

Improved GC/MS Analysis of Tomato Pesticides with Agilent Deactivated Silica Tubing

Agilent Ultimate Plus Deactivated Fused Silica Tubing for Guard Columns

Application Note

Food Safety

Abstract

Agilent Ultimate Plus deactivated fused silica tubing was evaluated as a guard column and compared with an equivalent and popular guard column from another vendor to analyze tomato samples extracted with QuEChERS. Ultimate Plus deactivated fused silica tubing can provide better linearity, repeatability, and stability. The Agilent deactivated FS tubing was superior to another vendor's tubing for the analysis of active and difficult pesticides in tomatoes.

Introduction

Guard columns are widely used in GC and GC/MS applications to protect the analytical column from contamination. When the guard column is a short piece of uncoated, deactivated fused silica tubing, the use of a guard column is also an inexpensive technique to extend the lifetime of capillary columns. Since contamination is limited to the front of the column, trimming the guard column periodically to restore performance, instead of the capillary column, preserves the main column. Thus, chromatography, including retention time and resolution, is not affected.

Agilent Technologies

Authors

Yun Zou and Andy Zhai Agilent Technologies (Shanghai) Co. Ltd Due to complex matrices, multiresidue analysis of pesticides in fruits, vegetables, and other foods is always a challenge for sample preparation and detection. The QuEChERS method for pesticide analysis was introduced by USDA scientists in 2003 [1], and has been applied widely because of its "Quick, Easy, Cheap, Effective, Rugged and Safe" features. Agilent Bond Elut QuEChERS kits have demonstrated excellent recoveries for frequently used pesticides in tomato and other matrices [2,3]. However, food extracts processed by QuEChERS are still complicated, containing impurities such as high-boiling compounds that can cause contamination of the analytical column. Many pesticides are active analytes, and contamination of the analytical column leads to poor peak shape, loss of response, and shorter column lifetime. High inertness performance to minimize analyte degradation and peak tailing is required. To ensure accurate and reproducible results, using deactivated fused silica tubing as a guard column to protect the analytical column plays a key role in an inert flow path.

In this application note, tomato was selected because it is a high-consumption fruit in many cultures, but also because it is purported to have many health benefits derived from its lycopene content, which helps to decrease oxidative stress. Agilent Ultimate Plus deactivated fused silica tubing has shown excellent performance as a GC restrictor in the analysis of pesticide checkout mixtures [4], and as a guard column in an endrin/DDT breakdown test [5]. A representative group of difficult pesticides, including organophosphates (OPs), organochlorines (OCs), carbamates, and pyrethroids, were spiked in tomato matrix blank samples and extracted with Bond Elut QuEChERS kits. The matrix-spiked standards were then analyzed by GC/MS with an Agilent J&W HP-5ms Ultra Inert Column connected with Agilent Ultimate Plus deactivated fused silica tubing as a guard column.

In addition, tests were also performed on tubing from a different vendor for comparison under the same GC/MS conditions.

Experimental

Chemicals and reagents

All reagents and solvents were HPLC or analytical grade. Acetonitrile (ACN) was from J&K Scientific (Beijing, China). Toluene was from ANPEL Scientific Instrument Co. Ltd (Shanghai, China). Water was from J. T. Baker. Pesticide standards and the internal standard (triphenyl phosphate, TPP) were purchased from Ultra Scientific (North Kingstown, RI, USA) and J&K Scientific.

Matrix blank preparation

Organic tomatoes were bought from a local food market. The tomatoes were frozen, chopped, and then homogenized thoroughly. A 10.0 g (\pm 0.1 g) amount of homogenized sample was placed into a 50 mL centrifuge tube and prepared with QuEChERS, as shown in Figure 1. Extraction and cleanup were achieved using an Agilent Bond Elut QuEChERS EN extraction kit (p/n 5982-5650CH) and a Bond Elut QuEChERS dispersive kit (p/n 5982-0029).

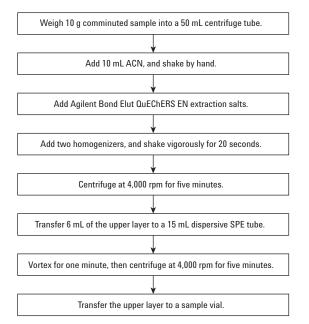


Figure 1. QuEChERS procedure to extract pesticide residues in tomatoes.

Solutions and standards

Standard and internal standard stock solutions (100 μ g/mL) were made in acetonitrile and stored at -18 °C. Due to lower response of the pesticides in Group 1, including fipronil, chlorfenapyr, iprodione, cyfluthrin, fenvalerate, difenoconazole, deltamethrin, and azoxystrobin, the concentration of these compounds in pesticide working solutions was twice as high as in Group 2.

The high-QC solution, which was 20 μ g/mL for Group 1 and 10 μ g/mL for Group 2 pesticides, was prepared in toluene. This solution was used to prepare calibration curves in the matrix blank extract by appropriate dilution. Internal standard solution was added to give a final concentration of 100 ng/mL.

Instrumentation

Instruments and conditions are shown in Table 1. Two guard columns with different serial numbers were purchased from each supplier to demonstrate performance of different manufacturing lots. Two guard columns from each serial number were tested to confirm reproducibility. All guard columns were connected to analytical columns using Agilent Ultimate Unions, and analyzed in the same manner. Table 2 lists the flow path consumable supplies.

Table 1. Instrumental conditions.

Analytical column	Agilent J&W HP-5ms UI, 30 m × 0.25 mm, 0.25 μm (p/n 19091S-433UI) Agilent Ultimate Plus deactivated FS tubing, 5 m × 0.25 mm (p/n CP802505)			
Guard column	Deactivated FS tubing, 5 m \times 0.25 mm, from supplier R			
GC	Agilent 7890B GC			
Autosampler	Agilent 7683B Autosampler and sample tray, 5 μL syringe (p/n G4513-80213), 2 μL injection volume			
Carrier gas	Helium, constant flow mode Split/splitless, 250 °C, pulsed splitless, 25 psi pulse pressure for 0.75 min			
Inlet	50 mL/min purge flow at 0.75 min			
RT locking	Chlorpyrifos-methyl locked to 13.443 min			
Oven	50 °C (1 min), 25 °C/min to 125 °C (0 min), 10 °C/min to 300 °C (10 min)			
MSD	Agilent 5977A MSD			
Solvent delay	4 min			
MS temperature	300 °C (source), 150 °C (quad)			
Transfer line	280 °C			
MS	EI, SIM			
Other parameters	see Table 3			

Table 2. Flow path supplies.

