ASMS 2015

ThP 129

Utilizing High Efficiency Electron Ionization and MS/MS to Reduce Injection Volumes and Sample Extract Volumes for EPA 8270

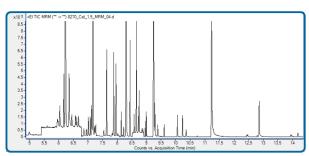
Matthew Curtis¹; Fred Feyerherm³; Dale Walker³; Ron Honnold²; ¹Agilent Technologies, Inc., Santa Clara, CA; ²Agilent Technologies, Inc., Riverside, CA; ³Agilent Technologies, Inc., Houston, TX

Utilizing High Efficiency Electron Ionization and MS/MS to Reduce Injection Volumes and Sample Extract Volumes for EPA 8270

Introduction

The goal of this project is to show the applicability of El GC/MS/MS measurement for the detection of EPA method 8270 analytes using a fast, highly selective and sensitive approach. EPA method 8270 is the primary semivolatile organic compound (SVOC) analysis for multiple types of matrices including soil and wastewater. Due to the high concentrations injected and number of target analytes monitored, column degradation, inlet contamination, and ion source contamination may occur causing significant instrument down time. In addition, the sample preparation requires large amounts of solvent for analyte extraction and large sample volumes that need to be shipped, which is costly for laboratories running this method routinely.

During the 2015 Pittsburgh Conference EPA announced that a tandem-quadrupole mass spectrometer could be used for EPA method 8270. This detection mode change will be included in revision E of the method. Due to the use of MS/MS detection technique, DFTPP spectrum analysis will not be necessary, but documentation of both mass analyzers' performance will be required. This document will be based on manufacturer's specifications using the internal calibration compound. The document will include mass resolution, mass assignment, and sensitivity results. Performance evaluations will be performed weekly, at minimum.


Materials and Method:

The analyte, internal standard, and surrogate standard solutions were purchased from AccuStandard, Inc. (New Haven, CT). The surrogate solution was spiked into the analyte solution prior to serial dilution with dichloromethane. 1:2 serial dilutions were performed from 100 pg μ L⁻¹ down to 0.1 pg μ L⁻¹.

Three transitions for each analyte, surrogate and internal standard were selected and applied to this method from the Agilent Pesticide & Environmental Pollutant MRM Database. For compounds not currently in the Agilent MRM Database the transitions were obtained through the following steps. Individual SRM transitions were developed by acquiring a full scan data file with all the analytes to select the best candidates for precursor ions. Product ion analyses were performed at two different collision energies, to select the optimal product ions. After the transitions were identified the collision energy was optimized for each transition.

The GC run time was 15 min. with a cool down/equilibration time of \sim 4 min, to give a total cycle time below 20 min.

Experimental

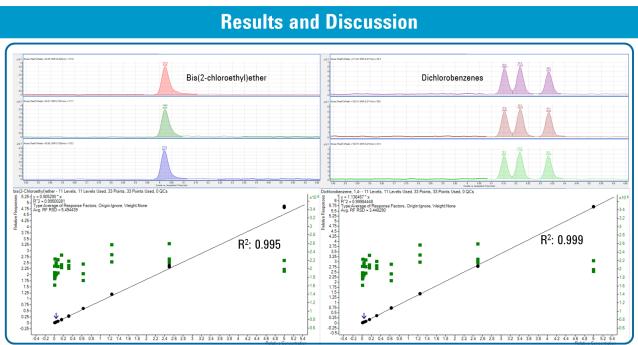
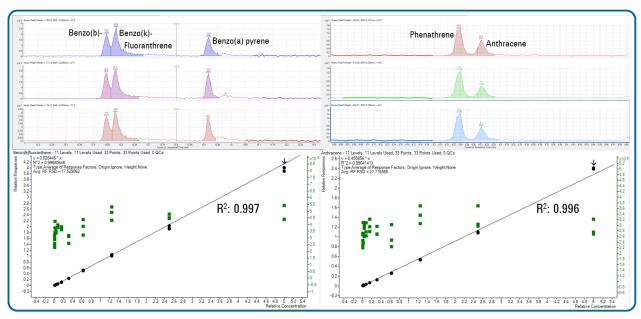


Figure 1. RTIC for the 1.5 pg μ L⁻¹ sample with analytes, ISTDs and surrogates. The five most intense peaks are the ISTDs, which were cut-off to show the analyte responses.


