

Analysis of Pesticide Residues in Mango by GC/MS/MS With Bond Elut QuEChERS EN Kits

Application Note

Food Testing and Agriculture

Abstract

This application note describes the quantitative analysis of 19 of the 40 regulated pesticides with maximum residue limits (MRLs) established by the Brazilian Health Surveillance Agency (ANVISA). We also analyzed nine pesticides found in mango during the monitoring programs developed in the Pesticide Residues Laboratory (LRP/IB)/São Paulo State and by governmental programs. The samples were also analyzed with a qualitative multiresidue method for 258 pesticides, extending the analytical scope to analytes with low probability of being present, as recommended in SANCO/12571/2013 guidelines [1]. The extraction was performed using an Agilent Bond Elut QuEChERS EN kit. Target pesticides were analyzed by GC/MS/MS using an Agilent 7890A GC and an Agilent 7000B Triple Quadrupole GC/MS in a constant pressure/postcolumn backflush configuration (Pesticide Analyzer 411). The method was validated in terms of recovery and reproducibility. The limits of detection (LOD) ranged between 0.0006 and 0.0607 mg/kg and limits of quantitation (LOQ) were between 0.0025 and 0.5 mg/kg. LOQs were established as ¼ of MRL. Recoveries for all compounds were 70 to 120%, and RSDs were below 20% for five replicates. LODs were calculated as three times the RSDs at LOQ levels.

Authors

Claudia Ciscato, Claudia Barbosa, and Amir Gebara Instituto Biológico Laboratório de Resíduos de Pesticidas São Paulo, SP, Brazil

Kumi Shiota Ozawa Agilent Technologies Brasil Ltda. Barueri, SP, Brazil

Introduction

Mango is one of the most consumed fresh fruits in the world, and Brazil is one of the main exporters. It is a fruit with a large range of varieties (Palmer, Tommy Atkins, Edward, Peter, Haden, Keith, Mummy, Julie, Saigon, Dabsha, Hindi, Van Dyke, Benisha, Kesar, and Lick). Each one has its own characteristics in terms of pulp quality, taste, color, and so on. In general, mango is consumed fresh and unprocessed. However, it is possible to find it in different forms, such as purée, juice, sliced, chutney, and flakes. World market demand for mangoes has been rapidly growing. For example, growth averaged nine percent per year from 2006 to 2010 [2].

The international market varies considerably and depends on the preference of the consumer. To be exported, the fruit must exhibit a brilliant red color, have short fibers, and weigh around 250 to 600 g. In general, Tommy Atkins is the variety with a large market due mainly to its intense color and durability in long-distance transport [3]. For this reason, Tommy Atkins was chosen for this study.

Increasing the scope of the quantitative method was considered an illogical expense in terms of the cost of further standards and their application. However, to assess the presence of pesticides with low probability, the samples were also screened qualitatively with the same chromatographic method but with MRM transitions for 258 pesticides, including isomers and metabolites.

The Brazilian Health Surveillance Agency (ANVISA) regulates and lists maximum residue limits (MRLs) for about 40 pesticides for use on mango [4]. Of these regulated pesticides, 19 were selected on the basis of amenability to GC, and availability of standards. In addition, nine other pesticides found in mango during the national monitoring programs were included in the list, 28 compounds were analyzed quantitatively.

Two Brazilian national monitoring programs have begun, namely Pesticide Residues Analysis Program (PARA) on Food, developed by ANVISA, and National Plan for Control of Residues and Contaminants in Products of Plant Origin (PNCRC), developed by the Ministry of Agriculture. These initiatives are based on programs initially set up at the Instituto Biologico's Laboratório de Resíduos de Pesticidas (LRP) pesticide residues laboratory and São Paulo General Warehousing and Centers Company (CEAGESP) in 1978, with LRP participating in the PNCRC program. National programs were created to establish a service to evaluate and promote food quality regarding the use of pesticides and similar compounds [4]. The high quantity of pesticides not allowed for specific crops was also verified in PARA and PNCRC monitoring programs, and from LRP analysis [4,9,10,11].

The programs list some commodities that may or may not be included in the annual sampling plan; mango is one of them. The others are rice, zucchini, pineapple, lettuce, banana, potato, beet, onion, carrot, cabbage, bean, orange, apple, papaya, corn, strawberry, cucumber, green pepper, cabbage, tomato, and grape [4].

Materials and Methods

Acetonitrile, isooctane, and acetone were pesticide-residue grade. Pure standards from AccuStandard, around 99% pure, were used to prepare stock solutions at 1,000 ng/ μ L and working solutions that varied in concentration. Triphenyl phosphate at 0.5 mg/kg was prepared in isooctane and used as internal standard.