Vials	Amber, write-on spot, certified, 2 mL, screw top vial packs (p/n 5182-0554)	
Vial Inserts	150 μL glass with polymer feet (p/n 5183-2088)	
Septa	Nonstick BTO septa (p/n 5183-4757)	
Column nut	Self-tightening, inlet/detector (p/n 5190-6194)	
Ferrules	15% graphite: 85% Vespel, short, 0.4 mm id, for 0.1 to 0.25 mm columns (10/pk, p/n 5181-3323) UltiMetal Plus Flexible Metal, 0.4 mm id, for 0.1 to 0.25 mm fused silica tubing (10/pk, p/n G3188-27501)	
Union	Agilent Inert Ultimate union (p/n G3182-60581)	
Liner	Agilent Ultra Inert deactivated single taper splitless liner with wool (p/n 5190-2293)	
Inlet seal	Ultra Inert, gold-plated, with washer (p/n 5190-6144)	
Internal nut	CFT capillary fitting (p/n G2855-20530)	

International basis 10265-92.6 94 6.412 36 Triadimefon 43121-43-3 57 14.439 2 DDV 62.73.7 109 6.619 37 Dicofol 115.32.2 139 14.441 3 Mexinphos 296.01-1 127 8.474 38 Isocarbophos methyl 2046.0-3 31 14.328 5 Heptenophos 23560.59.0 124 10.119 40 Isofenphos-methyl 9967.60.3 39 14.889 6 Omethoate 1113.02.6 166 10.277 41 Pendimethalin 40487.42.1 252 15.008 7 Propoxur 114.26.1 110 10.477 42 Fipronil 12006.37.8 145 15.232 9 Cadusafos 95465.99.9 159 11.301 44 Methidathion 960.37.8 145 15.232 10 Dinerboate 60.51.5 87 11.391 45 Tstrachlorvinphos 2224.79.9 32 15.685 <th>No.</th> <th>Compound</th> <th>CAS no.</th> <th>Target ion</th> <th>RT</th> <th>No.</th> <th>Compound</th> <th>CAS no.</th> <th>Target ion</th> <th>RT</th>	No.	Compound	CAS no.	Target ion	RT	No.	Compound	CAS no.	Target ion	RT
2 DDV 62.73.7 109 6.619 37 Dicofol 115.32.2 139 14.441 3 Mevinphos 298.01.1 127 8.474 38 Isocarbophos 24353.61.5 136 14.519 4 Acceptate 3050-19.1 136 8.481 39 Bromophos-methyl 1967.93.3 199 14.889 5 Heptenophos 23560-59.0 124 10.119 40 Isofenphos-methyl 9067.93.3 199 14.889 6 Omethoate 113.02.6 156 10.277 41 Pendimethalin 40487.42 150.531 15.522 150.653 15.511 10.729 43 Guinalphos 1559.03.8 146 15.232 9 Cadusafos 9546.9 159 11.301 44 Methidution 950.37.8 145 15.511 1 alpha-BHC 319.84.6 181 11.511 46 Fenamiphos 22248.79 32 16.605 14 Atrazine<	ISTD	Triphenyl phosphate	115-86-6	326	17.997	35	Parathion	56-38-2	291	14.401
3 Mewinphos 298-01-1 127 8.474 38 Isocarbophos 2435-61-5 136 14.519 4 Acephate 30560-90 124 10.119 40 Isofenphos-methyl 9075-03.3 19 14.889 5 Heptenophos 1113.02.6 156 10.277 41 Pendimethalin 4047.42-1 252 15.006 6 Omethoate 113.42.6.1 110 10.477 42 Fipronil 12086.37.3 36 15.511 7 Propoxur 114.42.6.1 110 10.477 42 Fipronil 12086.37.3 16.515 8 Ethoprophos 1319.44.84 158 10.729 43 Ouinalphos 2328.47.9 32.5 15.501 10 Phorate 298.02.2 75 11.301 44 Methidathion 95.07.8 145.991 15.805 11 alpha3bHC 181.91.111.91 47 Profenofos 41198.08.7 224 15.6051 12	1	Methamidophos	10265-92-6	94	6.412	36	Triadimefon	43121-43-3	57	14.439
4 Acephate 30560-19-1 136 8.481 39 Bromophos.methyl 2194.96.3 331 14.738 5 Heptenophos 23560.59.0 124 10.119 40 Isofenphos.methyl 99675-03.3 199 14.889 6 Omethoate 1113.02.6 156 10.277 41 Pendimethalin 4087.42.1 252 15.08 7 Propoxur 114.26.1 110 10.477 42 Fipronil 120068.37.3 67 15.232 9 Cadusafos 95465.99.9 159 11.300 44 Methidathion 950.37.8 145 15.511 10 Phorate 298.02.2 75 11.391 45 Tetrachlorvinphos 22249.79 303 15.869 12 Dimethoate 60.51.5 87 11.749 47 Profenofos 41198.08.7 208 16.693 12 Dimethoate 1912.24.9 200 11.930 49 4.4'DDD 2245.37.30 59	2	DDV	62-73-7	109	6.619	37	Dicofol	115-32-2	139	14.441
5 Heptenophos 23560.59.0 124 10.119 40 Isofenphos-methyl 99675-03-3 199 14.889 6 Omethoate 1113.02-6 156 10.277 41 Pendimethalin 40487.42.1 252 15.008 7 Propoxur 114.25.1 110 10.477 42 Fipronil 12068-37.3 367 15.155 8 Ethoprophos 13194.48.4 158 10.729 43 Quinalphos 1359.03.8 146 15.232 9 Cadusafos 9566.59.9 159 11.300 44 Methidathion 950.37.8 145 15.11 10 Phorate 298.02.2 75 11.391 46 Fenamiphos 2224.9.2.6 303 15.869 11 alpha.BHC 319.84.6 181 11.719 47 Profenofos 4119.80.87 208 16.095 12 Dimethoate 60.51.5 87 11.391 40 44.'DDD 72.54.8 16.1 1	3	Mevinphos	298-01-1	127	8.474	38	lsocarbophos	24353-61-5	136	14.519
6 Omethoate 1113.02.6 156 10.277 41 Pendimethalin 40487.42.1 252 15.008 7 Propoxur 114.26.1 110 10.477 42 Fipronil 120683.37.3 367 15.165 8 Ethoprophos 13194.48.4 158 10.729 43 Quinalphos 13593.03.8 146 15.232 9 Cadusafos 95465.99 159 11.300 44 Methidathion 950.37.8 145 15.615 10 Phorate 280.62 75 11.311 45 Tetrachlorvinphos 2224.92.6 303 15.889 12 Dimethoate 60.51.5 87 11.749 47 Profenofos 41198.08.7 208 16.095 13 Carbofuran 1563.66.2 164 11.872 48 Chlorfenapyr 122453.73.0 59 16.633 14 Atrazine 1912.24.9 200 11.930 49 4.4'.DDD 75.4.8 231 17.030 15 <i>beta</i> BHC 319.85.7 12.91 12.041	4	Acephate	30560-19-1	136	8.481	39	Bromophos-methyl	2104-96-3	331	14.738
