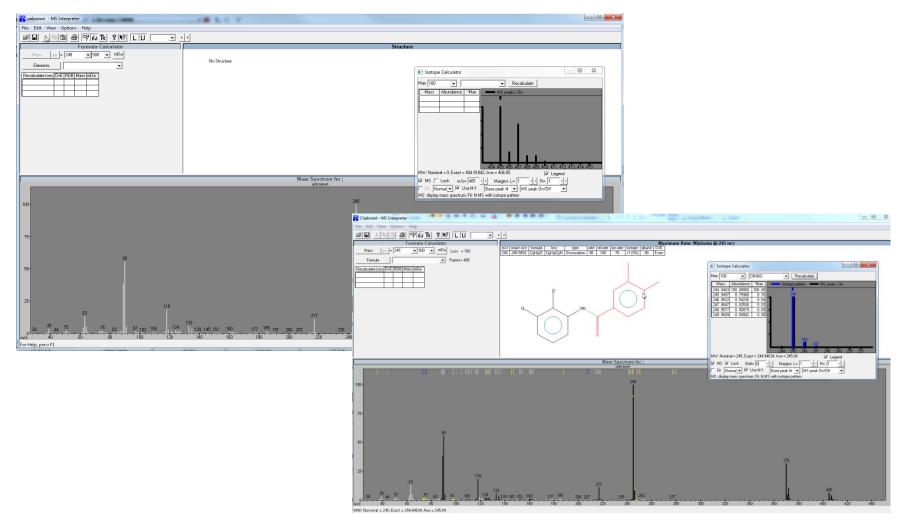

- LMB on the ion of interest and the 1)
- Structure in *highlighted in red* in top window 2)

MS Interpreter for Correlating Structure to Spectrum: Checking the Isotope Ratios for a Proposed Fragment


- 1) **RMB** on the formula for the ion, then **LMB** on **Send** "x" to Isotope Calc
- 2) Theoretical isotope ratio *compared* to observed


MS Interpreter for Correlating Structure to Spectrum: Checking the Isotope Ratios for a Proposed Fragment

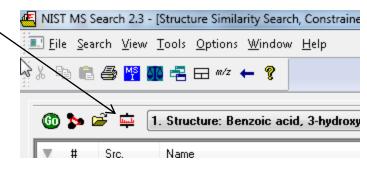
- 1) Theoretical isotope ratio for selected also shown in spectrum with horizontal yellow lines
- 2) Many ions can have *multiple structures* or *mechanisms*, just *continue LMB* on the ions to *cycle display*


MS Interpreter for Correlating Structure to Spectrum: Other Miscellaneous Tips: Lassoing lons

- 1) Lasso your own substructure by LMB and circling, shows type as Highlighted and calculates *m/z* and *formula*
- 2) RMB on formula, e.g. C8H5IO, and LMB and Send "x" to Isotope Calc window

MS Interpreter for Correlating Structure to Spectrum: Other Miscellaneous Tips: Direct Structure Paste

1) Copy structure into clipboard from drawing program, then directly paste into MS interpreter with control V on keyboard or pull-down menu/paste



Do the 3 Isomers of Methyl Hydroxybenzoate Fragment Differently? Let's Compare Them!

-Draw one of the isomers, methyl 4-hydroxybenzoate in ChemDraw

-Import the structure into the NIST Spec List

-Lets *limit* the search to minimize the number to view by "constraining" the MW -First open the "library search options menu"

-Constrain the results to be displayed after the search by MW(Nominal Mass) of 152 to 152

Library Search Options
Search MS/MS Libraries Automation Limits Constraints RI (GC) V Use Constraints Clear All Selected:1
MW(Nominal Mass) Exact Mass Name Fragment Elements Value Elements Present Peaks Other Databases
Molecular Weight 152 152

Do the 3 Isomers of Methyl Hydroxybenzoate Fragment Differently? Let's Compare Them! (continued)

-Select the structure search icon to perform the similar structure search constrained by MW 152

