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Abstract
This study develops a method for the discrimination and prediction of honey 
samples from various botanical origins. The method was based on the 
nontargeted volatile profiles obtained by solid-phase microextraction and gas 
chromatography‑mass spectrometry (SPME-GC/MS) combined with chemometrics. 
The blind analysis of nontargeted volatile profiles was carried out by SPME-GC/MS 
for 87 authentic honey samples from four botanical origins including acacia, 
linden, vitex, and rape honey. Quality control of the samples was performed by 
Principal Component Analysis (PCA). Then, sample class prediction models based 
on partial least squares discriminant analysis (PLS-DA), naïve Bayes (NB), and 
back‑propagation artificial neural network (BP-ANN) were constructed. The 100 % 
accuracy results revealed a perfect classification among the different botanical 
origins. The results indicated that all could be predicted correctly. In addition, the 
reliability and practicability of the models were validated by an independent set of an 
additional 20 authentic honey samples. All 20 samples were accurately classified. 
Finally, the characteristic volatile compounds of linden honey were tentatively 
identified. It is suggested that the proposed method is reliable and accurate for the 
classification of honey from various botanical origins, as well as finding marker 
compounds. 
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Introduction
Honey is among the most appreciated 
natural products in the world for its 
nutritional and medicinal properties. 
Consumers are more concerned about 
the botanical and geographical origins 
of honey. The price of honey is usually 
based on its botanical/geographical 
origins. Therefore, it is essential to 
develop a fast and powerful method to 
identify honey from different origins. 
GC/MS has an advantage in the 
identification and quantification of 
organic compounds in complex samples. 
The combination of GC/MS and 
solid‑phase microextraction (SPME) is 
useful for analyzing volatile compounds 
in honey1.

This Application Note describes a 
recently published study2 of nontargeted 
volatile profiles for classification of 
the botanical origin of Chinese honey 
by SPME and GC/MS combined with 
chemometrics. The study develops a 
procedure to classify and predict the 
botanical origin of honeys based on 
nonspecific volatile fingerprint and 
multivariate analysis. Blind raw data 
from honey were generated from the 
SPME-GC/MS analysis in full-scan 
mode. Multivariable optimization 
was conducted using various filter 
parameters. Then, prediction models 
were constructed based on partial least 
squares discriminant analysis (PLS-DA), 
naïve Bayes (NB), and back-propagation 
artificial neural network (BP-ANN). 
Finally, the statistically significant 
variables were tentatively identified.

Materials and methods

Honey samples
Eighty-seven authentic honey 
samples, including 19 acacia 
(Robiniapseudoacacia L.), 22 linden 
(TiliaamurensisRupr.), 22 vitex 
(Vitexnegundo var. heterophyllaRehd.) 
and 24 rape (Brassica campestris L.), 
were collected in Beijing, Jilin, Hebei, and 
Shaanxi, China, respectively. More than 
500 g of each honey sample was directly 
collected from beekeepers, and stored in 
a refrigerator at 4 °C until analysis. 

Solid-phase micro-extraction
The SPME procedure was performed 
using a CTC auto injection system with a 
2 cm-50/30 μm divinyl-benzene/ 
carboxen/polydimethylsiloxane 
(DVB/CAR/PDMS)‑coated fiber 
(p/n SU57348U). Before analysis, the 
fiber was conditioned for 1 hour at 
270 °C in the injection port of the GC. The 
SPME conditions were as follows: 3 g of 
honey was placed in a 20-mL headspace 
screwtop vial (p/n 5183-4474) with 
1.5 mL of deionized water and 0.5 g 
of sodium chloride, and the vial was 
sealed with a poly-tetrafluoroethylene 
(PTFE)/silicone septum (p/n 5183-4477). 
The DVB/CAR/PDMS-coated fiber was 
then exposed to the headspace of the 
sample solution for 30 minutes at 80 °C. 
When the extraction step was completed, 
the fiber was removed from the vial and 
inserted into the injection port of the GC 
for 2 minutes of thermal desorption at 
250 °C. 