7 Propoxur 114.26.1 110 10.477 42 Fipronil 120068.37.3 367 15.165 8 Ethoprophos 13194.48 158 10.729 43 Quinalphos 13593.03.8 146 15.232 9 Cadusafos 95465.99.9 159 11.300 44 Methidathion 950.37.8 145 15.511 10 Phorate 298.02.2 75 11.391 45 Tetrachiorniphos 2224.92.8 30 15.685 11 alpha.BHC 105.16 87 11.749 47 Profenofos 4119.607 208 16.095 12 Dimethoate 051.5 87 11.749 48 Chlorfenapyr 122453.73 59 16.633 14 Atrazine 1912.24.9 200 11.930 49 4.4'.DDD 72.54.8 235 16.633 15 <i>beta</i> -BHC 319.85.7 219 12.241 50 Ethion 563.12.2 231 17.030 <td>5</td> <td>Heptenophos</td> <td>23560-59-0</td> <td>124</td> <td>10.119</td> <td>40</td> <td>lsofenphos-methyl</td> <td>99675-03-3</td> <td>199</td> <td>14.889</td>	5	Heptenophos	23560-59-0	124	10.119	40	lsofenphos-methyl	99675-03-3	199	14.889
8 Ethoprophos 13194.48.4 158 10.729 43 Quinalphos 13593.03.8 146 15.232 9 Cadusafos 95465.99.9 159 11.300 44 Methidathion 950.37.8 145 15.511 10 Phorate 298.02.2 75 11.391 45 Tetrachlorvinphos 22248.79.9 329 15.685 11 alpha BHC 319.84.6 181 11.749 47 Profenofos 41198.08.7 208 16.095 12 Dimethoate 60.51.5 87 11.749 47 Profenofos 41198.08.7 208 16.095 13 Carbofuran 1653.66.2 164 11.872 48 Chlorfenapyr 122453.73.0 59 16.695 14 Atrazine 1912.24.9 200 11.300 49 4.4'.DDD 72.54.8 235 16.511 15 beta-BHC 319.85.7 219 12.261 52 4.4'.DDT 50.29.3 235 17	6	Omethoate	1113-02-6	156	10.277	41	Pendimethalin	40487-42-1	252	15.008
9 Cadusafos 95465-99-9 159 11.300 44 Methidathion 950-37.8 145 15511 10 Phorate 298.02.2 75 11.391 45 Tetrachlorvinphos 22248.79.9 329 15.685 11 <i>alpha</i> BHC 319.84.6 181 11.511 46 Fenaniphos 2224.92.6 303 15.869 12 Dimethoate 60.51.5 87 11.749 47 Profenofos 41198.08.7 208 16.095 13 Carbofuran 1563.66.2 164 11.872 48 Chlorfenapyr 12245.73.0 59 16.633 14 Atrazine 1912.24.9 200 11.300 49 4.4'.DDD 72.54.8 235 16.951 15 <i>beta</i> -BHC 319.85.7 219 12.041 50 Ethion 663.12.2 231 17.030 16 gamma-BHC 58.9.9 181 12.178 51 Trazophos 2417.47.8 161 17.529 <td>7</td> <td>Propoxur</td> <td>114-26-1</td> <td>110</td> <td>10.477</td> <td>42</td> <td>Fipronil</td> <td>120068-37-3</td> <td>367</td> <td>15.165</td>	7	Propoxur	114-26-1	110	10.477	42	Fipronil	120068-37-3	367	15.165
10 Phorate 298.02.2 75 11.391 45 Tetrachlorvinphos 22248.79.9 329 15.685 11 alpha.BHC 319.84.6 181 11.511 46 Fenamiphos 2224.92.6 303 15.869 12 Dimethoate 60.51.5 87 11.749 47 Profenofos 41198.08.7 208 16.095 13 Carbofuran 1563.66.2 164 11.872 48 Chlorfenapyr 12245.73.0 59 16.633 14 Atrazine 1912.24.9 200 11.930 49 4.4'.DDD 72.54.8 25 16.951 15 <i>beta</i> -BHC 319.85.7 219 12.041 50 Ethion 50.32.2 231 17.030 16 gamma BHC 58.89.9 181 12.178 51 Trizophos 24017.47.8 161 17.250 17 Quintozene 82.68.8 237 12.281 52 4.4'.DDT 52.93.31.97.8 18.2 19.212 <td>8</td> <td>Ethoprophos</td> <td>13194-48-4</td> <td>158</td> <td>10.729</td> <td>43</td> <td>Quinalphos</td> <td>13593-03-8</td> <td>146</td> <td>15.232</td>	8	Ethoprophos	13194-48-4	158	10.729	43	Quinalphos	13593-03-8	146	15.232
11 alpha-BHC 319.84.6 181 11.511 46 Fenamiphos 2224.92.6 303 15.869 12 Dimethoate 60.51.5 87 11.749 47 Profenofos 41198.08.7 208 16.095 13 Carbofuran 1563.66.2 164 11.872 48 Chlorfenapyr 122453.73.0 59 16.633 14 Atrazine 1912.24.9 200 11.930 49 4.4'-DDD 72.54.8 235 16.951 15 beta-BHC 319.85.7 219 12.041 50 Ethion 563.12.2 231 17.030 16 gamma-BHC 58.89.9 181 12.178 51 Triazophos 2401.74.7.8 161 17.250 17 Quintozene 82.68.8 237 12.281 52 4.4'-DDT 50.29.3 235 17.638 18 Fonofos 944.22.9 109 12.339 53 Iprodione 36734.19.7 187 183 18.221 19 Dizainon 333.41.5 179 12.677 56<	9	Cadusafos	95465-99-9	159	11.300	44	Methidathion	950-37-8	145	15.511
12 Dimethoate 60.51.5 87 11.749 47 Profenofos 41198.08.7 208 16.095 13 Carbofuran 1563.66.2 164 11.872 48 Chlorfenapyr 12245.73.0 59 16.633 14 Atrazine 1912.24.9 200 11.930 49 4.4'.DDD 72.54.8 235 16.951 15 beta BHC 319.85.7 219 12.041 50 Ethion 563.12.2 231 17.030 16 gamma-BHC 58.89.9 181 12.178 51 Triazophos 24017.47.8 161 17.250 17 Quintozene 82.68.8 237 12.281 52 4.4'.DDT 50.29.3 235 17.638 18 Fonofos 944.22.9 109 12.339 53 Iprodione 36734.19.7 187 183.26 19 Dizinon 333.41.5 179 12.480 54 Phosmet 732.11.6 160 18.518 20 Disulfoton 298.04.4 88 12.591 55 Phosmet <td>10</td> <td>Phorate</td> <td>298-02-2</td> <td>75</td> <td>11.391</td> <td>45</td> <td>Tetrachlorvinphos</td> <td>22248-79-9</td> <td>329</td> <td>15.685</td>	10	Phorate	298-02-2	75	11.391	45	Tetrachlorvinphos	22248-79-9	329	15.685