Instrument:

All of the data created for this study were acquired on an Agilent 7890A GC coupled to the Agilent 7010 Triple Quadrupole Mass Spectrometer The Agilent 7010 has the high efficiency ion source that increases the ion current exiting the source to provide more ions into the analyzer to allow more ions to be detected. The 7010 includes two gold-plated quartz quadrupoles and a hexapole collision cell.

GC and MS Parameters:						
Column	DB-5MS UI, 20m, 0.18 mm ID, 0.18					
	µm film					
Injection volume	1.0 µL	4mm single				
		taper, UI liner				
Pulsed-Splitless mode	40 psi	For 0.5 min				
	Purge flow to split	100 mL/min at				
	vent	0.5 min				
S/SL inlet temperature	250 °C					
Oven temperature program	40 °C for 2.5 min					
	10 °C/min to 60 °C, for 0 min					
	40 °C/min to 260 °C, for 0 min					
	5 °C/min to 270 °C, for 0 min					
	20 °C/min to 320 °C, for 1 min					
Carrier gas	Helium at 0.8 mL/min for 10 min					
	then 1.5 mL/min					
Transfer line temperature	300 °C					
lonization mode	Electron Ionization					
Source temperature	350°C					
Quadrupole temperatures	150°C for both					
Acquisition type	MRM					
Collision Gas	Nitrogen at 1.5 mL min ^{.1}					
	Helium at 4 ml min ⁻¹					
Electron Energy	-70 eV					
Ionization parameters us	ed in the method					
High Sensitivity Ion Source						

Figure 2. The left chromatogram is produced from 3 reps. of Bis(2-chloroethyl)ether at 0.1 pg μ L⁻¹. The chromatogram on the right was produced from 3 reps. of the 3 dichlorobenzenes in the solution at 0.1 pg μ L⁻¹. The chromatogram labels include the signal-to-noise on-top and the area below. Each calibration is from 0.1 pg μ L⁻¹ to 100 pg μ L⁻¹, and include the ISTD responses (green squares). The curve is calculated with "Average of Response Factors."

Figure 3. The left chromatogram is produced from 3 reps. of benzo(b) and benzo(k) fluoranthrene at 0.2 pg μ L⁻¹. The chromatogram on the right was produced from 3 reps. of phenanthrene and anthracene at 0.1 pg μ L⁻¹. The chromatogram labels include the signal-to-noise on-top and the area below. Each calibration is from 0.1 pg μ L⁻¹ to 100 pg μ L⁻¹, and include the ISTD responses (green squares). The curve is calculated with "Average of Response Factors."

Utilizing High Efficiency Electron Ionization and MS/MS to Reduce Injection Volumes and Sample Extract Volumes for EPA 8270

Results and Discussion

Table 1. This table was calculated with 7 replicates of 1µl, 10 pg μL^{-1} injection of all analytes. The MDLs, LOQs, and LODs were calculate at the 95% confidence level. The quantifier transition was used to calculate the values below (all concentrations in pg μL^{-1}).

