

# Validation of a Confirmatory GC/MS/MS Method for Dioxins and Dioxin-like PCBS to Meet the Requirements of EU Regulation 709/2014

# **Application Note**

Food

## Abstract

Using the Agilent 7890B GC and the Agilent 7000C Series Triple Quadrupole GC/MS System, a GC/MS/MS method has been developed and fully validated to meet the requirements of EU Regulation 709/2014 for the monitoring of polychlorinated dibenzo-*p*-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) in animal feedstuffs. It provides similar performance to GC/HRMS, the analytical platform required by previous EU regulations, in spite of the difference in mass analyzer technologies.



### Author

Joerg Riener Agilent Technologies GmbH Waldbronn Germany

#### Introduction

Polychlorinated dibenzo-*p*-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) are highly toxic Persistent Organic Pollutants (POPs). As such, they were regulated after the Stockholm convention for POPs in 2001 to safeguard the environment and human health [1]. Many of these compounds have been linked to cancer, endocrine disruption, and reproductive disorders. They are created as byproducts of industrial processes, pesticide manufacturing, combustion processes, and other sources.

These toxic compounds are very stable in the environment, and their lipophilic nature allows them to accumulate in the fat tissues of animals. Therefore, the European Commission requires that any food or animal feedstuffs released on the market must be monitored to not exceed assigned maximum levels (MLs) for these pollutants. European regulations also require enforcement of continuous food and feed monitoring of these compounds. These regulations enable efficient reduction in human exposure over time, and decreased daily human intake of these toxic compounds [1].

Historically, high resolution mass spectrometry (HRMS) was needed to confirm and quantify trace levels of dioxins. However, as of June 2014, the European Union (EU) has instituted regulation (709/2014) governing the levels of PCDDs, PCDFs, dioxin-like PCBs, and non-dioxin-like (NDL) PCBs in food and feed that enables the use of gas chromatography/tandem mass spectrometry (GC/MS/MS) systems in confirmatory testing for compliance with EU MLs. This change was due to the realization that triple quadrupole mass spectrometers could provide performance similar to that seen with HRMS systems [2]. This application note describes a published study that validated the use of GC/triple quadrupole MS for the confirmatory analysis of dioxins and dioxin-like PCBs in vegetable oil [1]. Using the Agilent 7890GC and Agilent 7000 Triple Quadrupole GC/MS System, a method was validated that met the strict requirements for analytical criteria (for example, selectivity, accuracy, and reproducibility) set by the EU regulation. Results were similar to those that can be attained with GC/HRMS, thus providing a viable and economical alternative to the GC/HRMS approach.

### **Experimental**

#### **Reagents and standards**

Solvents and reagents were obtained as described [1]. Quantitation of all congeners of PCDD/Fs (2,3,7,8-substituted) and non-ortho (NO-)PCBs (PCBs 81, 77, 126, and 169) was carried out using the corresponding <sup>13</sup>C-labeled internal standards (EDF-4144, Cambridge Isotope Laboratories (CIL)). Recovery standards (EDF-4145, syringe standard, CIL) were used for determination of recoveries. Calibration curve standards were also purchased from CIL for PCDD/Fs and NO-PCBs (EDF-4143). Internal standard spiking solution (MBP-MKX) of <sup>13</sup>C-labeled mono-ortho (MO-)PCBs (including PCBs 105, 114, 118, 123, 156, 157, 167, and 189) was obtained from Wellington Laboratories. The EC-4987, EC-5179, EC-4058 (CIL), and MBP-MKX standards were used to construct the calibration curve for MO-PCBs and NDL-PCBs (PCBs 28, 52, 101, 138, 153, and 180).

#### Instruments

This study was performed using an Agilent 7890B GC system coupled to an Agilent 7000C Series Triple Quadrupole GC/MS System. The instrument conditions are listed in Table 1. Every 10 days, calibration and tune of the instrument were repeated using the El high sensitivity autotune mode, and instrument performance was verified.

| Table 1. | GC/MS Run | Conditions |
|----------|-----------|------------|
|----------|-----------|------------|

#### **GC Conditions**

| Column                    | Agilent DB-5 MS UI 60 m × 250 μm × 0.25 μm<br>(p/n 122-5562UI) inlet PTV, outlet vacuum                                                                                                             |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Injection volume          | PCDD/Fs and NO-PCBs: 5 μL<br>MO and NDL-PCBs: 2 μL                                                                                                                                                  |
| Injection port            | PTV cooled with liquid CO2                                                                                                                                                                          |
| Injection port liner      | Multibaffle, deactivated, PTV liner (p/n 5183-2037)                                                                                                                                                 |
| Injection mode            | Solvent vent<br>45 °C (3 minutes), ramp at 720 °C/min to 320 °C<br>Vent flow 100 mL/min pressure of 10 psi for<br>2.8 minutes<br>Purge flow was set to 1200 mL/min after 5 minutes.                 |
| Carrier gas               | Helium                                                                                                                                                                                              |
| Carrier gas mode          | Constant flow                                                                                                                                                                                       |
| Column flow               | 0.96 mL/min                                                                                                                                                                                         |
| Retention time locking    | PCB-105 locked to 19.66 minutes                                                                                                                                                                     |
| Oven program              | 120 °C (5 minutes)<br>25 °C/min to 250 °C (5 minutes)<br>3 °C/min to 285 °C (15 minutes)<br>The same program was used for the MO-PCB<br>fraction, with the exception of 0 minutes hold at<br>285 °C |
| Total run time            | 41.6 minutes                                                                                                                                                                                        |
| MS Conditions             |                                                                                                                                                                                                     |
| Operation mode            | Electron ionization (EI), Multiple Reaction<br>Monitoring (MRM)                                                                                                                                     |
| Transfer line temperature | 280 °C                                                                                                                                                                                              |
| Source temperature        | 280 °C                                                                                                                                                                                              |
| Quadrupole temperature    | 150 °C                                                                                                                                                                                              |