13 Carbofuran 1563.66.2 164 11.872 48 Chlorfenapyr 12245.73.0 59 16.633 14 Atrazine 1912.24.9 200 11.930 49 4.4'.DDD 72.54.8 235 16.51 15 beta-BHC 319.85.7 219 12.041 50 Ethion 563.12.2 231 17.030 16 gamma-BHC 58.89.9 181 12.178 51 Triazophos 24017.47.8 161 17.250 17 Quintozene 82.68.8 237 12.281 52 4.4'.DDT 50.29.3 235 17.638 18 Fonofos 944.22.9 109 12.339 53 Iprodione 367.34.19.7 187 18.326 19 Diazinon 333.41.5 179 12.480 54 Phosmet 732.11.6 160 18.518 20 Disulfoton 298.04.4 88 12.591 55 Phosalone 2310.17.0 18.2 19.212 21 Teffuthrin 7953.8.2.2 177 12.677 56 <i>Iambda</i>	11	alpha-BHC	319-84-6	181	11.511	46	Fenamiphos	22224-92-6	303	15.869
14Atrazine1912.24.920011.930494.4'.DD72.54.823516.95115beta-BHC319.85.721912.04150Ethion563.12.223117.03016gamma-BHC58.89.918112.17851Triazophos24017.47.816117.25017Quintozene82.68.823712.281524.4'.DDT50.29.323517.63818Fonofos944.22.910912.33953Iprodione36734.19.718718.32619Diazinon333.41.517912.48054Phosmet732.11.616018.51820Disulfoton298.04.48812.59155Phosalone2310.17.018219.21221Tefluthrin79538.32.217712.67756 <i>lambda</i> .Cyhalothrin91465.08.618119.52722Chlorothalonil1897.45.626612.74457Cyfluthrin I68359.37.516320.82523Pirimicarb2310.398.216612.99958Cyfluthrin II68359.37.516321.03224Phosphamidon1317.21.612713.24359Cyfluthrin III and IV68359.37.516321.03225Vinclozolin50471.44.821213.42260Cypermethrin52315.07.818121.28226Methyl parathion298.03.028613.44462Cypermethrin5231	12	Dimethoate	60-51-5	87	11.749	47	Profenofos	41198-08-7	208	16.095
beta-BHC319.85.721912.04150Ethion563.12.223117.03016gamma-BHC58.89.918112.17851Triazophos24017.47.816117.25017Quintozene82.68.823712.281524.4'.DDT50.29.323517.63818Fonofos944.22.910912.33953Iprodione36734.19.718718.32619Diazinon333.41.517912.48054Phosmet732.11.616018.51820Disulfoton298.04.48812.59155Phosalone2310.17.018219.21221Tefluthrin79538.32.217712.67756 <i>lambda</i> -Cyhalothrin91465.08.618119.52722Chlorothalonil1897.45.626612.74457Cyfluthrin II68359.37.516320.82523Pirimicarb23103.98.216612.99958Cyfluthrin III68359.37.516321.00325Vinclozolin50471.44.821213.42260Cypermethrin52315.07.818121.24826Methyl parathion298.00.026313.43561Cypermethrin52315.07.818121.24827Chlorpyrifos-methyl5598.13.028613.44462Cypermethrin52315.07.818121.23328Carbaryl63.25.214413.53063Fenvalerate5163.05.81	13	Carbofuran	1563-66-2	164	11.872	48	Chlorfenapyr	122453-73-0	59	16.633
16gamma.BHC58.89.918112.17851Triazophos24017.47.816117.25017Quintozene82.68.823712.281524.4'-DDT50.29.323517.63818Fonofos944.22.910912.33953Iprodione36734.19.718718.26619Diazinon333.41.517912.48054Phosmet732.11.616018.51820Disulfoton298.04.48812.59155Phosalone2310.17.018219.21221Tefluthrin79538.32.217712.67756 <i>lambda</i> -Cyhalothrin91465.08.618119.52722Chlorothalonil1897.45.626612.74457Cyfluthrin I68359.37.516320.82523Pirimicarb2310.3.98.216612.99958Cyfluthrin II68359.37.516320.91424Phosphamidon13171.21.612713.24359Cyfluthrin III and IV68359.37.516321.03925Vinclozolin50471.44.821213.42260Cypermethrin52315.07.818121.24326Methyl parathion298.00.026313.43561Cypermethrin52315.07.818121.23927Chlorpyrifos-methyl559.13.028613.44462Cypermethrin5135.07.818121.23328Carbaryl63.25.214.413.53063 <t< td=""><td>14</td><td>Atrazine</td><td>1912-24-9</td><td>200</td><td>11.930</td><td>49</td><td>4,4'-DDD</td><td>72-54-8</td><td>235</td><td>16.951</td></t<>	14	Atrazine	1912-24-9	200	11.930	49	4,4'-DDD	72-54-8	235	16.951
17Quintozene82-68-823712.281524.4' DDT50-29.323517.63818Fonofos944-22.910912.33953Iprodione36734.19.718718.32619Diazinon333.41.517912.48054Phosmet732-11.616018.51820Disulfoton298.04.48812.59155Phosalone2310.17.018219.21221Tefluthrin79538.32.217712.67756 <i>lambda</i> -Cyhalothrin91465.08.618119.52722Chlorothalonil1897.45.626612.74457Cyfluthrin I68359.37.516320.82523Pirimicarb2310.3.98.216612.99958Cyfluthrin III and IV68359.37.516321.00324Phosphamidon13171.21.612713.24359Cyfluthrin III and IV68359.37.516321.00325Vinclozolin50471.44.821213.42260Cypermethrin52315.07.818121.28227Chloryprifos-methyl598.13.028613.44462Cypermethrin52315.07.818121.33128Carbaryl63.25.214413.53063Fenvalerate51630.58.116722.23629Fenchlorphos299.84.328513.72864Fenvalerate51630.58.116722.23629Fenchlorphos299.84.328513.7996	15	<i>beta</i> -BHC	319-85-7	219	12.041	50	Ethion	563-12-2	231	17.030
18Fonofos944.22.910912.33953Iprodione36734.19.718718.32619Diazinon333.41.517912.48054Phosmet732.11.616018.51820Disulfoton298.04.48812.59155Phosalone2310.17.018219.21221Tefluthrin79538.32.217712.67756 <i>lambda</i> -Cyhalothrin91465.08.618119.52722Chlorothalonil1897.45.626612.74457Cyfluthrin I68359.37.516320.82523Pirimicarb2310.398.216612.99958Cyfluthrin III68359.37.516321.03324Phosphamidon1317.21.612713.24359Cyfluthrin III and IV68359.37.516321.03325Vinclozolin50471.44.821213.42260Cypermethrin52315.07.818121.24826Methyl parathion298.00.026313.44462Cypermethrin52315.07.818121.33128Carbaryl63.25.214413.53063Fenvalerate51630.58.116722.07029Fenchlorphos299.84.328513.72864Fenvalerate51630.58.116722.23630Demeton-S-methyl sulfon17040.19.616913.79965Difencoonazole119446.68.332322.52131Fenitrothion122.14.527713	16	gamma-BHC	58-89-9	181	12.178	51	Triazophos	24017-47-8	161	17.250