We performed extractions using the Agilent QuEChERS Extraction Kit for EN method 15662EN (p/n 5982-5650CH), in which 10 g of mango sample was extracted using premixed sachets of 4 g MgSO₄, 1 g NaCl, 1 g Na citrate, and 0.5 g disodium citrate sesguihydrate. More details are shown in Figure 1. Mango is a highly pigmented fruit, so the GC components should be kept free from pigments and nonvolatiles [8]. We chose a subsequent dispersive cleanup designed to include pigment removal (Agilent Bond Elut **QuEChERS SPE Dispersive Kit for Pigmented Fruits and** Vegetables, EN method, p/n 5982-5256CH). This included premixed sachets containing 150 mg PSA, 15 mg graphitized carbon (GCB), and 885 mg MgSO₄. Cleanup removed polar organic acids, some sugars and lipids, and carotenoids and chlorophyll. It is known that the use of GCB can affect planar pesticides such as guintozene and thiabendazole in our target list for quantitation [5]. However, the relatively low level of GCB in the Agilent formulation was a key criterion in its choice, and the good RSDs and recoveries we found (see Table 2) supported this approach.

A calibration in matrix extract was prepared daily and injected before and after the sample set to check calibration curve integrity. TPP was added after cleanup to avoid its retention by GCB [8]. The Agilent 7000B Triple Quadrupole GC/MS System was configured according to the Agilent Pesticide Analyzer 411 configuration, featuring a 30 m analytical column with postcolumn backflush.

Figure 1. Mango sample preparation process.

Instrumental conditions

GC conditions Column:	Agilent J&W DB-5ms, 30 m × 0.25 mm, 0.25 μm
	(p/n 122-5532)
Inlet:	Split/splitless
Inlet liner:	Splitless, single taper, Ultra Inert liner with glass wool (p/n 5190-3167)
Carrier:	Helium
Inlet pressure:	36 psi (constant pressure mode) during run, 1 psi during backflush
Inlet temp:	280 °C
lnj vol:	1 μL
Purge flow to split vent:	30 mL/min at 0.75 min
Gas saver:	On (20 mL/min at 2.0 min)
Oven temp :	70 °C (1 min), 50 °C/min to 150 °C (0 min), 6 °C/min to 200 °C (0 min), 16 °C/min to 280 °C (5.5 min)
Capillary flow technology:	Agilent Purged Ultimate Union (p/n G3186) used for backflushing the column and retention gap
Restrictor:	Deactivated capillary tubing, 0.7 m $ imes$ 0.15 mm
Retention time locking:	Chlorpyrifos-methyl locked at 16.59 min
GC:	Agilent 7890A series (G3440A)
Autosampler:	Agilent 7693A Automatic Liquid Sampler injector and sample tray
MS conditions	Agilant 7000B Triple Quadrupole GC /MS System

Spectrometer: Mode:

woue.	
Transfer line temp:	
Solvent delay:	
Source temp:	
Quadrupole temp:	

Agilent 7000B Triple Quadrupole GC/MS System Electron Impact 280 °C 2.3 min 300 °C Q1 and Q2 = 180 °C

Results and Discussion

Performance evaluation, quantitative method

Blank samples were spiked with concentrations of 1 MRL, $\frac{1}{2}$ MRL, and $\frac{1}{4}$ MRL. Calibration curves were prepared at five levels in concentrations of $\frac{1}{4}$, $\frac{1}{2}$, 1, 2.5, and 5x MRL, all above R² = 0.99 linearity. Recoveries ranged from 70 to 120% at $\frac{1}{4}$ MRL for the pesticides listed in Table 1.

In an effort to increase the low recovery of carbosulfan, 600 μ L of 5 N NaOH were added after the addition of salts into the sample [6]. The addition of NaOH increased the pH from 4 to 6. Carbosulfan is an acid-sensitive pesticide; therefore, at pH 4 it may be hydrolyzed and converted into carbofuran. Carbosulfan exhibited increased recovery after pH adjustment from 59 to 113% when spiking at 0.0125 mg/kg. However, due to their sensitiveness to basic solutions [7], this addition affected the recoveries of vinclozolin, cyhalothrin, and cypermethrin, lowering them to about 50%. Therefore, it is recommended to prepare both solutions to have better recoveries for all pesticides.

Table 1. Pesticides analyzed with limits of detection (LOD), limits of quantitation (LOQ), RSD, recovery (REC), and MRM transitions.