Data processing and statistical 
analyses
The Agilent ChemStation data were 
transformed to MassHunter data by 
Agilent MassHunter GC/MS translator 
Version B.07.00. The transformed 
GC/MS data were imported into 
MassHunter unknown analysis software 
(Version B.07.01), and deconvolution 
and identification were performed 
according to the optimized parameters 
of the unknown analysis. The processed 
honey sample profiles were exported 
by the script as a cef file, and imported 
into Agilent Mass Profiler Professional 
(Version 13.0). 

Chemometric methods such as principal 
component analysis (PCA), one-way 
analysis of variance (ANOVA), and 
prediction models including PLS-DA, NB, 
and BP-ANN were used.

Figure 1. Parts of honey samples used in this 
study.

Chemicals
Hexane (MS grade) was purchased 
from Fisher Scientific (Shanghai, 
China). n-Hexane was purchased from 
Sigma-Aldrich, and a series of alkanes 
(C8H18–C25H52) was used to calculate 
the retention index. Methyl decanoate 
(Sigma-Aldrich) was used as an internal 
standard. Water was purified using 
a Milli-Q water purification system 
(Millipore, Bedford, MA, USA).



3

Results and discussion

Data mining
Data filtering and chemometric analyses 
were carried out using Agilent MPP 
software. All the cef files were subjected 
to data filtering. A total of 2,734 entities 
were obtained through data alignment 
across four sample groups. According 
to the MPP workflow, the first filter was 
filter by flags, and this step was used to 
eliminate unreliable compounds. The 
present and marginal flags were set to 
filter an entity from the entire set if it 
was above the threshold or saturated for 
each sample. Entities in which at least 
2 out of 87 samples had acceptable 
values were retained. The next filter 
was filter by frequency, by which entities 
were filtered based on their frequency of 
occurrence across samples. In this step, 
the entity must be present to pass the 
filter. These filtering conditions retained 
entities that appeared in each sample, 
in at least one condition. The third filter, 
significance analysis, was based on the 
p-value calculated by one-way ANOVA. 
To ensure that only the entities with a 
significant difference were retained, in 
most cases, the selected p-value cut‑off 
was 0.05. After the three filter steps, the 
number of entities was reduced from 
2,734 to 114. To identify compounds 
with abundance ratios or differences 
between a treatment and a control 
outside of a given fold-change cut-
off or threshold, fold‑change analysis 
was used as the final filter step. There 
were 110 entities retained when the 
fold‑change cut-off was 2, demonstrating 
that a series of filter steps significantly 
reduced the number of variables, and the 
dimensionality of the dataset.

Principle component analysis
PCA is the most commonly used 
unsupervised statistical method to 
reduce the dimensionality of large 
datasets, and identify differences and 
associations between variables and 
samples. Based on the previous filter 

Table 1. GC and mass spectrometer conditions.

Instrument conditions

Parameter Value

GC system	 Agilent 7890A*

Column Agilent HP-5MS, 30 m × 0.25 mm, 0.25 µm (p/n 19091S-433)

Oven program
50 °C hold 2 minutes,  
at 5 °C/min to 180 °C, hold 2 minutes,  
at 10 °C/min to 250 °C hold 5 minutes

Carrier gas Helium

Flow rate 1.0 mL/min

Injection mode CTC auto injection

Injection port temperature 250 °C

MS System Agilent 5975C*

Ion source EI, 70 eV

Ion source temperature 230 °C

Quadrupole temperature 150 °C

Spectral acquisition Full scan, 40–600 m/z

*	 The Agilent 7890B GC system and Agilent 5977B MS system are available, and have demonstrated better results.