19Diazinon333.41.517912.48054Phosmet732.11.616018.51820Disulfoton298.04.48812.59155Phosalone2310.17.018219.21221Tefluthrin79538.32.217712.67756 <i>lambda</i> -Cyhalothrin91465.08.618119.52722Chlorothalonil1897.45.626612.74457Cyfluthrin I68359.37.516320.82523Pirimicarb2310.39.8.216612.99958Cyfluthrin II68359.37.516320.91424Phosphamidon13171.21.612713.24359Cyfluthrin III and IV68359.37.516321.00325Vinclozolin50471.44.821213.42260Cypermethrin52315.07.818121.22826Methyl parathion298.00.026313.43561Cypermethrin52315.07.818121.23126Methyl parathion298.01.028613.44462Cypermethrin52315.07.818121.23127Chlorpyrifos-methyl5598.13.028513.72864Fenvalerate51630.58.116722.07029Fenchlorphos299.84.328513.79965Difenoconazole119446.68.332322.52931Fenitrothion122.14.527713.97366Difenoconazole119446.68.332322.61432Malathion121.75.5	17	Quintozene	82-68-8	237	12.281	52	4,4'-DDT	50-29-3	235	17.638
20 Disulfoton 298.04.4 88 12.591 55 Phosalone 2310.17.0 182 19.212 21 Tefluthrin 79538.32.2 177 12.677 56 <i>lambda</i> -Cyhalothrin 91465.08.6 181 19.527 22 Chlorothalonil 1897.45.6 266 12.744 57 Cyfluthrin I 68359.37.5 163 20.825 23 Pirimicarb 2310.3.98.2 166 12.999 58 Cyfluthrin II 68359.37.5 163 20.914 24 Phosphamidon 13171.21.6 127 13.243 59 Cyfluthrin III and IV 68359.37.5 163 21.003 25 Vinclozolin 50471.44.8 212 13.422 60 Cypermethrin 52315.07.8 181 21.228 26 Methyl parathion 298.00.0 263 13.435 61 Cypermethrin 52315.07.8 181 21.328 27 Chlorpyrifos-methyl 598.13.0 286 13.444 62 Cypermethrin 52315.07.8 181 21.331 28 Carbaryl	18	Fonofos	944-22-9	109	12.339	53	Iprodione	36734-19-7	187	18.326
21Tefluthrin79538-32-217712.67756 <i>lambda</i> -Cyhalothrin91465-08-618119.52722Chlorothalonil1897-45-626612.74457Cyfluthrin I68359-37-516320.82523Pirimicarb23103-98-216612.99958Cyfluthrin II68359-37-516320.91424Phosphamidon13171-21-612713.24359Cyfluthrin III and IV68359-37-516321.00325Vinclozolin50471-44-821213.42260Cypermethrin52315-07-818121.14526Methyl parathion298-00-026313.43561Cypermethrin52315-07-818121.33128Carbaryl63-25-214413.53063Fenvalerate51630-58-116722.07029Fenchlorphos299-84-328513.72864Fenvalerate51630-58-116722.23630Demeton-S-methyl sulfone17040-19-616913.79965Difenoconazole119446-68-332322.52931Fenitrothion122-14-527713.97366Difenoconazole119446-68-332322.81432Malathion121-75-517314.16167Indoxacarb173584-44-615022.81433Fenthion55-38-927814.33968Deltamethrin52918-63-518122.932	19	Diazinon	333-41-5	179	12.480	54	Phosmet	732-11-6	160	18.518
22Chlorothalonil1897-45-626612.74457Cyfluthrin I68359-37-516320.82523Pirimicarb23103-98-216612.99958Cyfluthrin II68359-37-516320.91424Phosphamidon13171-21-612713.24359Cyfluthrin III and IV68359-37-516321.00325Vinclozolin50471-44-821213.42260Cypermethrin52315-07-818121.22826Methyl parathion298-00-026313.43561Cypermethrin52315-07-818121.33127Chlorpyrifos-methyl5598-13-028613.44462Cypermethrin52315-07-818121.33128Carbaryl63-25-214413.53063Fenvalerate51630-58-116722.07029Fenchlorphos299-84-328513.72864Fenvalerate51630-58-116722.23630Demeton-S-methyl sulfone17040-19-616913.79965Difenoconazole119446-68-332322.52931Fenitorthion122.14-527713.97366Difenoconazole119446-68-332322.61432Malathion121.75-517314.16167Indoxacarb173584-44-615022.81433Fenthion52.38-927814.33968Deltamethrin52918-63-518122.92.93	20	Disulfoton	298-04-4	88	12.591	55	Phosalone	2310-17-0	182	19.212
23Pirimicarb23103-98-216612.99958Cyfluthrin II68359-37-516320.91424Phosphamidon13171-21-612713.24359Cyfluthrin III and IV68359-37-516321.00325Vinclozolin50471-44-821213.42260Cypermethrin52315-07-818121.14526Methyl parathion298-00-026313.43561Cypermethrin52315-07-818121.22827Chlorpyrifos-methyl5598-13-028613.44462Cypermethrin52315-07-818121.33128Carbaryl63-25-214413.53063Fenvalerate51630-58-116722.07029Fenchlorphos299-84-328513.72864Fenvalerate51630-58-116722.23630Demeton-S-methyl sulfone17040-19-616913.79965Difenoconazole119446-68-332322.52931Fenitorthion122-14-527713.97366Difenoconazole119446-68-332322.61432Malathion121.75.517314.16167Indoxacarb173584-44-615022.81433Fenthion55.38.927814.33968Deltamethrin52918-63.518122.932	21	Tefluthrin	79538-32-2	177	12.677	56	<i>lambda</i> -Cyhalothrin	91465-08-6	181	19.527