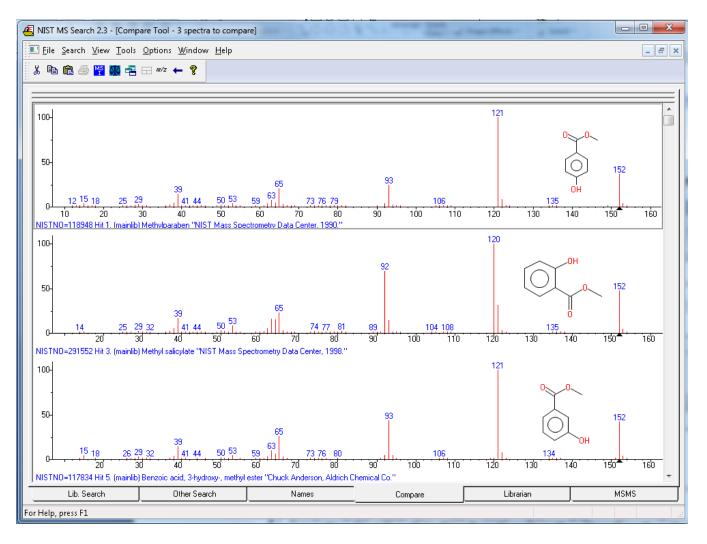
INIST MS Search 2.3 - [Structure Similarity Search, Constrained	- 21 spectra]			
Eile Search View Took Options Window Help				
* 🗈 🛱 🚑 🕎 🚛 🚘 🖂 #/2 듲 🂡				
🚳 📬 🛱 1. Structure: Benzoic acid, 3-hydroxy-,	- 1 - 1			
# ▼ Src. Name				
1 E Clipboard #7				
Names <u>Structures</u> mainlib; 267073 total structures		Spec List		
	900	800	(Spec. Edit) Clipboard #7	
1000	300	800	Plot/Text of Search Spectrum	λ Plot of Search Spectrum λ Spec Li

Do the 3 Isomers of Methyl Hydroxybenzoate Fragment Differently? Let's Compare Them! (continued)

-Many hits are found

-Use control key/LMB to select entries 1,3, and 5 in hit list using LMB

#	Lib.	Name	DotProd	Distance	RI	DeltaMass	Syn	DBs
<mark>⊕</mark> 1	М	Methylparaben	1000	1000	1419	0	40	8
⊞ 2	М	Resorcinol monoacetate	999	999	1383	0	1500	<u>L</u> ibrary Search
⊞ 3	M	Methyl salicylate	999	999	1174	0	- 30	Structure Similarity Search
4	м	Hydroquinone, acetate	999	999	1383	0	0	ocaccare on many ocaren
⊕ 5	M	Benzoic acid, 3-hydroxy-, methyl ester	999	999	1389	0	11	<u>а С</u> ору
6	м	1,3-Benzenediol, 4-propyl-	924	870	-	0	2	Select All
⊞ 7	м	Phenol, 4-propoxy-	906	969	-	0	5	-
⊞ 8	м	Phenol, 4-(ethoxymethyl)-	906	969	1379	0	1	Close All <u>R</u> eplicates
⊕ 9	м	4-(2-Methoxyethyl)phenol	906	969	-	0	4	Francisk Colorado d
10	м	Phenol, 2-propoxy-	906	969	-	0	1	<u>E</u> xport Selected
⊞ 11	м	Phenol, 4-ethyl-2-methoxy-	901	967	1252	0	1	Send To
⊞ 12	м	2-Ethoxy-4-methylphenol	901	967	-	0	1	Copy Structure to Clipboa
⊞ 13	м	1,4-Benzenediol, 2,3,5-trimethyl-	895	830	-	0	9	Link Compound ID
⊞ 14	м	2-Isopropoxyphenol	878	957	1164	0	3	,
15	м	1-(2,3-Dihydroxyphenyl)ethanone	866	804	-	0	1	Print
⊞ 16	м	3',5'-Dihydroxyacetophenone	866	804	-	0	3	Print Preview
⊞ 17	м	Ethanone, 1-(2,5-dihydroxyphenyl)-	866	804	-	0	- 1(
⊞ 18	м	3,4-Dihydroxyacetophenone	866	804	-	0	3	<u>P</u> roperties
m 19	М	Resorcipal 2-adetul-	228	804	-	Π	10	A

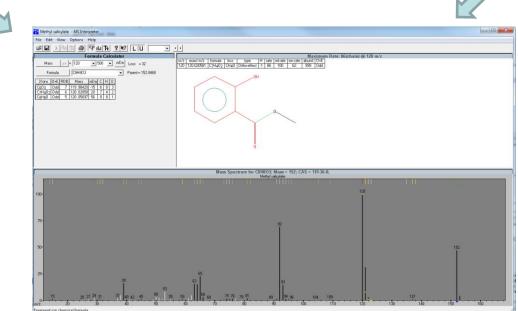

Do the 3 Isomers of Methyl Hydroxybenzoate Fragment Differently? Let's Compare Them! (continued)