Multiple Reaction Monitoring (MRM) mode was used for data acquisition, with acquisition windows and dwell times adjusted to optimize acquisition frequency to obtain 10 data points for each peak. For each target, two MRM transitions were used, one for quantitation and one for qualification. The two transitions used two different and specific precursor ions (usually 2 Da offset) and two distinct product ions. Table 2 gives a full list of the analyte retention times and MRM transitions.

Quantitation was performed with the quantitative transition only, while the qualitative transition was used to verify the ion ratio between the two transitions. This procedure limited the risk of integrating wrong peaks or interferences. If the ratio did not fall between acceptable limits for Regulation 709/2014 (±15%), the chromatogram was inspected to ensure that the appropriate peaks were being integrated. This approach minimized the risk of integrating interferences or the wrong peaks. Retention time locking was employed, using PCB-105.

#### **Sample preparation**

Preparation of vegetable oil samples was performed as described [1].

#### Data acquisition and analysis

The data were acquired with Agilent MassHunter Acquisition Software (B.07.02). Data analysis was performed with Agilent MassHunter Quantitative Analysis Software (B.07.01).

|                             |               |       |               | Quantifier  |                     |               | Qualifier   |                     |
|-----------------------------|---------------|-------|---------------|-------------|---------------------|---------------|-------------|---------------------|
| Name                        | Туре          | RT*   | Precursor ion | Product ion | CE <sup>†</sup> (V) | Precursor ion | Product ion | CE <sup>†</sup> (V) |
| <sup>13</sup> C-PCB 28      | ndl-PCB       | 14.19 | 268.0         | 198.0       | 26                  | 270.0         | 200.0       | 26                  |
| PCB 28                      | ndl-PCB       | 14.19 | 256.0         | 186.0       | 26                  | 258.0         | 188.0       | 26                  |
| <sup>13</sup> C-PCB 52      | ndl-PCB       | 14.79 | 301.9         | 231.9       | 28                  | 303.9         | 233.9       | 28                  |
| PCB 52                      | ndl-PCB       | 14.79 | 289.9         | 219.9       | 28                  | 291.9         | 221.9       | 28                  |
| <sup>13</sup> C-PCB 101     | ndl-PCB       | 16.81 | 337.9         | 267.9       | 28                  | 339.9         | 269.9       | 28                  |
| PCB 101                     | ndl-PCB       | 16.81 | 325.9         | 255.9       | 28                  | 327.9         | 257.9       | 28                  |
| <sup>13</sup> C-PCB 123     | MO-PCB        | 18.62 | 337.9         | 267.9       | 28                  | 339.9         | 269.9       | 28                  |
| PCB 123                     | MO-PCB        | 18.62 | 325.9         | 255.9       | 28                  | 327.9         | 257.9       | 28                  |
| <sup>13</sup> C-PCB 118     | MO-PCB        | 18.74 | 337.9         | 267.9       | 28                  | 339.9         | 269.9       | 28                  |
| PCB 118                     | MO-PCB        | 18.74 | 325.9         | 255.9       | 28                  | 327.9         | 257.9       | 28                  |
| <sup>13</sup> C-PCB 114     | MO-PCB        | 19.12 | 337.9         | 267.9       | 28                  | 339.9         | 269.9       | 28                  |
| PCB 114                     | MO-PCB        | 19.12 | 325.9         | 255.9       | 28                  | 327.9         | 257.9       | 28                  |
| <sup>13</sup> C-PCB 153     | ndl-PCB       | 19.43 | 371.9         | 301.9       | 28                  | 373.9         | 303.8       | 28                  |
| PCB 153                     | ndl-PCB       | 19.43 | 359.9         | 289.9       | 28                  | 361.9         | 291.8       | 28                  |
| <sup>13</sup> C-PCB 105     | MO-PCB        | 19.66 | 337.9         | 267.9       | 28                  | 339.9         | 269.9       | 28                  |
| PCB 105                     | MO-PCB        | 19.66 | 325.9         | 255.9       | 28                  | 327.9         | 257.9       | 28                  |
| <sup>13</sup> C-PCB 138     | ndl-PCB       | 20.46 | 371.9         | 301.9       | 28                  | 373.9         | 303.8       | 28                  |
| PCB 138                     | ndl-PCB       | 20.46 | 359.9         | 289.9       | 28                  | 361.9         | 291.8       | 28                  |
| <sup>13</sup> C-PCB 167     | MO-PCB        | 21.56 | 371.9         | 301.9       | 28                  | 373.9         | 303.8       | 28                  |
| PCB 167                     | MO-PCB        | 21.56 | 359.9         | 289.9       | 28                  | 361.9         | 291.8       | 28                  |
| <sup>13</sup> C-PCB 156     | MO-PCB        | 22.51 | 371.9         | 301.9       | 28                  | 373.9         | 303.8       | 28                  |
| PCB 156                     | MO-PCB        | 22.51 | 359.9         | 289.9       | 28                  | 361.9         | 291.8       | 28                  |
| <sup>13</sup> C-PCB 157     | MO-PCB        | 22.71 | 371.9         | 301.9       | 28                  | 373.9         | 303.8       | 28                  |
| PCB 157                     | MO-PCB        | 22.71 | 359.9         | 289.9       | 28                  | 361.9         | 291.8       | 28                  |
| <sup>13</sup> C-PCB 180     | ndl-PCB       | 23.14 | 405.8         | 335.8       | 30                  | 407.8         | 337.8       | 30                  |
| PCB 180                     | ndl-PCB       | 23.14 | 393.8         | 323.8       | 30                  | 395.8         | 325.8       | 30                  |
| <sup>13</sup> C-PCB 189     | MO-PCB        | 25.76 | 405.8         | 335.8       | 30                  | 407.8         | 337.8       | 30                  |
| PCB 189                     | MO-PCB        | 25.76 | 393.8         | 323.8       | 30                  | 395.8         | 325.8       | 30                  |
| <sup>13</sup> C-PCB 80      | non-Ortho PCB | 16.23 | 301.9         | 231.9       | 28                  | 303.9         | 233.9       | 28                  |
| <sup>13</sup> C-PCB 81      | non-Ortho PCB | 17.72 | 301.9         | 231.9       | 28                  | 303.9         | 233.9       | 28                  |
| PCB 81                      | non-Ortho PCB | 17.73 | 289.9         | 219.9       | 28                  | 291.9         | 221.9       | 28                  |
| <sup>13</sup> C-PCB 77      | non-Ortho PCB | 18.04 | 301.9         | 231.9       | 28                  | 303.9         | 233.9       | 28                  |
| PCB 77                      | non-Ortho PCB | 18.05 | 289.9         | 219.9       | 28                  | 291.9         | 221.9       | 28                  |
| <sup>13</sup> C-2378-TCDF   | PCDF          | 20.32 | 315.9         | 251.9       | 33                  | 317.9         | 253.9       | 33                  |
| 2378-TCDF                   | PCDF          | 20.34 | 303.9         | 240.9       | 33                  | 305.9         | 242.9       | 33                  |
| <sup>13</sup> C6-1234-TCDD  | PCDD          | 20.44 | 325.9         | 262.9       | 28                  | 327.9         | 264.9       | 28                  |
| <sup>13</sup> C-2378-TCDD   | PCDD          | 20.74 | 331.9         | 267.9       | 24                  | 333.9         | 269.9       | 24                  |
| 2378-TCDD                   | PCDD          | 20.75 | 319.9         | 256.9       | 24                  | 321.9         | 258.9       | 24                  |
| <sup>13</sup> C-PCB 126     | non-Ortho PCB | 20.93 | 335.9         | 265.9       | 28                  | 337.9         | 267.9       | 28                  |
| PCB 126                     | non-Ortho PCB | 20.95 | 323.9         | 253.9       | 28                  | 325.9         | 255.9       | 28                  |
| <sup>13</sup> C-12378-PeCDF | PCDF          | 23.29 | 351.9         | 287.9       | 35                  | 349.9         | 285.9       | 35                  |
| 12378-PeCDF                 | PCDF          | 23.29 | 339.9         | 276.9       | 35                  | 337.9         | 274.9       | 35                  |