24Phosphamidon13171-21.612713.24359Cyfluthrin III and IV68359-37.516321.00325Vinclozolin50471-44.821213.42260Cypermethrin52315.07.818121.14526Methyl parathion298.00.026313.43561Cypermethrin52315.07.818121.22827Chlorpyrifos-methyl5598.13.028613.44462Cypermethrin52315.07.818121.33128Carbaryl63.25.214413.53063Fenvalerate51630-58.116722.07029Fenchlorphos299.84.328513.72864Fenvalerate51630-58.116722.23630Demeton-S-methyl sulfone17040-19.616913.79965Difenoconazole119446-68-332322.52931Fenitrothion122.14.527713.97366Difenoconazole119446-68-332322.61432Malathion121.75.517314.16167Indoxacarb173584-44-615022.81433Fenthion55.38.927814.33968Deltamethrin52918-63.518122.929	22	Chlorothalonil	1897-45-6	266	12.744	57	Cyfluthrin I	68359-37-5	163	20.825
25Vinclozolin50471-44-821213.42260Cypermethrin52315-07-818121.14526Methyl parathion298-00-026313.43561Cypermethrin52315-07-818121.22827Chlorpyrifos-methyl5598-13-028613.44462Cypermethrin52315-07-818121.33128Carbaryl63-25-214413.53063Fenvalerate51630-58-116722.07029Fenchlorphos299-84-328513.72864Fenvalerate51630-58-116722.23630Demeton-S-methyl sulfone17040-19-616913.79965Difenoconazole119446-68-332322.52931Fenitrothion122-14-527713.97366Difenoconazole119446-68-332322.61432Malathion121-75-517314.16167Indoxacarb173584-44-615022.81433Fenthion55-38-927814.33968Deltamethrin52918-63-518122.932	23	Pirimicarb	23103-98-2	166	12.999	58	Cyfluthrin II	68359-37-5	163	20.914
26Methyl parathion298-00-026313.43561Cypermethrin52315-07-818121.22827Chlorpyrifos-methyl5598-13-028613.44462Cypermethrin52315-07-818121.33128Carbaryl63-25-214413.53063Fenvalerate51630-58-116722.07029Fenchlorphos299-84-328513.72864Fenvalerate51630-58-116722.23630Demeton-S-methyl sulfone17040-19-616913.79965Difenoconazole119446-68-332322.52931Fenitrothion122-14-527713.97366Difenoconazole119446-68-332322.61432Malathion121-75-517314.16167Indoxacarb173584-44-615022.81433Fenthion55-38-927814.33968Deltamethrin52918-63-518122.932	24	Phosphamidon	13171-21-6	127	13.243	59	Cyfluthrin III and IV	68359-37-5	163	21.003
27Chlorpyrifos-methyl5598-13-028613.44462Cypermethrin52315-07-818121.33128Carbaryl63-25-214413.53063Fenvalerate51630-58-116722.07029Fenchlorphos299-84-328513.72864Fenvalerate51630-58-116722.23630Demeton-S-methyl sulfone17040-19-616913.79965Difenoconazole119446-68-332322.52931Fenitrothion122-14-527713.97366Difenoconazole119446-68-332322.61432Malathion121-75-517314.16167Indoxacarb173584-44-615022.81433Fenthion55-38-927814.33968Deltamethrin52918-63-518122.932	25	Vinclozolin	50471-44-8	212	13.422	60	Cypermethrin	52315-07-8	181	21.145
28Carbaryl63-25-214413.53063Fenvalerate51630-58-116722.07029Fenchlorphos299-84-328513.72864Fenvalerate51630-58-116722.23630Demeton-S-methyl sulfone17040-19-616913.79965Difenoconazole119446-68-332322.52931Fenitrothion122-14-527713.97366Difenoconazole119446-68-332322.61432Malathion121-75-517314.16167Indoxacarb173584-44-615022.81433Fenthion55-38-927814.33968Deltamethrin52918-63-518122.932	26	Methyl parathion	298-00-0	263	13.435	61	Cypermethrin	52315-07-8	181	21.228
29Fenchlorphos299-84-328513.72864Fenvalerate51630-58-116722.23630Demeton-S-methyl sulfone17040-19-616913.79965Difenoconazole119446-68-332322.52931Fenitrothion122-14-527713.97366Difenoconazole119446-68-332322.61432Malathion121-75-517314.16167Indoxacarb173584-44-615022.81433Fenthion55-38-927814.33968Deltamethrin52918-63-518122.932	27	Chlorpyrifos-methyl	5598-13-0	286	13.444	62	Cypermethrin	52315-07-8	181	21.331
30Demeton S-methyl sulfone17040.19-616913.79965Difenoconazole119446-68-332322.52931Fenitrothion122.14-527713.97366Difenoconazole119446-68-332322.61432Malathion121.75-517314.16167Indoxacarb173584-44-615022.81433Fenthion55-38-927814.33968Deltamethrin52918-63-518122.932	28	Carbaryl	63-25-2	144	13.530	63	Fenvalerate	51630-58-1	167	22.070
31Fenitrothion122-14-527713.97366Difenoconazole119446-68-332322.61432Malathion121-75-517314.16167Indoxacarb173584-44-615022.81433Fenthion55-38-927814.33968Deltamethrin52918-63-518122.932	29	Fenchlorphos	299-84-3	285	13.728	64	Fenvalerate	51630-58-1	167	22.236
32 Malathion 121-75-5 173 14.161 67 Indoxacarb 173584-44-6 150 22.814 33 Fenthion 55-38-9 278 14.339 68 Deltamethrin 52918-63-5 181 22.932	30	Demeton-S-methyl sulfone	17040-19-6	169	13.799	65	Difenoconazole	119446-68-3	323	22.529
33 Fenthion 55-38-9 278 14.339 68 Deltamethrin 52918-63-5 181 22.932	31	Fenitrothion	122-14-5	277	13.973	66	Difenoconazole	119446-68-3	323	22.614
	32	Malathion	121-75-5	173	14.161	67	Indoxacarb	173584-44-6	150	22.814
34 Chlorpyrifos 2921-88-2 197 14.385 69 Azoxystrobin 131860-33-8 344 23.256	33	Fenthion	55-38-9	278	14.339	68	Deltamethrin	52918-63-5	181	22.932
	34	Chlorpyrifos	2921-88-2	197	14.385	69	Azoxystrobin	131860-33-8	344	23.256