Name	RT	Avg Conc.	Std. Dev.	Conc. RSD %	MDL	LOQ	LOD	Avg Height	Area	Resp. RSD %
Phenol, 2-fluoro-	4.89	10.07	0.2021	2	0.64	2.02	0.61	128470	226121	5.9
Phenol-d5	5.916	11.38	0.2223	2	0.70	2.22	0.67	172853	170946	5.1
Phenol	5.926	10.28	0.2143	2.1	0.67	2.14	0.64	161570	192204	7.1
Aniline	5.93	12.16	0.5546	4.6	1.74	5.55	1.66	207179	268039	3.8
bis(2-Chloroethyl)ether	6.006	10.80	0.0899	0.8	0.28	0.90	0.27	993182	829590	5.9
Chlorophenol, 2-	6.013	11.05	0.3094	2.8	0.97	3.09	0.93	109712	107208	6.8
Dichlorobenzene, 1,3-	6.14	10.72	0.0379	0.4	0.12	0.38	0.11	1349543	1026662	6.2
Dichlorobenzene, 1,4-	6.21	10.52	0.1109	1.1	0.35	1.11	0.33	1296281	1015185	6.7
Dichlorobenzene, 1,2-	6.32	10.73	0.0795	0.7	0.25	0.80	0.24	1287541	1050684	6
Benzyl alcohol	6.335	10.88	0.6008	5.5	1.89	6.01	1.80	113138	144658	10.5
Methylphenol, 2- (Cresol, o-)	6.423	11.05	0.5562	5	1.75	5.56	1.67	196269	204109	4.5
Methylphenol, 4- (Cresol, p-)	6.54	11.85	0.6728	5.7	2.11	6.73	2.02	201094	221416	6.8
Nitrosodi-n-propylamine, N-	6.54	10.52	0.609	5.8	1.91	6.09	1.83	10599	9735	7.2
Hexachloroethane	6.58	11.34	0.8666	7.6	2.72	8.67	2.60	318305	251612	11.1
Nitrobenzene-D5	6.64	11.12	0.5363	4.8	1.69	5.36	1.61	44545	42286	9.1
bis(2-Chloro-1-methylethyl)ether	6.65	10.49	0.1759	1.7	0.55	1.76	0.53	19456	27328	6.8
Nitrobenzene	6.65	11.51	0.3953	3.4	1.24	3.95	1.19	152606	143690	8.1
Isophorone	6.83	12.25	0.3601	2.9	1.13	3.60	1.08	299458	264122	6.5
Nitrophenol, 2-	6.88	14.80	0.5022	3.4	1.58	5.02	1.51	11193	13999	8.1
Dimethylphenol, 2,4- (2,4-xylenol)	6.92	12.51	0.3979	3.2	1.25	3.98	1.19	156404	152150	6.6
bis(2-Chloroethoxy)methane Dichlorophenol, 2.4-	6.99 7.05	11.33	0.1516	1.3	0.48	1.52	0.45	2024479 105776	1660540 122607	5.9 8.3
	7.05	13.73	0.387	2.8	0.10	3.87	0.10	670206	631499	8.3
Trichlorobenzene, 1.2.4- Naphthalene		10.40	0.0324	0.3	0.10	0.32	0.10		1153020	5./
Naphthalene Chloroaniline, 4-	7.12	13.06	0.0741	2.4	0.23	0.74	0.22	1222532 389402	368904	5.2
Hexachlorobutadiene	7.24	10.87	0.0906	0.8	0.99	0.91	0.95	389402 391407	348426	5.2
Phenol, 4-chloro-3-methyl-	7.52	12.22	0.0908	3.2	1.23	3.90	1.17	141172	125224	0.3 8.3
Methylnaphthalene, 2-	7.62	12.22	0.0461	0.4	0.14	0.46	0.14	2198007	120224	8.3
Hexachlorocyclopentadiene	7.02	13.50	0.9219	6.8	2.90	9.22	2.77	24746	20083	10.5
Trichlorophenol. 2.4.6-	7.8	13.10	0.9706	7.4	3.05	9.22	2.91	82113	56410	12.6
Trichlorophenol, 2,4,0-	7.82	9.93	0.3232	3.3	1.02	3.23	0.97	84827	81932	5.3
1,1'-Biphenvl, 2-fluoro-	7.86	10.49	0.027	0.3	0.08	0.27	0.08	1862901	1292537	6
Chloronaphthalene, 2-	7.93	10.49	0.0825	0.8	0.26	0.82	0.08	2287069	1581753	6.2
Nitroaniline, 2-	8	12.90	0.4094	3.2	1.29	4.09	1.23	71516	45871	7.2
Dimethyl phthalate	8.11	8.95	0.1924	2.2	0.60	1.92	0.58	687978	386072	5.6
Dinitrotoluene, 2,6-	8.16	12.76	0.4741	3.7	1.49	4,74	1.42	46828	27918	6.2
Acenaphthylene	8.2	9.61	0.1102	1.1	0.35	1.10	0.33	302293	208097	6.6
Nitroaniline, 4-	8.25	14.02	0.9273	6.6	2.91	9.27	2.78	17030	11358	9.7
Nitroaniline, 3-	8.26	15.23	1.0698	7	3.36	10.70	3.21	76655	49339	10.4
Acenaphthene	8.3	9.78	0.1108	1.1	0.35	1.11	0.33	387438	243854	5.7
Dinitrotoluene, 2.4-	8.4	14.04	0.7564	5.4	2.38	7.56	2.27	27008	17731	8.4
Dibenzofuran	8.42	10.15	0.1087	1.1	0.34	1.09	0.33	4163056	2523322	5.9