 Table 2.
 Acquisition Parameters for Native PCDD, PCDF Mono-Ortho, Non-ortho and NDL-PCB Congeners, and <sup>13</sup>C-Internal Standards

|                               |               |       |               | Quantifier  |                     |               | Qualifier   |                     |
|-------------------------------|---------------|-------|---------------|-------------|---------------------|---------------|-------------|---------------------|
| Name                          | Туре          | RT*   | Precursor ion | Product ion | CE <sup>†</sup> (V) | Precursor ion | Product ion | CE <sup>†</sup> (V) |
| <sup>13</sup> C-23478-PeCDF   | PCDF          | 24.08 | 351.9         | 287.9       | 35                  | 349.9         | 285.9       | 35                  |
| 23478-PeCDF                   | PCDF          | 24.10 | 339.9         | 276.9       | 35                  | 337.9         | 274.9       | 35                  |
| <sup>13</sup> C-PCB 169       | non-Ortho PCB | 24.19 | 371.9         | 301.9       | 28                  | 369.9         | 299.9       | 28                  |
| PCB 169                       | non-Ortho PCB | 24.20 | 359.9         | 289.9       | 28                  | 357.8         | 287.9       | 28                  |
| <sup>13</sup> C-12378-PeCDD   | PCDD          | 24.34 | 365.9         | 301.9       | 25                  | 367.9         | 303.9       | 25                  |
| 12378-PeCDD                   | PCDD          | 24.36 | 355.9         | 292.9       | 25                  | 353.9         | 290.9       | 25                  |
| <sup>13</sup> C-123478-HxCDF  | PCDF          | 27.04 | 385.8         | 321.9       | 35                  | 387.8         | 323.9       | 35                  |
| 123478-HxCDF                  | PCDF          | 27.05 | 373.8         | 310.9       | 35                  | 375.8         | 312.9       | 35                  |
| <sup>13</sup> C-123678-HxCDF  | PCDF          | 27.18 | 385.8         | 321.9       | 35                  | 387.8         | 323.9       | 35                  |
| 123678-HxCDF                  | PCDF          | 27.19 | 373.8         | 310.9       | 35                  | 375.8         | 312.9       | 35                  |
| <sup>13</sup> C-234678-HxCDF  | PCDF          | 27.83 | 385.8         | 321.9       | 35                  | 387.8         | 323.9       | 35                  |
| 234678-HxCDF                  | PCDF          | 27.85 | 373.8         | 310.9       | 35                  | 375.8         | 312.9       | 35                  |
| <sup>13</sup> C-123478-HxCDD  | PCDD          | 28.00 | 403.8         | 339.8       | 25                  | 401.8         | 337.9       | 25                  |
| 123478-HxCDD                  | PCDD          | 28.02 | 389.8         | 326.9       | 25                  | 391.8         | 328.8       | 25                  |
| <sup>13</sup> C-123678-HxCDD  | PCDD          | 28.12 | 403.8         | 339.8       | 25                  | 401.8         | 337.9       | 25                  |
| 123678-HxCDD                  | PCDD          | 28.14 | 389.8         | 326.9       | 25                  | 391.8         | 328.8       | 25                  |
| <sup>13</sup> C-123789-HxCDD  | PCDD          | 28.49 | 403.8         | 339.8       | 25                  | 401.8         | 337.9       | 25                  |
| 123789-HxCDD                  | PCDD          | 28.50 | 389.8         | 326.9       | 25                  | 391.8         | 328.8       | 25                  |
| <sup>13</sup> C-123789-HxCDF  | PCDF          | 28.98 | 385.8         | 321.9       | 35                  | 387.8         | 323.9       | 35                  |
| 123789-HxCDF                  | PCDF          | 29.00 | 373.8         | 310.9       | 35                  | 375.8         | 312.9       | 35                  |
| <sup>13</sup> C-1234678-HpCDF | PCDF          | 31.13 | 419.8         | 355.8       | 36                  | 421.8         | 357.8       | 36                  |
| 1234678-HpCDF                 | PCDF          | 31.14 | 407.8         | 344.8       | 36                  | 409.8         | 346.8       | 36                  |
| <sup>13</sup> C-1234678-HpCDD | PCDD          | 32.97 | 437.8         | 373.8       | 25                  | 435.8         | 371.8       | 25                  |
| 1234678-HpCDD                 | PCDD          | 33.01 | 423.8         | 360.8       | 25                  | 425.8         | 362.8       | 25                  |
| <sup>13</sup> C-1234789-HpCDF | PCDF          | 33.97 | 419.8         | 355.8       | 36                  | 421.8         | 357.8       | 36                  |
| 1234789-HpCDF                 | PCDF          | 34.00 | 407.8         | 344.8       | 36                  | 409.8         | 346.8       | 36                  |
| <sup>13</sup> C-OCDD          | PCDD          | 39.38 | 469.7         | 405.8       | 26                  | 471.7         | 407.8       | 26                  |
| OCDD                          | PCDD          | 39.41 | 457.7         | 394.8       | 26                  | 459.7         | 396.8       | 26                  |
| <sup>13</sup> C-OCDF          | PCDF          | 39.83 | 453.7         | 389.8       | 35                  | 455.7         | 391.8       | 35                  |
| OCDF                          | PCDF          | 39.84 | 441.7         | 378.8       | 35                  | 443.7         | 380.8       | 35                  |

\*RT=Retention time

<sup>†</sup>CE=Collision energy

#### **Results and Discussion**

#### Validation criteria

EU Regulation 709/2014 lists specific compliance requirements for GC/MS confirmatory methods for PCDDs, PCDFs, dioxin-like PCBs, and non-dioxin-like (NDL) PCBs [1]. Some of these criteria are dependent on the type of MS analyzer. For example, GC/triple quadrupole MS performs in tandem (MS/MS) mode, while GC/HRMS performs in selected ion monitoring (SIM) mode. Other requirements such as selectivity, upper- bound, and lower-bound differences are the same for both instrumental methodologies.

Each of these criteria was considered in this study, and a full method validation was performed for official control of dioxins in feed in accordance with the regulation, systematically investigating all parameters and performances on this instrumentation [1]. This validation could easily be transposed to other feed and foodstuffs, because it was performed using vegetable oil, which has maximum limits (MLs) that are amongst the lowest for these compounds (1.5 picograms WH02005-PCDD/F-PCB-TEQ/g (parts per trillion)) [3], and the analytical criteria are the same. The World Health Organization 2005 toxic equivalent quantity per gram (WH02005-TEQ) ML is the sum of the concentration of each individual congener corrected by a toxic equivalency factor (TEF) established by WHO in 2005. The measurement criteria for NDL-PCBs in food and feed are generally less stringent than those for PCDD/Fs and DL-PCBs since the MLs are in the ng/g (ppb) range and usually easier to attain [4]. However, for this validation study, the criteria for PCDD/Fs and DL-PCBs measurement were also applied to NDL-PCBs. For example, EU Regulation 709/2014 [5] stipulates only one precursor ion for quantitative and qualitative MRM transitions of NDL-PCBs, but two distinct precursor ions are required for PCDD/F and DL-PCB measurements. In this study, two specific precursor ions were also used for NDL-PCBs.