results, PCA was applied to 87 honey 
samples of four botanical origins 
to analyze their natural grouping. 
Generally, if the first four PCs explain 
more than 75 % of the total variation, a 
reliable model may be obtained3. It is 
necessary to further select and reduce 
the previously mentioned variables, 
thus strongly influencing the reliability 
of the model. The fold change cut‑off 
could be optimized based on the 
above‑mentioned filter steps. With the 

total variation explained by PC1–PC4 
considered as the evaluation criteria, a 
fold-change cut-off of 200 was chosen. 
Figure 2 shows the score plot of the 
honey samples with a fold-change 
cut‑off of 200. Linden honey samples 
were on the right plot of the first principal 
components (PC1), while the three other 
types of honey were on the left part 
of PC1. Therefore, PC1 separated the 
honey samples into linden honey and 
non-linden honey clearly. The linden and 
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Figure 2. PCA scores of honey samples from different botanical origins with a fold change cut-off of 200.
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rape honey samples both had positive 
PC2, while the vitex and acacia honey 
samples had negative PC2. PC1 and PC2 
accounted for 35.35 % and 25.38 % of 
the variance, respectively, and the first 
four PCs accounted for 79.12 % of the 
total variability. Therefore, a fold‑change 
cut-off of 200 was selected, and the 70 
retained variables were prepared for 
model construction.

Model construction and prediction
The PCA results indicated that 
the filtered data could be used to 
discriminate the botanical origins of 
the honey samples. The 70 selected 
variables were used to develop a 
statistical model for the classification 
and prediction of honey of various 
origins. This study constructed three 
classification models, PLS-DA, NB, and 
BP-ANN, based on 87 authentic honey 
samples, including 19 acacia, 22 linden, 
24 rape, and 22 vitex honey samples. The 
percentage of correctly classified honey 
samples during model training and 
validation demonstrated the recognition 
and prediction ability. Table 2 lists the 
accuracy of the three models; 100 % 
of the honey samples were accurately 
classified.

Although the recognition ability in 
model training and the prediction ability 
in model cross-validation was 100 %, 
validation of the constructed model 
using samples not included in the original 
87 authentic honey samples was an 
essential step. Therefore, an additional 
20 authentic honey samples not included 
in the development of the statistical 
model, including five honey samples of 
each botanical origin, were analyzed as 
the test set. Table 3 lists the prediction 
results with confidence measures. All 20 
authentic honey samples were correctly 
predicted. Although the predicted group 
was consistent with the actual group, 
the values of the confidence measures 
varied for the PLS‑DA, NB, and BP-ANN 
models.

No. Sample code Actual name Predicted name

Confidence measure

PLS-DA NB BP-ANN

1 A01 acacia acacia 0.80 1.00 0.99

2 A02 acacia acacia 0.85 1.00 0.99

3 A03 acacia acacia 0.82 1.00 0.99

4 A04 acacia acacia 0.93 1.00 0.99

5 A05 acacia acacia 0.89 1.00 0.98

6 L01 linden linden 0.81 1.00 0.98

7 L02 linden linden 0.71 1.00 0.99

8 L03 linden linden 0.95 1.00 0.99

9 L04 linden linden 0.87 1.00 0.99

10 L05 linden linden 0.82 1.00 0.99

11 R01 rape rape 0.91 1.00 0.99

12 R02 rape rape 0.89 1.00 0.99

13 R03 rape rape 0.77 1.00 0.99

14 R04 rape rape 0.84 1.00 0.99

15 R05 rape rape 0.93 1.00 0.99

16 V01 vitex vitex 0.66 1.00 0.99

17 V02 vitex vitex 0.69 1.00 0.99

18 V03 vitex vitex 0.59 1.00 0.81

19 V04 vitex vitex 0.76 1.00 0.99

20 V05 vitex vitex 0.71 1.00 0.77

Table 3. Prediction results by PLS-DA, NB, and BP-ANN models.

Table 2. Model training and cross-validation results by PLS-DA, NB, 
and BP-ANN models.

PLS-DA NB BP-ANN

Model training

Recognition ability (%) 100 100 100

Model cross-validation

Prediction ability (%) 100 100 100

The confidence measure is an essential 
indicator of the reliability of prediction 
results. A confidence measure greater 
than 0.7 indicates high reliability in the 
results. A confidence measure in the 
range of 0.5–0.7 indicates problematic 
sample classification, and a value less 
than 0.5 suggests incorrect information4.