Chlorophenyl phenyl ether, 4-	8.63	10.41	0.1059	1	0.33	1.06	0.32	1444002	805825	5.9
Fluorene	8.63	10.15	0.114	1.1	0.36	1.14	0.34	3427305	2252308	6.1
Nitrosodiphenylamine, N-	8.71	8.82	0.2707	3.1	0.85	2.71	0.81	268767	179403	5.9
Azobenzene	8.73	8.03	0.1678	2.1	0.53	1.68	0.50	1554738	959484	6.5
Tribromophenol, 2,4,6-	8.78	10.24	0.4598	4.5	1.45	4.60	1.38	14135	10834	10.4
4-bromophenyl phenyl ether	8.94	8.89	0.2464	2.8	0.77	2.46	0.74	384182	255788	6.4
Hexachlorobenzene	8.97	8.90	0.331	3.7	1.04	3.31	0.99	694285	430711	6.1
Pentachlorophenol	9.09	8.59	0.5017	5.8	1.58	5.02	1.51	4614	7250	15.1
Phenanthrene	9.24	8.88	0.058	0.7	0.18	0.58	0.17	1193313	797742	7.4
Anthracene	9.27	7.25	0.1467	2	0.46	1.47	0.44	596059	456893	7.7
Carbazole	9.37	8.69	0.3451	4	1.08	3.45	1.04	369024	282913	10
Di-n-butyl phthalate	9.58	6.78	0.2012	3	0.63	2.01	0.60	308569	194243	6.5
Fluoranthene	10.03	8.41	0.2526	3	0.79	2.53	0.76	616055	562227	9.5
Pyrene	10.21	8.07	0.2794	3.5	0.88	2.79	0.84	749624	661642	10
p-Terphenyl-d14	10.35	8.57	0.4851	5.7	1.52	4.85	1.46	205455	201195	12.1
Butyl benzyl phthalate	10.74	7.49	0.406	5.4	1.28	4.06	1.22	28635	19784	12.2
3,3'-Dichlorobenzidine	11.25	7.86	0.4474	5.7	1.41	4.47	1.34	11924	10104	15.5
Benz[a]anthracene	11.26	7.56	0.0684	0.9	0.21	0.68	0.21	264169	240364	16.4
Chrysene	11.3	6.96	0.0496	0.7	0.16	0.50	0.15	220569	259985	17
Bis(2-ethylhexyl) phthalate	11.35	4.94	0.5528	11.2	1.74	5.53	1.66	33791	28137	13.5
Di-n-octyl phthalate	12.2	5.03	0.3034	6	0.95	3.03	0.91	26867	26900	15.6
Benzo[b]fluoranthene	12.55	8.61	0.2251	2.6	0.71	2.25	0.68	110854	116793	16.5
Benzo[k]fluoranthene	12.58	7.27	0.3518	4.8	1.11	3.52	1.06	106593	129453	16.4
Benzo[a]pyrene	12.92	6.50	0.1678	2.6	0.53	1.68	0.50	68952	81715	13.7
Indeno[1,2,3-cd]pyrene	14.09	5.89	0.3755	6.4	1.18	3.76	1.13	146328	150858	11.3
Dibenz[a,h]anthracene	14.13	6.28	0.4556	7.3	1.43	4.56	1.37	48381	52387	10.6
Benzo[g,h,i]perylene	14.35	6.01	0.3535	5.9	1.11	3.53	1.06	182644	217684	11

Conclusions

With the adoption of the triple quadrupole mass spectrometers in EPA method 8270E, the goal of this study was to show that the Agilent 7010 Triple Quadrupole GC/MS system fulfills the method requirements. The data generated demonstrate significantly improved limits of detection and limits of quantitation with the addition of MS/MS for this analysis. Many of the analytes were easily observed at the 0.1 pg μ L⁻¹ level. With these new detection levels laboratories will be able to inject a smaller amount into the GC/MS reducing maintenance time and consumables. It will be also possible to start with smaller sample volumes, to decrease the amount of solvent used for extraction, and eliminate the "blow-down"/concentration step in the sample preparation.

During the method evaluation the calculated limits of quantitation for some of the phthalates were much higher than expected due to contamination from plastics during a sample preparation procedure. Glass beakers and glass/metal syringes were used for this study, but the solvents and other components that came in contact with the sample had enough residue of plastics to produce a non-zero blank sample.