#### Instrumental limit of quantitation (iLOQ)

One of the major differences between the GC/triple quadrupole MS/MS and GC/HRMS methods is the proper establishment of the limit of quantitation (LOQ). Efficient ion filtering and the consequent significant reduction of noise are key advantages of GC/triple quadrupole MS/MS. A noise-free signal and flat baseline are characteristic of this instrumental approach. As a result, any signal-to-noise (S/N) calculation determined using such a baseline would produce S/N values that are unrealistic.

Therefore, a distinction was made for this validation study between a method limit of quantitation (mLOQ), which is the real-LOQ that takes possible matrix effects and blank levels into account, and the instrumental limit of quantitation (iLOQ), which is a performance- LOQ. This study used a statistical approach to assess the iLOQ of the GC/Triple Quadrupole MS/MS method, based on a report from an EU core working group composed of members from expert laboratories and EU national reference laboratories (NRLs) [6].

Eight replicate injections of the lowest acceptable calibration point were used to calculate the iLOQs, defined as 10 times the standard deviation (SD) associated with these replicates. To qualify as the lowest acceptable calibration point, the calculated relative standard deviations (RSDs) of the lowest level for all congeners had to be  $\leq$ 15%. Although this 15% criterion was not included in Regulation 709/2014, it was chosen as a typical value for acceptable RSDs at such low analyte levels.

In addition, the regulation stipulates that the acceptable deviation to the relative response factor, which is the difference between the average response factors (RFs) obtained for the lowest calibration point versus the average RFs obtained for all points, is required to be  $\leq$  30%. The linearity of calibration was acceptable only when these two criteria were met. The iLOQ could then be determined as explained in the previous paragraph, using the resulting lowest calibration level.

Some exceptions were made in the calculation of the iLOQs shown in Table 3, when most criteria were acceptable. For example, 1,2,3,6,7,8-HxCDF had an RSD of 17.9% for triplicates of the lowest calibration point, which should have excluded it from calculation of iLOQ. However, the calibration coefficient ( $R^2$ ) was very good (0.9990), and the difference between the average RF of the lowest point and the average RF of all points was only -1.21%, so a decision was made to use this lowest calibration point for the iLOQ calculation.