No.	Pesticide	MRL	RT (min)	LOD	L00.	RSD (%)	REC (%)	Quant	CE (V)	Qual	CE (V)
1	Azoxystrobin	0.3	36.6	0.0287	0.0750	13.1	97	344.1 → 329.0	15	344.1 → 182.9	25
										344.1 → 171.9	40
2	BHC-alpha	0.01*	12.3	0.0007	0.0025	9.4	95	218.8 → 183.0	5	218.8 → 145.0	20
										181.0 → 145.0	15
3	Bifenthrin	0.1	29.0	0.0088	0.0250	13.8	85	181.2 → 165.2	25	166.2 → 165.2	20
										181.2 → 166.2	10
4	Carbosulfan	0.05	28.7	0.0016	0.0125	7.1	59/113*	118.0 → 76.0	5	164.0 → 103.1	25
										164.0 → 149.0	10
5	Chlorpyrifos	0.05*	19.1	0.0047	0.0125	15.1	83	313.8 → 257.8	15	196.9 → 107.0	40
6	Cyhalothrin (λ)	0.1	30.5	0.0089	0.0250	12.6	94	208.0 → 181.0	7	197.0 → 161.0	5
										197.0 → 141.0	10
7	Cypermethrin I	0.7	33.1	0.0480	0.1750	10.9	84	163.0 → 127.0	5	209.0 → 116.0	15
										181.0 → 127.0	30
		0.0 - ×								165.0 → 127.0	5
8	Diazinon	0.05*	14.4	0.0052	0.0125	12.4	112	137.1 → 84.0	10	137.1 → 54.0	20
•	B.4		05 F	0.0470	0.0500	45.0	70		45	199.1 → 93.0	15
9	Difenoconazole I	0.2	35.5	0.0170	0.0500	15.6	72	322.8 → 264.8	15	264.9 → 202.0	20
10	F 1 17 1	0.01*	00.1	0.0010	0.0005	10.1	100	000 0 004 0	15	324.8 → 266.8	15
10	Endosulfan I	0.01*	23.1	0.0010	0.0025	13.1	100	239.0 → 204.0	15	339.0 → 267.0	2
										207.0 → 172.0	15
										241.0 → 136.0	20
11	Fada - Mar II	0.01*	05.7	0.0010	0.0005	17.0	01	241.0	15	241.0 → 206.0	20
11	Endosulfan II	0.01*	25.7	0.0010	0.0025	17.3	81	241.0 → 206.0	15	$339.0 \rightarrow 267.0$	2
										241.0 → 136.0 239.0 → 204.0	40 15
										239.0 → 204.0 207.0 → 172.0	15
12	Endosulfan sulfate	0.01*	27.1	0.0011	0.0025	17.0	85	271.8 → 237.0	15	207.0 → 172.0 387.0 → 253.0	10
12		0.01	27.1	0.0011	0.0025	17.0	05	271.0 207.0	15	271.8 → 235.0	15
13	Ethion	0.05*	26.1	0.0049	0.0125	13.1	100	152.9 → 96.9	10	124.9 → 96.9	0
10	Ethion	0.05	20.1	0.0045	0.0125	10.1	100	102.0 2 00.0	10	230.9 → 175.0	10
14	Etofenprox	0.3	33.5	0.0219	0.0750	12.7	77	163.0 → 107.1	20	135.0 → 107.0	10
• •	Etotonprox	0.0	00.0	0.0210	0.0700	12.7		100.0	20	163.0 → 135.1	10
15	Famoxadone	0.2	37.1	0.0163	0.0500	10.9	100	223.9 → 196.2	10	197.0 → 141.1	15
				0.0.00	0.0000			0.0 .00.2		197.0 → 115.0	30
16	Fenthion	0.05	19.1	0.0047	0.0125	13.9	90	278.0 → 109.0	15	278.0 → 169.0	15
17	Imazalil	1	24.1	0.0607	0.2500	9.4	86	214.9 → 173.0	5	216.8 → 175.0	5
									-	172.9 → 145.0	15

			RT			RSD	REC		CE		CE
No.	Pesticide	MRL	(min)	LOD	L00	(%)	(%)	Quant	(V)	Qual	(V)
18	Kresoxim-methyl	0.2	25.0	0.0184	0.0500	13.9	88	116.0 → 89.0	15	131.0 → 89.0	30
										116.0 → 63.0	30
19	Methidathion	0.05*	22.6	0.0056	0.0125	14.7	102	144.9 → 85.0	5	144.9 → 58.1	15
										85.0 → 58.0	5
20	Prochloraz	0.2	31.9	0.0134	0.0500	10.6	85	180.0 → 138.0	10	310.0 → 70.0	15
										308.0 → 70.0	15
21	Pyraclostrobin	0.1	34.7	0.0094	0.0250	12.2	102	132.0 → 77.1	20	132.0 → 104.0	15
										164.0 → 132.1	10
22	Quintozene	0.3	13.4	0.0006	0.0025	8.6	95	294.9 → 236.8	15	294.9 → 142.9	45
										236.8 → 143.0	30
23	Tebuconazole	0.1	27.8	0.0084	0.0250	10.3	108	250.0 → 125.0	20	125.0 → 99.0	20
										125.0 → 89.0	15
24	Tetraconazole	0.1	19.9	0.0101	0.0250	12.6	106	336.0 → 217.9	20	336.0 → 203.8	30
										170.9 → 136.0	10
25	Thiabendazole	2	21.8	0.0199	0.5000	1.5	87	201.0 → 174.0	15	201.9 → 175.0	15
										173.9 → 65.0	30
26	Tiametoxam	0.05	20.7	0.0018	0.0125	4.2	112	212.0 → 139.0	15	247.0 → 182.0	15
										247.0 → 212.0	5
27	Trifloxystrobin	0.05	27.3	0.0051	0.0125	14.4	95	116.0 → 89.0	15	172.0 → 145.1	15
										116.0 → 63.0	30
IS	Triphenyl phosphate	-	28.0	-	-	-	-	325.0 → 169.0	20	326.0 → 233.0	10
28	Vinclozolin	0.05*	16.8	0.0044	0.0125	13.6	86	187.0 → 124.0	20	211.9 → 172.0	15
										284.9 → 212.0	15