Table 3. Pesticides, CAS number, target ion, and retention time.

Results and Discussion

The purpose of the tests was to evaluate the performance of Agilent Ultimate Plus deactivated FS tubing as a guard column, and compare it with a popular deactivated guard column from another supplier for the analysis of pesticides in a vegetable matrix by GC/MS. The system was inspected and carefully cleaned, if necessary, before each test. For consistency, new UI columns, UI gold seals, liners, and inert unions were used for each tubing test.

Protecting the analytical column

One potential issue with the use of GC/MS for analysis of QuEChERS samples is contamination and deterioration of the GC column. QuEChERS vegetable samples usually still contain some impurities that can accumulate on the head of the column, causing peak tailing, retention time shifting, and reduced response. Figure 2 shows chromatograms of a blank tomato extract and a 50 ng/mL spiked QuEChERS sample analyzed with deactivated FS tubing from different suppliers. As shown in Figure 2C, interference peaks are found in the blank chromatogram. These interference peaks are either completely separated with the target pesticide's peak, or with significantly lower intensity compared to the target pesticide's peak. Therefore, these interference peaks do not affect integration and quantitation of the pesticides of interest. However, these impurities can also cause some chromatographic problems in that peak shape and intensity may deteriorate faster as more complicated samples are injected.

Using Agilent Ultimate Plus deactivated FS tubing as a guard column is an effective way to protect the analytical column by trimming the tubing periodically instead of the analytical column, to restore performance.

Backflushing is recommended for complicated sample matrices to reduce analysis time, frequency of MSD source cleaning, and column head trimming [6]. Backflushing was not used in this study to reduce influences on the test results. However, we recommend the use of Ultimate Plus deactivated FS tubing as a guard column and backflushing in routine pesticide analysis.

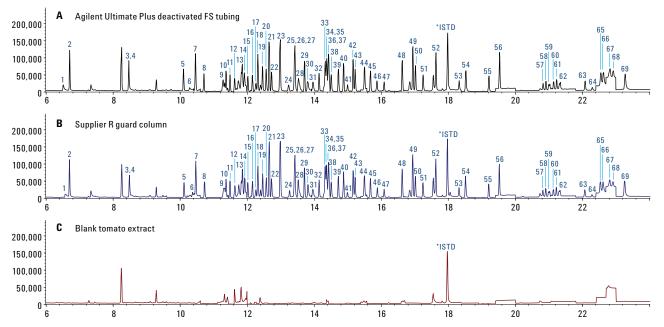


Figure 2. GC/MS chromatogram of tomato extract using deactivated FS tubing as guard columns. A) Agilent Ultimate Plus deactivated FS tubing, B) supplier R guard column, and C) tomato extract blank (peak identification in Table 3).

Important components in the flow path

Flow path inertness plays a critical role in the accuracy, precision, durability, and consistency of pesticide analysis in complicated sample matrices. Each component of the flow path has the potential to contribute to overall system activity. Therefore, the Agilent Inert Flow Path solution, which provides excellent surface inertness for the entire GC flow, includes Ultra Inert columns, Ultra Inert inlet liners and gold seals, with UltiMetal Plus inert inlet, capillary flow technology (CFT) devices, and other inertness-verified consumables. As shown in Table 4, the surface areas of liners and gold seals are about 4.4 and 1 cm², respectively; while the surface area of a 5 m \times 0.25 mm guard column is about 39.3 cm². If surface area is proportional to the potential for active sites, this means that the guard column has over eight times more active sites than the liner, and 39 times more active sites than the gold seal in the system. Chromatographically active compounds such as organophosphate pesticides can adsorb onto active sites, particularly at trace levels, compromising an analyte's response. High inertness performance of deactivated fused silica tubing is very important for the entire GC flow path.

Table 4. GC Flow path surface areas

	Length (cm)	Diameter (cm)	Surface area (cm ²)
Liner	7	0.2	4.4
Seal	0.4	0.8	1
Column	3,000	0.025	235.6
Guard column	500	0.025	39.3

Performance comparison

Pesticides of interest in this study were from various pesticides groups, such as organophosphates, organochlorines, carbamates, and pyrethroids. These compounds also included many difficult active pesticides such as methamidophos, acephate, omethoate, dimethoate, carbaryl, chlorothalonil, DDT, phosmet, and iprodione. Evaluation and comparison focused on the performance of the guard column for these active compounds and some pesticides for routine inspection.

Due to the inert flow path, most analytes showed sharp and symmetrical peak shapes with Ultimate Plus deactivated FS tubing and supplier R guard columns (see Figure 2A and Figure 2B).

The more polar pesticides can be problematic, often yielding broad peak shapes or excessive tailing that makes reliable quantitation at low levels difficult. Figure 3 depicts a GC/MS/SIM chromatogram of more problematic polar pesticides on different supplier's tubing. Compared to supplier R's guard column, the high level of inertness of Ultimate Plus deactivated FS tubing results in better peak shape and decreased sample adsorption, allowing lower detection limits.