#### Table 3. iLOOs, Calibration Curve Data, and mLOOs

|                     | iLOQ<br>(pg/pL) | R <sup>2</sup> | Lowest<br>calibration point<br>(pg/pL) | RSD of the<br>lowest calibration<br>point (%) | RF Difference<br>(%) | Average<br>blank level<br>(ng/kg) | mLOQ (ng<br>WHO2005 TEQ/kg) |
|---------------------|-----------------|----------------|----------------------------------------|-----------------------------------------------|----------------------|-----------------------------------|-----------------------------|
| PCDFs               |                 |                |                                        |                                               |                      |                                   |                             |
| 2,3,7,8-TCDF        | 0.010           | 0.9919         | 0.016                                  | 5.5                                           | -11.82               | 33                                | 0.010                       |
| 1,2,3,7,8-PeCDF     | 0.022           | 0.9969         | 0.016                                  | 13.7                                          | -9.38                | 92                                | 0.017                       |
| 2,3,4,7,8-PeCDF     | 0.021           | 0.9922         | 0.016                                  | 7.7                                           | -3.25                | 8                                 | 0.025                       |
| 1,2,3,4,7,8-HxCDF   | 0.016           | 0.9990         | 0.016                                  | 3.8                                           | 8.99                 | 17                                | 0.007                       |
| 1,2,3,6,7,8-HxCDF   | 0.009           | 0.9990         | 0.016                                  | 17.9                                          | -1.21                | 25                                | 0.006                       |
| 2,3,4,6,7,8-HxCDF   | 0.007           | 0.9993         | 0.016                                  | 9.3                                           | 7.17                 | 33                                | 0.008                       |
| 1,2,3,7,8,9-HxCDF   | 0.020           | 0.9993         | 0.016                                  | 14.2                                          | -7.19                | 50                                | 0.018                       |
| 1,2,3,4,6,7,8-HpCDF | 0.053           | 0.9946         | 0.080                                  | 9.8                                           | -8.94                | 92                                | 0.005                       |
| 1,2,3,4,7,8,9-HpCDF | 0.020           | 0.9990         | 0.016                                  | 14.9                                          | -2.23                | 25                                | 0.000                       |
| OCDF                | 0.027           | 0.9933         | 0.016                                  | 12.4                                          | 18.92                | 83                                | 0.000                       |
|                     |                 |                |                                        |                                               |                      | Sum mLOQ                          | 0.096                       |
| PCDDs               |                 |                |                                        |                                               |                      |                                   |                             |
| 2,3,7,8-TCDD        | 0.018           | 0.9960         | 0.016                                  | 2.5                                           | -1.94                | 0                                 | 0.005                       |
| 1.2.3.7.8-PeCDD     | 0.029           | 0.9949         | 0.016                                  | 12.8                                          | -3.72                | 0                                 | 0.007                       |
| 1.2.3.4.7.8-HxCDD   | 0.022           | 0.9949         | 0.016                                  | 8.9                                           | 0.11                 | 8                                 | 0.001                       |
| 1.2.3.6.7.8-HxCDD   | 0.032           | 0.9996         | 0.040                                  | 4.6                                           | 8.23                 | 25                                | 0.014                       |
| 1.2.3.7.8.9-HxCDD   | 0.062           | 0.9962         | 0.080                                  | 4.0                                           | -6.60                | 17                                | 0.004                       |
| 1.2.3.4.6.7.8-HpCDD | 0.053           | 0.9990         | 0.400                                  | 3.4                                           | 2.32                 | 100                               | 0.004                       |
| 0CDD                | 0.465           | 0.9900         | 4.000                                  | 2.3                                           | -11.83               | 100                               | 0.001                       |
| 0000                | 01100           | 0.0000         |                                        | 2.0                                           |                      | Sum ml 00                         | 0.036                       |
|                     |                 |                |                                        |                                               |                      | Sum PCDD/F mLOQ                   | 0.132.                      |
| NO-PCBs             |                 |                |                                        |                                               |                      |                                   |                             |
| PCB 81              | 0.030           | 0.9933         | 0.320                                  | 1.7                                           | -10.65               | 75                                | 0.001                       |
| PCB 77              | 0.037           | 0.9931         | 0.320                                  | 1.4                                           | -10.31               | 100                               | 0.005                       |
| PCB 126             | 0.077           | 0.9905         | 0.320                                  | 1.7                                           | -9.96                | 92                                | 0.137                       |
| PCB 169             | 0.071           | 0.9935         | 0.320                                  | 2.1                                           | -7.19                | 0                                 | 0.001                       |
