

Application Data Sheet

GC-MS

Gas Chromatograph Mass Spectromete

Analysis of PBDEs in Sediment Using GC-MS/MS

LAAN-J-MS-E063a

Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants (BFRs) widely used in plastics. Due to their toxicity and persistence, their industrial production is to be eliminated under the Stockholm Convention. Contamination from PBDEs is widespread in the environment, including in sediments. In order to determine PBDEs in sediments, they need to be separated from a large amount interferences co-extracted during sample preparation. GC-MS and GC-MS/MS were evaluated for this purpose.

Experimental

Method 1614 Native PAR Stock Solution and Method 1614 Labeled Surrogate Stock Solution (Cambridge Isotope Laboratories) were used as target compound and surrogate standards, respectively. Calibration solutions were prepared at concentrations of 10, 20, 50, 100, 500 ng/mL (10 times higher concentrations of deca-BDE). After the addition of surrogate, sediment samples were extracted using Soxhlet extractions. The extract solution was cleaned-up by sulfuric-acid treatment, removal of sulfur using copper, and Florisil treatments.

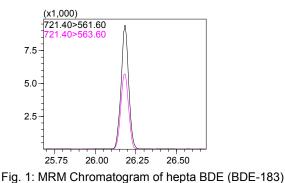
Analytical Conditions

SIM and MRM modes were used for GC-MS and GC-MS/MS, respectively. The analytical conditions are shown in Table 1.

Table 1: Analytical Conditions

GC-MS GC-MS/MS Column	:GCMS-QP2010 Ultra :GCMS-TQ8030 :Rtx-1614 (Length 30m, 0.25mm I.D., df=0.1 μm)		
[GC] Injection Temp. Column Oven Temp. Injection Mode	:320 °C :140 °C (3 min)→(5 °C /min)→320 °C (5min) :Splitless	[MS] Interface Temp. Ion Source Temp. Tuning Mode	:300 °C :230 °C :High Sensitivity
Sampling Time Flow Control Mode High Pressure Injection Injection Volume	:1 min :Linear velocity (47.9 cm/sec) n :150 kPa (1.2 min) :1 μL	GC-MS Acquisition Mode SIM Event Time Micro Scan Width	:SIM :0.5 sec :0.6 <i>u</i>

GC-MS/MS Acquisition Mode :MRM


SIM Monitoring m/z

MRM Monitoring m/z

Compound name	Qualitative	Quantitative	Compound name	Quantitative Transition Precursor>Product	CE(V)	Qualitative Transition Precursor>Product	CE(V)
Tri-BDE	405.8	245.9	Tri-BDE	405.8>245.9	20	405.8>247.9	20
Tetra-BDE	485.7	325.9	Tetra-BDE	485.7>325.7	24	485.7>327.7	24
Penta-BDE	563.6	403.8	Penta-BDE	563.6>403.7	26	563.6>405.7	26
Hexa-BDE	483.7	643.6	Hexa-BDE	643.6>483.7	26	643.6>485.7	26
Hepta-BDE	561.6	721.5	Hepta-BDE	721.4>561.6	30	721.4>563.6	30
Deca-BDE	799.4	959.4	Deca-BDE	959.4>799.3	32	959.4>801.3	32
13C Tri-BDE	417.8	257.9	13C Tri-BDE	417.8>257.9	20	417.8>259.9	20
13C Tetra-BDE	497.7	337.9	13C Tetra-BDE	497.7>337.7	24	497.7>339.7	24
13C Penta-BDE	575.6	417.8	13C Penta-BDE	575.6>415.7	26	575.6>417.7	26
13C Hexa-BDE	495.7	655.6	13C Hexa-BDE	655.6>495.7	26	655.6>497.7	26
13C Hepta-BDE	573.6	733.5	13C Hepta-BDE	733.4>573.6	30	733.4>575.6	30
13C Deca-BDE	811.4	971.4	13C Deca-BDE	971.4>811.3	32	971.4>813.3	32

Results

Fig 1. shows the MRM chromatogram of hepta-BDE (BDE-183) at 10 ng/mL. For eight PBDE congeners, calibration curves show linearity from 10 to 500 ng/mL (from 100 to 5000 ng/mL of deca-BDE) with a correlation coefficient of 0.9999 (Table 2).

Table 2: Correlation Coefficients of Calibration Curves				
for 8 PBDEs Congeners				

Tri-BDE (BDE-028) 0.9999 Tetra-BDE (BDE-47) 0.9999 Penta-BDE (BDE-100) 0.9999 Penta-BDE (BDE-99) 0.9999 Hexa-BDE (BDE-154) 0.9999 Hexa-BDE (BDE-153) 0.9999	Compound Name	R	
Penta-BDE (BDE-100) 0.9999 Penta-BDE (BDE-99) 0.9999 Hexa-BDE (BDE-154) 0.9999 Hexa-BDE (BDE-153) 0.9999	Tri-BDE (BDE-028)	0.9999	
Penta-BDE (BDE-99) 0.9999 Hexa-BDE (BDE-154) 0.9999 Hexa-BDE (BDE-153) 0.9999	Tetra-BDE (BDE-47)	0.9999	
Hexa-BDE (BDE-154)0.9999Hexa-BDE (BDE-153)0.9999	Penta-BDE (BDE-100)	0.9999	
Hexa-BDE (BDE-153) 0.9999	Penta-BDE (BDE-99)	0.9999	
	Hexa-BDE (BDE-154)	0.9999	
	Hexa-BDE (BDE-153)	0.9999	
Hepta-BDE (BDE-183) 0.9999	Hepta-BDE (BDE-183)	0.9999	
Deca-BDE (BDE-209) 0.9999	Deca-BDE (BDE-209)	0.9999	

Fig. 2 shows GC-MS SIM and GC-MS/MS MRM chromatograms. Several PBDEs could not be determined due to matrix interference in the SIM chromatogram, whereas those PBDEs were clearly detected in the MRM chromatogram. This demonstrates that the MRM mode allows the selective detection of target compounds even in the presence of large amounts of co-extracted interferences.

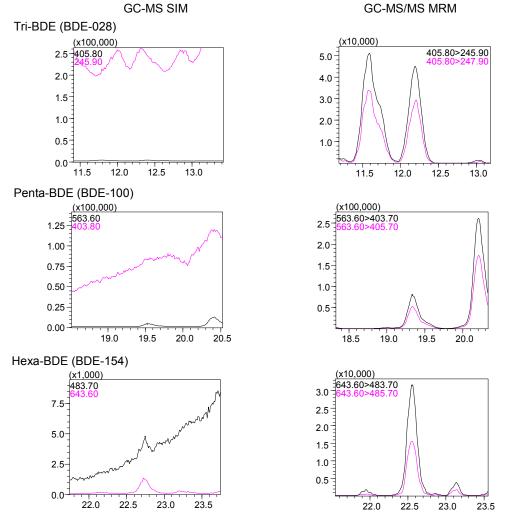


Fig. 2: SIM and MRM Chromatograms of Sediment Sample

For Research Use Only. Not for use in diagnostic procedures.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

First Edition: May, 2012 Second Edition: Jul, 2012