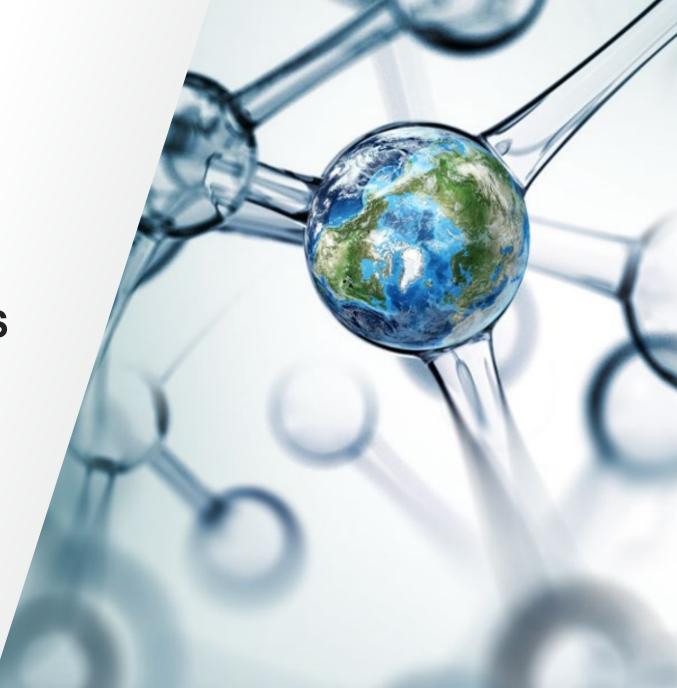
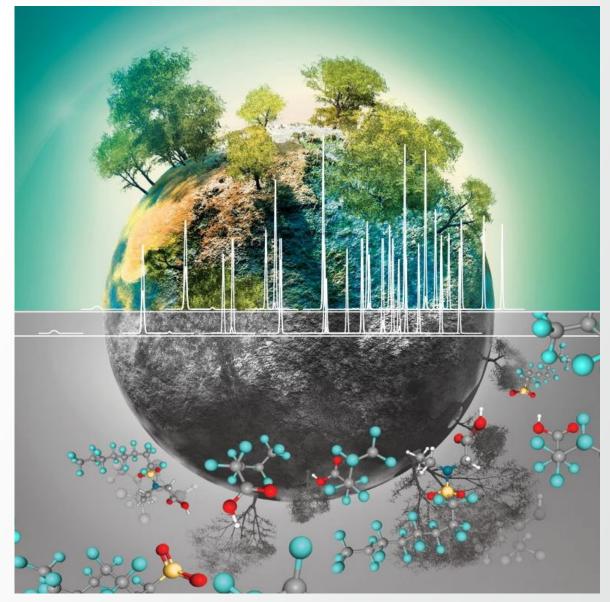
Thermo Fisher s c | e N T | F | C


Implementing new GC-MS and LC-MS technologies to stay ahead with your food safety analysis from pesticides to PFAS and microplastics

Frans Schoutsen

Environmental, Food and Beverage Support 10th International Symposium on Recent Advances in Food Analysis, September 6-9, 2022

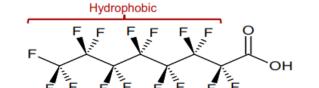
The world leader in serving science


Proprietary & Confidential | frans.schoutsen@thermofisher.com | 7-September-2022

Thermo Fisher

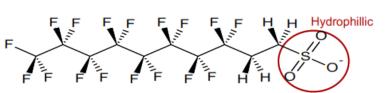
Presentation outline

- PFAS background and overview
- Instruments and experiments
- Why HRAM and the use of Thermo Scientific[™] myLibrary[™] Enterprise to create spectral libraries
- Method description, sample preparation, chromatography, and Thermo Scientific[™] Orbitrap Exploris[™] MS conditions Calibration, recovery, LOQs, and confirmation
- Conclusions

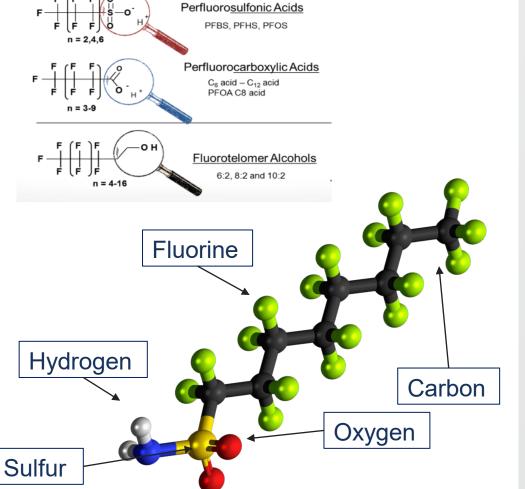


Thermo Fisher SCIENTIFIC

What are PFAS compounds?