|                     |                 |                |                                        |                                               |                      | Sum mLOQ                          | 0.144                       |
| MO-PCBs             |                 |                |                                        |                                               |                      |                                   |                             |
| PCB-105             | 2.109           | 0.9958         | 1.000                                  | 9.8                                           | -0.38                | 100                               | 0.006                       |
| PCB-114             | 1.504           | 0.9938         | 1.000                                  | 8.8                                           | -4.89                | 100                               | 0.000                       |
| PCB-118             | 1.930           | 0.9994         | 1.000                                  | 8.7                                           | 15.32                | 100                               | 0.018                       |
| PCB-123             | 1.537           | 0.9945         | 1.000                                  | 11.8                                          | -4.86                | 100                               | 0.000                       |
| PCB-156             | 1.897           | 0.9892         | 1.000                                  | 5.6                                           | -5.38                | 100                               | 0.000                       |
| PCB-157             | 1.287           | 0.9882         | 1.000                                  | 4.2                                           | -7.09                | 100                               | 0.000                       |
| PCB-167             | 2.067           | 0.9925         | 1.000                                  | 10.0                                          | -6.32                | 100                               | 0.001                       |
| PCB-189             | 1.626           | 0.9893         | 1.000                                  | 2.5                                           | -7.48                | 100                               | 0.000                       |
|                     |                 |                |                                        |                                               |                      | Sum mLOQ                          | 0.025                       |
|                     |                 |                |                                        |                                               |                      | Sum PCDD/F-PCB mLOQ               | 0.300                       |
| NDL-PCBs            |                 |                |                                        |                                               |                      |                                   |                             |
| PCB-28              | 3.928           | 0.9944         | 4.000                                  | 2.0                                           | 8.39                 | 100                               | 994.601*                    |
| PCB-52              | 6.530           | 0.9983         | 4.000                                  | 1.5                                           | 16.98                | 100                               | 1909.234                    |
| PCB-101             | 2.733           | 0.9964         | 4.000                                  | 2.4                                           | 11.11                | 100                               | 1303.266                    |
| PCB-138             | 1.587           | 0.9817         | 4.000                                  | 4.3                                           | -5.59                | 100                               | 161.674                     |
| PCB-153             | 1.469           | 0.9780         | 4.000                                  | 2.0                                           | -6.03                | 100                               | 171.672                     |
| PCB-180             | 0.904           | 0.9723         | 4.000                                  | 0.4                                           | -1.64                | 100                               | 34.941                      |
|                     |                 |                |                                        |                                               |                      | Sum mLOQ                          | 4575.388                    |

\*Reported as ng/kg.

The iLOQs for the NDL-PCBs were much higher than those for the PCDDs, PCDFs, and non-ortho (NO-)PCBs, and some of them were higher than the iLOQs for the mono-ortho (MO-)PCBs as well (Table 3). This was due to the fact that the 1 pg/µL lowest calibration point for congeners was excluded from the iLOQ calculation for NDL-PCBs due to RF differences > 30% and an RSD >15%. The 4 pg/µL calibration point was then used for all NDL-PCB iLOQ calculations, since all of its RSD values were far below 15%. Although the R<sup>2</sup> values were slightly below 0.9900 for three of the six NDL-PCBs (PCB-138,PCB-153, and PCB-180), the differences between RFs were very low, and the 4 pg/µL calibration point was used to calculate the iLOQs for these three NDL-PCBs as well. The calculated iLOQ values for all of the analytes were similar to those attained for GC/HRMS (data not shown).

#### Method limit of quantitation (mLOQ)

The mLOQ is a measure of the real analytical sensitivity of the method in a real environment. It is determined for the congeners by analyzing blank replicates, in this case 12 procedural blanks for each congener, from which an average value and an SD were calculated. The mLOQs are defined such that levels higher than the mLOQs are statistically proven to be due to the presence of congener in the sample, and not due to background noise. In this case, the mLOQs are defined as the average value of the blank plus six times the standard deviation.

Table 3 shows the average blank levels found in 12 individual procedure blanks for each of the 35 congeners, as well as mLOQs (ng WHO2005TEQ/kg). Most of the 35 congeners analyzed in our study, based on a 4-g sample size, gave measurable blank levels which were used to calculate the mLOQs (Table 3). For those congeners not present in blanks (2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, and PCB-169), the mLOQS were determined by adjusting the iLOQs to the sample amount.