Note: * Pesticide not permitted on this crop (NPC)

The recovery study was carried out to determine method accuracy and precision. For each blank matrix, three levels at 1 MRL, $\frac{1}{2}$ MRL, and $\frac{1}{4}$ MRL were prepared. For the pesticides that do not have an established MRL, it was set as 0.01 mg/kg, with 0.05 mg/kg for the compounds that have MRLs set by the European Union, as shown on Table 1.

MRMs of the compounds were selected based on the Agilent Pesticide and Environmental Pollutants MRM Database (G9250AA) and Agilent Pesticide Analysis Reference Guide [5].

The LOQs for the pesticides were determined based on the recovery and RSD results, and defined as the selected lowest-validated spiked level meeting the requirement described in SANCO/12571/2013 [1], where recovery should be 70 to 120% and RSD below 20%. Five replicates were used. The LODs were calculated as three times the RSD of the spiked samples at their assigned LOQ levels.

Real world sample analysis, quantitative method

Tommy Atkins mangoes were purchased at local groceries. Twenty lots of samples (from different stores) were analyzed. Three mangoes from each lot were extracted. The samples were chopped (including peel), blended, homogenized, and extracted soon after.

Using the quantitative method, it was possible to verify the presence of azoxystrobin, cyhalothrin, cypermethrin, difenoconazole, imazalil, prochloraz, pyraclostrobin, tebuconazole, tetraconazole, and thiabendazole below MRL. We also found chlorpyrifos, thiamethoxam, trifloxystrobin, and vinclozolin, none of which are permitted on mango. Two samples had concentrations of prochloraz above the MRL established by ANVISA, showing levels of 0.85 and 0.92 mg/kg (MRL = 0.2 mg/kg). The full list of pesticides is in Table 2.

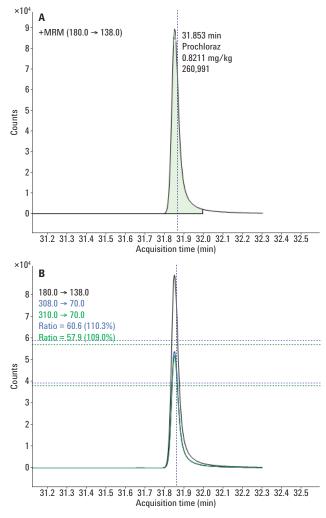


Figure 2. Prochloraz peak detected in a mango sample purchased at São Paulo supermarket.