-Open the "Compare" window

-Then paste the three hits in the windows clipboard into the "Compare" window

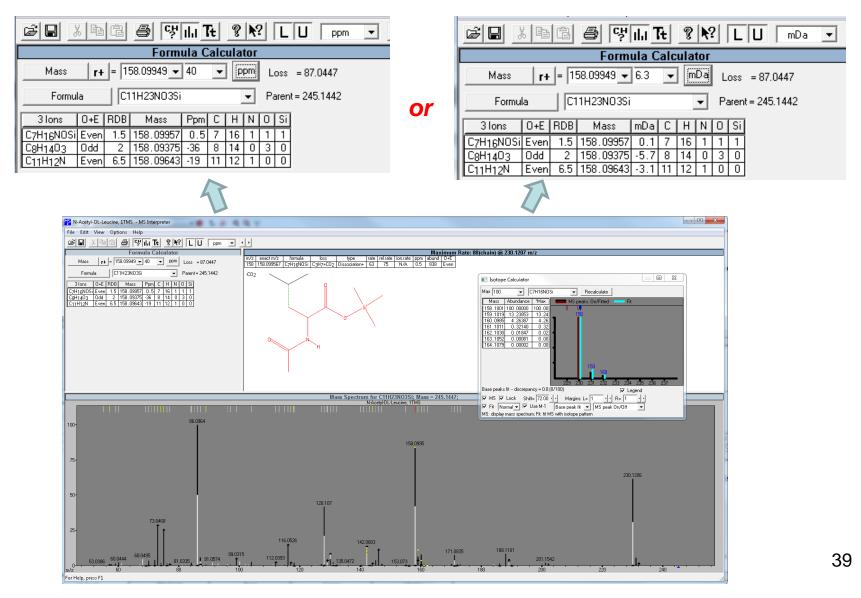
-The ortho-isomer loses 32 for methanol which is absent in the para- and meta-isomers

-Often noted in o-isomers, "ortho-effect"


Any Structure and Associated Spectrum in Program Sent to MS Interpreter

# ▼ Lib □ 7. w1 □ 8. M □ 8. M	DotPr Distan 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 1000 1000 1000 1000 999 999	ce DeltaMass 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Name Benzoic acid Benzoic acid Benzoic acid Benzoic acid Benzoic acid 1,3-Benzenee 1,3-Benzenee 1,4-Benzenee 4-Hydroxy-be Methylparab Benzoic acid Resorcinol m	, 3-hydrox , 3-hydrox , 3-hydrox diol, monc diol, monc diol, monc diol, monc enzoic aci en , 3-hydrox	Library Search Structure Similarity S Gopy Select All Close All <u>Replicates</u> Export Selected Send To Copy Structure to Cl Link Compound ID Print Print Preview Properties	•		action /
	999 999 999 999 /	0 0 IIII	Methyl salicy Hydroquinon	rlate le, acetate	(mainlik) Methyl salicyla of Hit / Plot of Hit	10 50 60 70 1 1	

- 1. Either LMB select then RMB Send To/MS Interpreter
- 2. Or select F9 on keyboard



2

Accurate Mass Spectrum Correlated to Structure in MS Interpreter: Accurate Mass El Mass Spectral Data from Orbitrap

Calculates molecular formula showing either ppm or mDa errors limited by MF of drawn structure

Webinar References (Internet Links)

- 1. James Little Mass Spectral Resource Website
- 2. NIST Search Software Detailed Manual
- 3. AMDIS Program for Data Processing Detailed Manual
- 4. Basic Instructions for Using AMDIS with NIST Search
- 5. Nightly Automatic Update of Users' Libraries
- 6. Using NIST Search from Instrument Manufacturers' Software
- 7. Chemical Ionization for MW Determination
- 8. <u>Trimethylsilyl Derivatives for GC-MS</u>
- 9. Methyl Ester Derivatives for GC-MS
- 10. SciFinder/ChemSpider and Accurate Mass LC-MS Data for Unknown ID's
- 11. Surfactant Identification
- 12. <u>QuickGuide.rtf Supplied with AMDIS Software Installation for Retention Indices</u>
- 13. <u>New Developments in the Modeling of Ion Fragmentation by MS Interpreter Software</u>
- 14. Enhancements to NIST MS Interpreter for Modeling High Mass Accuracy Tandem Mass Spectra
- 15. An Automated Method for Verifying Structure-Spectral Consistency Based on Ion Thermochemistry
- 16. <u>Combining Fragment-Ion and Neutral-Loss Matching during Mass Spectral Library Searching: A</u> <u>New General Purpose Algorithm Applicable to Illicit Drug Identification</u>
- 17. <u>The Hybrid Search: A Mass Spectral Library Search Method for Discovery of Modifications in</u> <u>Proteomics</u>
- 18. <u>Hybrid Search: A Method for Identifying Metabolites Absent from Tandem Mass Spectrometry</u> <u>Libraries</u>
- 19. Structure Annotation of All Mass Spectra in Untargeted Metabolomics
- 20. Most Current Handouts for Webinar Series, Parts I-V
- 21. Lipid Matrix Ionization Effects in LC-MS
- 22. <u>Mass Spectral Similarity Mapping in Hybrid Searches Applied to Fentanyl Analogs</u>

Acknowledgements

Wiley Webinar Production:

- Ryan McNaughton
- Kristen Makoski

Technical Advice:

- David Sparkman
- Stephen Stein