The EU Regulation MLs are 0.75 ng/kg for the sum of the PCDDs and PCDFs (WH02005-PCDD/F-TEQ/kg), 1.50 ng/kg for the sum of the PCDDs, PCDFs, N0-PCBS, and M0-PCBs (WH02005-PCDD/F-PCB-TEQ/kg), and10  $\mu$ g/kg for the sum of the 6 NDL-PCBs. The regulation requires that mL0Qs must be <20% of MLs. Table 3 shows the sums of the mL0Qs for each congener group for direct comparison with the MLs. The sum of 0.132 ng WH02005-PCDD/F-TEQ/kg, is 18% of the ML, and the sum of 0.30 ng WH02005-PCDD/F-PCB-TEQ/kg is 20% of the ML. This method is compliant with the regulation for these two congener groups. For the NDL-PCBs, the sum was 4.6  $\mu$ g/kg, which was above 20% of the ML. This was due to a high level of contamination in the laboratory, as was also seen with the GC/HRMS method.

# Selectivity and quantitative/qualitative transitions

The EU regulation does not call for specific criteria for the selectivity of GC/triple quadrupole MS/MS methods. However, triple quadrupole ion filtering produces a flat baseline, making these chromatograms look very different from those generated using GC/HRMS. To avoid any artificial enhancement of signals and keep as close as possible to raw data, unsmoothed chromatograms were used in this study. Baseline separation was observed for the 1,2,3,4,7,8- and 1,2,3,6,7,8-hexachlorinated furans congeners (HxCDF), which are the most difficult to separate. No improvement in results was observed using smoothed chromatogram correction in terms of either accuracy or precision (RSD).

The intensity ratio of quantitation to qualification ions (Quant/Qual) was used to ensure absence of interference and correct peak integration. The lower response for an analyte was observed for the qualification transition (quantitation transition with a +2 Da offset), while the quantitation MRM transition gave the higher response. Using the same MS parameters such as collision energy, Quant/Qual ratios were established experimentally from the calibration curve (Table 4). The allowed tolerance was  $\pm 15\%$  for PCDD/Fs and DL-PCBs, and more for NDL-PCBs [1]. To guarantee an accurate result, a closer look at raw data is required whenever a congener Quant/Qual ratio is out of range.

|                     | Mean | RSD% | Tolerance (%) |
|---------------------|------|------|---------------|
| PCDFs               |      |      |               |
| 2,3,7,8-TCDF        | 94.0 | 14   | 15            |
| 1,2,3,7,8-PeCDF     | 81.7 | 14   | 15            |
| 2,3,4,7,8-PeCDF     | 88.0 | 26   | 15            |
| 1,2,3,4,7,8-HxCDF   | 62.3 | 19   | 15            |
| 1,2,3,6,7,8-HxCDF   | 60.8 | 10   | 15            |
| 2,3,4,6,7,8-HxCDF   | 62.7 | 10   | 15            |
| 1,2,3,7,8,9-HxCDF   | 62.6 | 16   | 15            |
| 1,2,3,4,6,7,8-HpCDF | 76.1 | 11   | 15            |
| 1,2,3,4,7,8,9-HpCDF | 82.3 | 29   | 15            |
| OCDF                | 93.0 | 20   | 15            |
| PCDDs               |      |      |               |
| 2,3,7,8-TCDD        | 96.4 | 10   | 15            |
| 1,2,3,7,8-PeCDD     | 81.6 | 21   | 15            |
| 1,2,3,4,7,8-HxCDD   | 64.7 | 15   | 15            |
| 1,2,3,6,7,8-HxCDD   | 64.4 | 17   | 15            |
| 1,2,3,7,8,9-HxCDD   | 73.3 | 19   | 15            |
| 1,2,3,4,6,7,8-HpCDD | 79.7 | 18   | 15            |
| OCDD                | 94.3 | 12   | 15            |
| NO-PCBs             |      |      |               |
| PCB 81              | 64.3 | 14   | 15            |
| PCB 77              | 62.4 | 1    | 15            |
| PCB 126             | 95.1 | 9    | 15            |
| PCB 169             | 73.3 | 8    | 15            |
| MO-PCBs             |      |      |               |
| PCB-105             | 30.5 | 4    | 15            |
| PCB-114             | 30.0 | 3    | 15            |
| PCB-118             | 30.3 | 2    | 15            |
| PCB-123             | 29.9 | 3    | 15            |
| PCB-156             | 46.8 | 2    | 15            |
| PCB-157             | 47.6 | 3    | 15            |
| PCB-167             | 47.0 | 2    | 15            |
| PCB-189             | 62.7 | 2    | 15            |
| NDL-PCBs            |      |      |               |
| PCB-28              | 31.8 | 2    | 25            |
| PCB-52              | 63.2 | 1    | 20            |
| PCB-101             | 30.5 | 3    | 25            |
| PCB-138             | 47.3 | 2    | 25            |
| PCB-153             | 47.4 | 2    | 25            |
| PCB-180             | 62.9 | 2    | 20            |

#### **Background subtraction**

Measured concentrations of an analyte can be corrected by subtracting an individual blank of the same kind of sample prepared in the same way. Such a blank is used for each series of samples (for example, one blank per 10 samples). Alternatively, an average blank value from a series of controlled blanks measured over time can be used for the correction. Two advantages are provided by the latter approach, which was used in this study. A chart of control levels kept over time enables detection of trends, can highlight contamination problems, and provides a proactive approach to contamination control. Secondly, this approach reduces the effect of a statistical outlier blank in a single sample series. Averaging blank levels that are controlled proactively within a confidence interval enables the rejection of such an outlier, and instead includes the statistical variation of the blank in the measurement uncertainty, which is monitored in the chart of control levels. This is a key point for determination of mLOQs.