		Sampl	e no.																		
	Compound	1	2	3 4	1 5	i 6	i 7	7 8	9	1	0	11	12	13	14	15	16	17	18	19	20
1	BHC-alpha	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2	Quintozene	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-
3	Diazinon	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4	Vinclozolin	-	_	-	-	-	-	-	<lod< td=""><td><l00< td=""><td>-</td><td><l00< td=""><td><l00< td=""><td>-</td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></l00<></td></l00<></td></l00<></td></lod<>	<l00< td=""><td>-</td><td><l00< td=""><td><l00< td=""><td>-</td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></l00<></td></l00<></td></l00<>	-	<l00< td=""><td><l00< td=""><td>-</td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></l00<></td></l00<>	<l00< td=""><td>-</td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></l00<>	-	_	-	-	-	-	-	-
5	Chlorpyrifos	-	-	-	-	-	-	-	<l00< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td><l00< td=""><td>-</td><td>-</td><td>-</td><td>-</td></l00<></td></l00<>	-	-	-	-	-	-	-	<l00< td=""><td>-</td><td>-</td><td>-</td><td>-</td></l00<>	-	-	-	-
6	Fenthion	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-
7	Tetraconazole	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	<l00< td=""><td>-</td></l00<>	-
8	Tiametoxam	-	-	-	-	-	-	-	-	-	_	0.049	-	_	-	0.023	-	-	-	-	-
9	Thiabendazole	<l00< td=""><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td><l00< td=""><td>-</td><td>-</td><td>_</td><td>-</td><td>-</td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></l00<></td></l00<>		-	-	-	-	<l00< td=""><td>-</td><td>-</td><td>_</td><td>-</td><td>-</td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></l00<>	-	-	_	-	-	_	-	-	-	-	-	-	-
10	Methidathion	-	-	-	_	_	_	_	_	_	_	-	_	_	-	_	-	_	-	_	_
11	Endosulfan I	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-
12	Imazalil	<l00< td=""><td>_</td><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	_	_	_	<l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<>	_	_	<l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td></td></l00<></td></l00<></td></l00<>	<l00< td=""><td>_</td><td>_</td><td><l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td></td></l00<></td></l00<>	_	_	<l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td></td></l00<>	_	_	_	_	
13	Kresoxim-methyl	-	-	-	_	_	_	_	_	_	_	-	_	_	-	_	-	_	-	_	_
14	Endosulfan II	-	-	-	_	_	_	_	_	_	_	-	_	_	-	_	-	_	-	_	_
15	Ethion	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-
16	Endosulfan sulfate	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
17	Trifloxystrobin	-	-	-	-	-	-	-	-	-	_	-	<l00< td=""><td>_</td><td><l00< td=""><td><l00< td=""><td>-</td><td>-</td><td></td><td>-</td><td>-</td></l00<></td></l00<></td></l00<>	_	<l00< td=""><td><l00< td=""><td>-</td><td>-</td><td></td><td>-</td><td>-</td></l00<></td></l00<>	<l00< td=""><td>-</td><td>-</td><td></td><td>-</td><td>-</td></l00<>	-	-		-	-
18	Tebuconazole	-	-	0.0817	<l00< td=""><td><l00< td=""><td>_</td><td>-</td><td>_</td><td>_</td><td>_</td><td>-</td><td><l00< td=""><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td>_</td><td>-</td><td>_</td><td>_</td><td>_</td><td>-</td><td><l00< td=""><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	_	-	_	_	_	-	<l00< td=""><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	_	<l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td></td></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""><td>_</td><td></td></l00<></td></l00<>	<l00< td=""><td>_</td><td></td></l00<>	_	
19	Carbosulfan	-	-	-	_	_	_	_	_	_	_	-	_	_	-	_	-	_	-	_	_
20	Bifenthrin	-	-	-	_	_	_	_	_	_	_	-	_	_	-	<l00< td=""><td><l00< td=""><td>_</td><td>-</td><td>_</td><td>_</td></l00<></td></l00<>	<l00< td=""><td>_</td><td>-</td><td>_</td><td>_</td></l00<>	_	-	_	_
21	Cyhalothrin (λ)	-	-	-	_	_	_	<l00< td=""><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td>-</td><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td>_</td><td>_</td><td><l00< td=""><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td>-</td><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	_	_	<l00< td=""><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td>-</td><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	_	_	<l00< td=""><td><l00< td=""><td>-</td><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td>-</td><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<>	-	_	<l00< td=""><td><l00< td=""><td><l00< td=""></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""></l00<></td></l00<>	<l00< td=""></l00<>
22	Prochloraz	_	_	_	_	-	_	<l00< td=""><td>0.92</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>0.8501</td><td><l00< td=""><td>0.114</td><td>_</td><td>_</td></l00<></td></l00<>	0.92	_	_	_	_	_	_	_	0.8501	<l00< td=""><td>0.114</td><td>_</td><td>_</td></l00<>	0.114	_	_
23	Cypermethrin I	_	-	_	<l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>-</td><td><l00< td=""><td>_</td><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td>_</td><td><l00< td=""><td>_</td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	_	_	_	_	_	_	-	<l00< td=""><td>_</td><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td>_</td><td><l00< td=""><td>_</td></l00<></td></l00<></td></l00<></td></l00<>	_	<l00< td=""><td><l00< td=""><td>_</td><td>_</td><td>_</td><td><l00< td=""><td>_</td></l00<></td></l00<></td></l00<>	<l00< td=""><td>_</td><td>_</td><td>_</td><td><l00< td=""><td>_</td></l00<></td></l00<>	_	_	_	<l00< td=""><td>_</td></l00<>	_
24	Etofenprox	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_
25	Pyraclostrobin	_	0.0212	_	_	_	_	_	_	_	-	-	_	-	-	_	-	_	<l00< td=""><td>_</td><td>_</td></l00<>	_	_
26	Difenoconazole I	_	-	_	_	_	_	_	_	_	_	<l00< td=""><td><l00< td=""><td>_</td><td>-</td><td><l00< td=""><td>0.2225</td><td><l00< td=""><td>0.0604</td><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td>_</td><td>-</td><td><l00< td=""><td>0.2225</td><td><l00< td=""><td>0.0604</td><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<>	_	-	<l00< td=""><td>0.2225</td><td><l00< td=""><td>0.0604</td><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<>	0.2225	<l00< td=""><td>0.0604</td><td>_</td><td><l00< td=""></l00<></td></l00<>	0.0604	_	<l00< td=""></l00<>
27	Azoxystrobin	_	_	<l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td>_</td><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	_	_	_	_	_	_	_	_	<l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""><td><l00< td=""><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<></td></l00<>	<l00< td=""><td><l00< td=""><td>_</td><td><l00< td=""></l00<></td></l00<></td></l00<>	<l00< td=""><td>_</td><td><l00< td=""></l00<></td></l00<>	_	<l00< td=""></l00<>
28	Famoxadone	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_