Table 3 shows that the confidence 
measures of all the NB prediction results 
were 1.00, whereas the confidence 
measures ranged 0.59–0.95 and 
0.77–0.99 for the PLS-DA and BP-ANN 
models, respectively. Three vitex samples 

in the PLS-DA results had confidence 
measures ranging 0.59–0.69. The other 
two vitex samples had confidence 
measures of 0.71 and 0.76. The 
PLS‑DA model produced slightly worse 
predictions for the vitex samples. In the 
BP-ANN results, except for vitex sample 
V03 and V05, which had confidence 
measures of 0.81 and 0.77, respectively, 
the samples had confidence measures 
greater than 0.98. In comparison, the 
NB and BP-ANN models predicted all 
the honey samples with satisfactory 
confidence measures. 
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Identification of volatile 
compound markers
A Venn diagram was used to identify the 
entities list in the prediction model for 
each botanical origin. Figure 3 shows 
the entity lists for each botanical origin 
and cross‑section. The entity lists for 
acacia, vitex, linden, and rape honey were 
50, 43, 52, and 47, respectively. Because 
linden honey is superior in quality and 
price to the other honeys, the marker 
identifications focused on the volatile 
compounds only found in linden honey 
samples. Figure 3 shows that eight of 
the initially selected volatile compounds 
only appeared in linden honey. They were 
tentatively identified by NIST. Table 4 lists 
the literature with their retention times, 
retention indexes, and ions. Except for 
pentanoic acid, 2-methyl-, anhydride, 
all the compounds were reported in the 
literature reference for linden honey5-8. 
Among them, cis-rose oxide was 
proposed as an indicator compound for 
linden honey by Blank; et al6. Blank also 
found the compound in the blossoms 
of the lime tree (Tilia cordata), but not in 
other types of honey6. Table 4 lists the 
compounds that could also be tentatively 
considered as marker compounds 
of linden honey despite the lack of 
literature on the volatile compounds in 
lime blossoms. These compounds had 
significant contributions in discriminating 
linden honey from other honeys. 

Figure 3. Venn diagram of honey samples from different botanical origins.
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Table 4. Marker compounds tentatively identified in linden honey.

No. Tentative compound identification RT RI Ions CAS Ref.

1 Pulegonea,b 9.67 1008 109, 81, 152 89-82-7 [5]

2 cis-Rose oxidea,b 13.17 1126 139, 69, 83 876-17-5 [5-7]

3 Benzofuran, 4,5,6,7-tetrahydro-3,6-dimethyl-a,b 14.27 1164 108, 150, 79 494-90-6 [5]

4 1-methyl-4-(1-methylpropyl) benzenea,b 15.52 1206 119, 91, 117 1595-16-0 [5]

5 4,7-dimethyl-Benzofurana,b 15.78 1215 145 146 148 28715-26-6 [5]

6 thymola,b 18.1 1298 135, 150, 91 89-83-8 [5]

7 Carveola,b 19.72 1359 119, 91, 134 99-48-9 [8]

8 Pentanoic acid, 2-methyl-, anhydridea 21.17 1414 99, 71, 41 63169-61-9  –

a Identified by NIST14.
b Identified by the literature reference.
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Conclusion
To discriminate honey samples of 
various botanical origins, this study 
successfully applied the proposed 
classification methodology based on 
SPME and untargeted GC/MS analysis, 
combined with chemometrics. Three 
classification models, PLS-DA, NB, and 
BP-ANN, were constructed based on 
87 authentic honey samples, with an 
accuracy of 100 %. The prediction results 
of 20 additional authentic honey samples 
indicated that the developed models 
were practical and reliable. Therefore, 
the combination of SPME-GC/MS 
nonspecific volatile compound profiles 
and chemometrics is an alternative, 
promising method for the classification 
and discrimination of honey samples of 
different botanical origins. 
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