#### Accuracy

The bias of the method for PCDD/Fs, NO-PCBs, and MO-PCBs was assessed using fortified samples in sunflower oil. No congener was found in the unfortified vegetable oil matrix blank. Six series of samples spiked at twice ML (2ML), ML, and half ML (ML/2) were injected over three days (two series per day), and all were within acceptable reproducibility limits (Table 5). The results were well within the requirements of the EU Regulation, which are method bias <20% and random error (%RSD) <15% [1].

Table 5. Bias of the Method for DL-PCBs and PCDD/Fs Using Six Series of Samples Spiked at Three Levels Around the ML

|         | Target* | Average* | SD   | RSD% | Bias% |
|---------|---------|----------|------|------|-------|
| DL-PCBs |         |          |      |      |       |
| 2ML     | 1.3     | 1.26     | 0.02 | 1.6  | -3.42 |
| ML      | 0.65    | 0.59     | 0.02 | 3.4  | -8.53 |
| ML/2    | 0.33    | 0.31     | 0.03 | 9    | -7.00 |
| PCDD/Fs |         |          |      |      |       |
| 2ML     | 1.58    | 1.6      | 0.03 | 2.2  | 1.3   |
| ML      | 0.79    | 0.78     | 0.04 | 5.7  | -1.54 |
| ML/2    | 0.4     | 0.41     | 0.03 | 7.1  | 2.36  |
|         |         |          |      |      |       |

\* ng WH02005TEQ/kg

#### Quality control and robustness

Two blank and two QC samples (pork fat) prepared in the lab were injected twice each week during September–October 2013, and again in April and May of 2014 (~6 months later). All of the QC sample values fell within the 95% confidence interval (Figure 1). That included QC samples that were run after the system was used for other purposes, including system venting and several column changes, over a 6-month period.

#### Conclusions

A GC/triple quadrupole MS/MS method has been developed and fully validated in accordance with criteria in EU Regulation 709/2014 that allows the use of GC/triple quadrupole MS/MS as a confirmatory method for official control of PCDDs, PCDFs, and DL-PCBs in animal feedstuffs. This method, developed using the Agilent 7890B GC system coupled to an Agilent 7000C Series Triple Quadrupole GC/MS system, meets the requirements of the regulation, and can achieve similar performance to GC/HRMS. Realistic measurement uncertainty in the typical range of the HRMS method was achieved, along with very similar analytical parameters, despite the difference in mass analyzer technology. The most stringent criteria were followed to demonstrate that this method provides accurate, consistent, and reliable results in the context of maximum level (ML) measurements.



Figure 1. QC chart over September–October and April–May validation periods. All values fell within the 95% confidence interval (± 2SD.)

#### References

- B. L'Homme, G. Scholl, G. Eppe, J.-F. Focant. "Validation of a gas chromatography-triple quadrupole mass spectrometry method for confirmatory analysis of dioxins and dioxinlike polychlorobiphenyls in feed following new EU Regulation709/2014." *J. Chromatogr. A* 1376, 149-58 (2015).
- J.-F. Focant, G. Eppe, C. Pirard, A.-C. Massart, J.-E. André, E. De Pauw. "Levels and congener distributions of PCDDs, PCDFs and non-ortho PCBs in Belgian food stuffs: assessment of dietary intake" *Chemosphere* 48, 167–179 (2002).
- A. Kotz, R. Malisch, K. Wahl, N. Bitomsky, K. Adamovic, I. Gerteisen, S. Leswal, J. Schächtele, R. Tritschler, H. Winterhalter. "GC–MS/MS determination of PCDD/Fs and PCBs in feed and food – comparison with GC–HRMS" Organohalogen Compd. 73, 688–691 (2011).
- Commission Regulation (EC) No 277/2012 of 28 March 2012 amending Annexes I and II to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels and action thresholds for dioxins and polychlorinated biphenyls, *Offic. J. Eur. Commun.* (2012), L91/1-7.
- Commission Regulation (EU) No 709/2014 of 20 June 2014 amending Regulation (EC) No 152/2009 as regards the determination of the levels of dioxins and polychlorinated biphenyls, *Offic. J. Eur. Commun.* (2014), L188/1-18.
- A. Kotz, R. Malisch, J.-F. Focant, G. Eppe, T. L. Cederberg, P. Rantakokko, P. Fürst, T.Bernsmann, L. Leondiadis, C. Lovasz, G. Scortichini, G. Diletti, A. Di Domenico, A.M. Ingelido, W. Traag, F. Smith, A. Fernandez. "Analytical criteria for use of MS/MS for determination of dioxins and dioxin-like PCBs in feed and food." *Organohalogen Compd.* 74, 156–159 (2012).

#### For More Information

These data represent typical results. For more information on our products and services, visit our Web site at www.agilent.com/chem.

#### www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2016 Printed in the USA January 19, 2016 5991-6590EN