Table 2. Pesticides detected in mango using the quantitative method.

Note: <L00 = when peak was detected but the value was below L00, and above L0D. Values highlighted in red were above MRL.

Real world sample analysis, qualitative screening

The samples were also analyzed by the qualitative method, with even more pesticides detected (Table 3).

The concentrations were calculated by injecting specific standards after detection.

Table 3. Pesticides found in mango by the qualitative method.

		Sam	ple no.																		
	Compound	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	Cyfluthrin					<0.03	<0.03	0.05	0.08	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03						
2	Dimethoate								0.6												
3	Epoxiconazole					<0.05						<0.05									<0.05
4	Fenoxaprop-ethyl							<0.01													
5	Mirex											<0.01	<0.01	<0.01	<0.01		<0.01				
6	Omethoate								0.5												
7	Permethrin									< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03						
8	Propoxur								0.01												
9	Trichlorophenol 2,	4,6						<0.05	<0.05									<0.05	< 0.05	< 0.05	

The comprehensive method allowed the detection of more than 250 pesticides at one run for screening purposes (Table 4). This method was easily created using the G9250AA Pesticide and Environmental Pollutants MRM Database, since the retention times of the compounds are already listed for the Pesticide Analyzer 411 configuration. In the past, the preparation of the calibration curve for this number of compounds is very troublesome, and the daily checking of method integrity becomes much more involved. Screening first, and preparing calibration curves of identified compounds afterwards, makes the process faster, easier to perform, and far more cost-effective.

Table 4. Pesticides included in the MRM qualitative screening method.

		940	
1	3 OH Carbofuran	45	Cinerina
2	Acephate	46	Cinerina
3	Acetamiprid	47	Clomazo
4	Acrinathrin	48	Cyanaziı
5	Alachlor	49	Cycloate
6	Aldrin	50	Cyfluthri
7	Ametryn	51	Cyfluthr
8	Amitraz	52	Cyfluthr
9	Anilazine	53	Cyfluthr
10	Atrazine	54	Cyhalotł
11	Atrazine-desethyl	55	Cyhalotł
12	Azinphos-ethyl	56	Cyperme
13	Azinphos-methyl	57	Cyperme
14	Azoxystrobin	58	Cyperme
15	Benalaxyl	59	Cyperme
16	Benfluralin	60	Cyproco
17	Benfuracarb	61	Cyromaz
18	BHC-alpha (benzene hexachloride)	62	DDD- <i>o,p</i>
19	BHC-beta	63	DDD-p,p
20	BHC-delta	64	DDE-o,p
21	BHC-epsilon	65	DDE-p,p
22	BHC- <i>gamma</i> (lindane, <i>gamma</i> HCH)	66	DDT-o,p
23	Bifenthrin	67	DDT-p,p
24	Bromopropylate	68	Deltame
25	Butylate	69	Demeto
26	Captafol	70	Demeto
27	Captan	71	Demeto
28	Carbaryl	72	Diazinor
29	Carbofuran	73	Diazinor
30	Carbofuran, 3-keto-	74	Dichlofl
31	Carbofuran, 7-phenol-	75	Dichlorv
32	Carbophenothion	76	Dicloran
33	Carbophenothion-methyl	77	Dicofol,
	(methyl trithionate)	78	Dicofol,
34	Carbosulfan	79	Dicrotof
35	Chlordane- <i>cis</i> (<i>alpha</i>)	80	Dieldrin
36	Chlordane-oxy	81	Difenoc
37	Chlordane- <i>trans</i> (gamma)	82	Difenoc
38	Chlorfenson	83	Dimethe
39	Chlorfenvinphos	84	Dimethe
40	Chlorobenzilate	85	Dimetho
41	Chlorothalonil	86	Dinocap
42	Chlorpropham	87	Dinocap
43	Chlorpyrifos	88	Dinocap
44	Chlorpyrifos-methyl	89	Dinocap