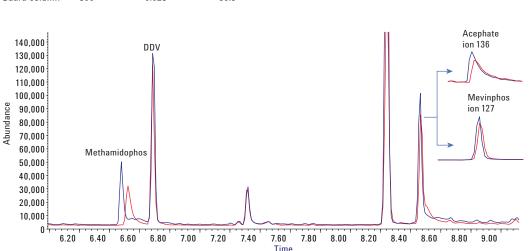


Figure 3. Enlarged section of GC/MS chromatogram of more problematic polar pesticides. Agilent Ultimate Plus deactivated FS tubing (blue), and supplier R guard column (red).

Linearity

Linearity was determined using calibration curves spiked into the tomato matrix. Calibration curves were constructed from 2 μ L injections of selected standards at 10, 20, 50, 100, 250, and 500 ng/mL. Every standard solution contained 100 ng/mL of internal standards. Figure 4 compares calibration curve coefficients (R²) for Ultimate Plus deactivated FS tubing and the supplier R guard column. The supplier R guard column is widely recognized for its inertness performance. All pesticides showed excellent linearity with calibration coefficients greater than 0.990 on both Ultimate Plus deactivated FS tubing and the guard column from supplier R. Overall, however, Agilent deactivated FS tubing exhibited better performance, particularly for very difficult pesticides, such as methamidophos, acephate, and omethoate.

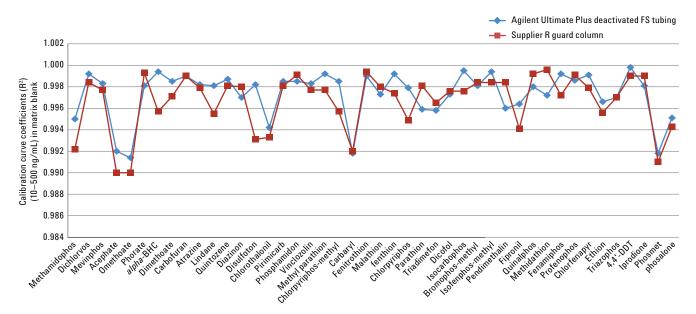


Figure 4. Comparison of calibration curve coefficients (R²) for Agilent Ultimate Plus deactivated FS tubing and supplier R guard column.

Repeatability and stability

A 50 ng/mL spiked QuEChERS sample was analyzed over 15 injections to test repeatability and stability. The peak-area ratios of analytes/internal standards for most analytes were comparable between Ultimate Plus deactivated FS tubing and the supplier R guard column. However, for difficult active pesticides, better RSD values meant that the Agilent tubing provided more consistent responses of active pesticides, and thus supported more sample runs with acceptable results (Table 5).

Conclusions

Agilent Ultimate Plus deactivated fused silica tubing was evaluated for use as a guard column in the analysis of tomato QuEChERS samples, and compared with tubing from another supplier. Convincing proof for the surface inertness improvement of Ultimate Plus deactivated fused silica over another vendor's deactivated tubing includes better calibration curve linearity and longer durability, demonstrated by slower and reduced signal drop over multiple injections of critical active pesticides. This was visually apparent, and verified by RSD values. Ultimate Plus deactivated fused silica tubing can be used to improve GC flow path performance when used as guard columns for pesticide analysis in complicated matrices. Table 5. Injection repeatability and performance stability.

	Injection repeatability (RSD%) n=15						
No.	Pesticide	Supplier R guard column	Agilent Ultimate Plus deactivated FS tubing				
1	Methamidophos	6.69	5.86				
2	Dichlorvos	2.25	2.14				
3	Acephate	10.81	8.87				
6	Omethoate	10.74	6.51				
10	Phorate	1.36	1.15				
12	Dimethoate	3.38	3.41				
13	Carbofuran	3.73	3.15				
14	Atrazine	1.18	1.26				
16	Lindane	1.61	0.96				
17	Quintozene	2.91	3.02				
19	Diazinon	1.65	0.90				
20	Disulfoton	1.59	1.66				
22	Chlorothalonil	5.10	3.42				
23	Pirimicarb	3.20	1.51				
24	Phosphamidon	1.96	2.22				
25	Vinclozolin	4.04	2.50				
26	Methyl parathion	4.23	1.29				
28	Carbaryl	7.42	6.17				
31	Fenitrothion	2.28	1.67				
32	Malathion	1.51	1.43				
34	Chlorpyrifos	5.00	4.79				
35	Parathion	5.04	2.78				
36	Triadimefon	1.32	2.73				
37	Dicofol	6.31	2.10				
38	Isocarbophos	1.55	1.71				
40	Isofenphos-methyl	1.37	1.34				
41	Pendimethalin	3.48	1.52				
42	Fipronil	3.48	1.89				
43	Quinalphos	0.70	1.04				
47	Profenofos	3.79	3.73				
50	Ethion	2.83	1.24				
51	Triazophos	2.28	1.21				
52	4,4'₋DDT	1.25	0.65				
53	Iprodione	2.88	2.46				
54	Phosmet	3.37	1.98				
55	Phosalone	3.98	2.36				

References

- Anastassiades, M.; Lehotay, S. J. Fast and Easy Multiresidue Method Employment Acetonitrile Extraction/Partitioning and "Dispersive Solid-Phase Extraction" for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412-431.
- Zhao, Suli; Zhai, Andy. A Blind Study of Pesticides in vegetables by Agilent Bond Elut QuEChERS Extraction kits and Agilent 5975T LTM GC/MSD; Application note, Agilent Technologies, Inc. Publication number 5990-6323EN, 2012.
- Zhao, Limian; Wylie, Philip L.; Stevens, Joan. Analysis of Pesticide Residues in Apple Using Agilent Sampli@ QuEChERS EN Kits by GC/MS; Application note, Agilent Technologies, Inc. Publication number 5990-4073EN, 2012.
- Dang, Ngoc A. Better Pesticide Analysis with Agilent J&W Ultimate Plus Tubing in an Inert Flow Path; Application note, Agilent Technologies, Inc. Publication number 5991-5404EN, 2014.
- Zou, Yun. Evaluation of Fused Silica Tubing for Active Compound Analysis in an Inert Flow Path; Application note, Agilent Technologies, Inc. Publication number 5991-5914EN, 2015.
- Meng, C-K. Improving Productivity and Extending Column Life with Backflush; Application note, Agilent Technologies, Inc., Publication number 5989-6018EN, 2006.

For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2015 Printed in the USA June 9, 2015 5991-5974EN