5	Cinerina I
6	Cinerina II
7	Clomazone
8	Cyanazine
9	Cycloate
0	Cyfluthrin I
1	Cyfluthrin II (CAS no. 68359-37-5)
2	Cyfluthrin III (CAS no. 68359-37-5)
3	Cyfluthrin IV (CAS no. 68359-37-5)
4	Cyhalothrin (<i>gamma</i>)
5	Cyhalothrin (<i>lambda</i>)
6	Cypermethrin I
7	Cypermethrin II
8	Cypermethrin III
9	Cypermethrin IV
0	Cyproconazole
1	Cyromazine
2	DDD-o,p'
3	DDD-p,p'
4	DDE-o,p'
5	DDE-p,p'
6	DDT-o,p'
7	DDT- <i>p,p</i> '
8	Deltamethrin
9	Demeton-S
0	Demeton-S-methyl
1	Demeton-S-methyl sulfone
2	Diazinon
3	Diazinon-oxon (diazoxon)
4	Dichlofluanid
5	Dichlorvos
6	Dicloran (dichloran)
7	Dicofol, <i>o,p</i> '-
8	Dicofol, <i>p,p</i> '-
9	Dicrotofos (dicrotophos)
0	Dieldrin
1	Difenoconazole I
2	Difenoconazole II (CAS no. 119446-68-3)
3	Dimethenamid
4	Dimethenamid-P
5	Dimethoate
6	Dinocap I
7	Dinocap II
8	Dinocap III
9	Dinocap IV

90	Disulfoton
91	Disulfoton sulfone
92	Diuron
93	Diuron metabolite (3,4-dichlorophenyl isocyanate)
94	DMSA (dichlofluanid metabolite)
95	DMST (tolylfluanid metabolite)
96	Endosulfan I (<i>alpha</i> isomer)
97	Endosulfan II (<i>beta</i> isomer)
98	Endosulfan sulfate
99	Endrin
100	Endrin aldehyde
101	Endrin ketone
102	Epoxiconazole
103	EPTC
104	Ethion
105	Ethylan (ethyl-DDD, Perthane)
106	Etofenprox (ethofenprox)
107	Famoxadone
108	Fenamidone
109	Fenamiphos (phenamiphos)
110	Fenamiphos sulfone
111	Fenarimol
112	Fenchlorphos oxon
113	Fenitrothion
114	Fenoprop-methyl
115	Fenoxaprop-ethyl
116	Fenoxaprop- <i>p</i> -ethyl
117	Fenpropathrin
118	Fenson
119	Fensulfothion
120	Fensulfothion sulfon
121	Fenthion
122	Fenthion oxon sulfone
123	Fenthion sulfone
124	Fenthion sulfoxide
125	Fenvalerate I
126	Fenvalerate II (CAS no. 51630-58-1)
127	Fipronil
128	Fipronil sulfide
129	Fipronil sulfone
130	Fluazinam
131	Flufenoxuron
132	Flumetralin

- 132 Flumetralin
- 133 Fluquinconazole

Fluthiacet-methyl
Flutriafol
Folpet
Fonofos
Formothion
Heptachlor
Heptachlor endo-epoxide (isomer A)
Heptachlor exo-epoxide (isomer B)
Hexachlorobenzene
Hexazinone
Imazalil
Iprodione
Iprovalicarb I
Iprovalicarb II (CAS no. 140923-17-7)
Jasmolina I
Jasmolina II
Kresoxim-methyl
Lactofen
Malaoxon (metabolite of malathion)
Malathion
MCPA-butoxyethyl
MCPA-methyl
MCPB-methyl
Metalaxyl
Methamidophos
Methidathion
Methiocarb
Methiocarb sulfone
Methiocarb sulfoxide
Methoxychlor olefin
Methoxychlor, <i>o,p'</i> -
Methoxychlor, p,p'-
Mevinphos
Mirex
Molinate
Monocrotophos
Naled
Nitrofen
Omethoate
Oxadiazon
Oxamyl

175 Paraoxon 176 Paraoxon-methyl 177 Parathion 178 Parathion-methyl 179 Pebulate 180 Pendimethalin (penoxaline) 181 Pentachloroaniline Pentachlorobenzene 182 183 Pentachlorophenol 184 Permethrin I 185 Permethrin II (trans) Pethoxamid 186 187 Petoxamida 188 Phenthoate 189 Phorate 190 Phorate oxon sulfone 191 Phorate sulfone 192 Phorate sulfoxide 193 Phoratoxon 194 Phosalone 195 Phosmet 196 Phosmet oxon 197 Piperonyl butoxide 198 Pirimicarb 199 Pirimiphos-ethyl 200 Pirimiphos-methyl 201 Prochloraz 202 Procymidone 203 Profenofos 204 Profluralin 205 Prometon 206 Prometryn 207 Pronamide (propyzamide) 208 Propaguizafop 209 Propargite 210 Propazine 211 Propham 212 Propiconazole I Propiconazole II 213 (CAS no. 60207-90-1)

214 Propoxur

216 Pyraclostrobin 217 Pyrethrin I Pyrethrin II 218 219 Pyridaphenthion 220 Pyriproxyfen 221 Quintozene 222 Quintozene metabolite (pentachlorophenyl) 223 Ronnel (fenchlorphos) 224 Simazine 225 Spirodiclofen 226 Spiromesifen Tebuconazole 227 228 Tecnazene (TCNB) 229 Tefluthrin, cis-230 Terbufos 231 Terbufos sulfone 232 Terbuthylazine 233 Terbuthylazine-desethyl 234 Terbutryn 235 Tetrachlorvinphos, E-isomer Tetraconazole 236 237 Tetradifon 238 Tetrasul 239 Thiabendazole Thiametoxan 240 241 Thiazopyr 242 Thiobencarb (benthiocarb) 243 Thiometon 251 Trichlorophenol, 2,4,6-252 Trifloxystrobin 253 Trifluralin 254 Trinexapaque 255 Triphenyl phosphate 256 Vamidothion

215

Prothioconazole-desthio

- 257 Vernolate
- 258 Vinclozolin

Conclusions

This study developed two methods for pesticide residue analysis. The first was used to quantify pesticides that have MRLs determined by Brazilian legislation, with good recovery and detection limits. The second method was used to verify the presence of 258 pesticides and metabolites simultaneously. By having two methods, it is possible to simplify the preparation of daily calibration curves for accurate quantification of listed pesticides, and also check if any pesticide not allowed for use with a particular crop or commodity has been used. For routine pesticide analysis, it is important to check as many compounds as possible. Our study showed that several banned pesticides were still being used, as well as pesticides that should not be used on mango.

References

- Anon. Guidance Document on Analytical Quality Control and Validation Procedures for Pesticide Residues Analysis in Food and Feed, SANCO/12571/2013, 19 Nov 2014. European Commission, Health and Consumer Protection Directorate-General, Brussels, Belgium.
- Nanakaan Saave. Export Factsheet Mangoes. International Trade Centre, Geneva, Switzerland, 2011.
- Araújo, José. Mercado e Comercialização da Manga. Embrapa, Brasília - DF, Brazil, 2004. http://sistemasdeproducao.cnptia.embrapa.br/FontesHT ML/Manga/CultivodaMangueira/mercado.htm
- 4. ANVISA. Brazilian Health Surveillance Agency, Brasília -DF, Brazil. http://portal.ANVISA.gov.br/wps/content/ANVISA+Por tal/ANVISA/Inicio/Agrotoxicos+e+Toxicologia
- Anon. GC/MS/MS Pesticide Residue Analysis; Pesticide Analysis Reference Guide, Agilent Technologies, Inc. Publication number 5991-2389EN, 2013.
- Anon. Foods of Plant Origin—Determination of Pesticide Residues Using GC-MS and/or LC-MS/MS Following Acetonitrile Extraction/Partitioning and Clean-up by Dispersive SPE (QuEChERS-method). EN 15662 Version 2008. European Standards, Pilsen, Czech Republic.

- Anon. Specification for Agricultural Pesticides in Agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org/agriculture/crops/thematicsitemap/theme/pests/jmps/ps-new/en/
- 8. Anastassiades, M.; Lehotay, S. J. Fast and Easy multiresidue method employing acetonitrile extraction/partitioning and "Dispersive solid-phase extraction" for the determination of pesticide residues in produce. *J. AOAC Int.* **2003**, *86*, 412-431.
- Ciscato, C. H. P.; Gebara, A. B.; Monteiro, S. H. Pesticide residue monitoring of Brazilian fruit for export 2006-2007. *Food Additives and Contaminants: Part B* 2009, *2*, 140-145.
- Ciscato, C. H. P.; Gebara, A. B.; Barbosa, C. M.; Souza, G. S.; Hamada, N.; Silva, D. L. Pesticide Residues Evaluation in Pulp, Juice and Nectar of Fruits. *Environment and Pollution* **2012**, *1*, 39-43.
- Anon. Plano Nacional de Controle de Resíduos e Contaminantes em Produtos de Origem Vegetal. Ministério da Agricultura Pecuária e Abastecimento (MAPA), Brasília - DF, Brazil. http://www.agricultura.gov.br/vegetal/qualidadeseguranca-alimentos-bebidas/alimentos/residuos-econtaminantes.

For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2015 Printed in the USA July 2, 2015 5991-6054EN

Agilent Technologies