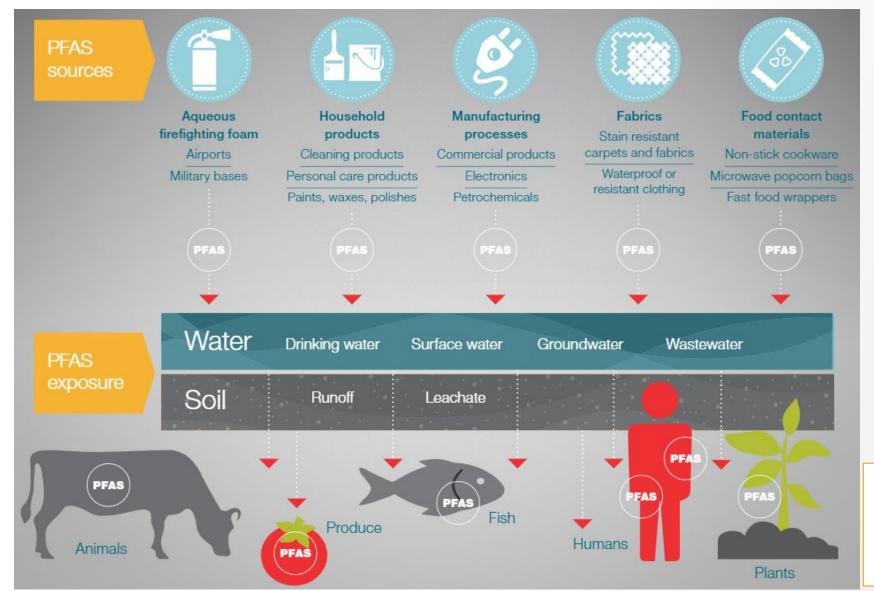

What are PFAS?

- PFASs are Per- and PolyFluorinated Alkyl Substances. Exclusively anthropogenic.
- Structures contain a hydrophobic perfluoroalkyl backbone and a hydrophilic end group
- Include a diverse range of compounds with a variety of chain lengths and end groups



Perfluorooctanoic acid

- PFOA
- Teflon®


8:2 Fluorotelomer sulfonate • 8:2 FTS

Wide Variety of Industrial Applications

- PFAS are used because of their unique chemical and physical properties. These include:
 - Industrial polymers (Teflon® PFOA)
 - Stain repellants (Scotchgard® PFOS)
 - Aqueous film forming foams (AFFF) fire fighting applications
- Sources can be found anywhere at differing (generally lower) concentrations

How does PFAS enter the environment?

A high number of sources

Very strong C-F bonds results in bioaccumulation

The workflow for analysing PFAS will depend on the goals of your analysis

US methods associated with PFAS measurements

hermo

Drinking Water

- US EPA 537.1 Internal Standard method, 18 analytes
- US EPA 533 Isotope Dilution method, 25 analytes

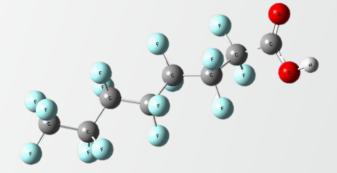
Groundwater/Wastewater/Solids

- US EPA 8327 External Standard method, 24 analytes
- ASTM D7979-17 Isotope Dilution method, 21 analytes
- Draft US EPA 1633 Isotope Dilution method, 40 analytes, includes tissue

Sediments/Soil Extracts

- US EPA 8327 External Standard method, 24 analytes
- ASTM 9768-17a Isotope Dilution method, 21 analytes

Food


- USDA CLG PFAS 2.03 16 (PFAS) bovine, porcine, poultry muscle and bovine plasma
- USFDA Method C-010.01 16 (PFAS) milk, bread, cheese, meat, others

TSQ separation of perfluoronated alkyl substances, 50 pg/mL

Thermo Fisher s c I E N T I F I C

Thermo Scientific[™]Vanquish[™] Flex UHPLC System

Delay Column: 3.0×50 mm, 5 um BDS Hypersil C8 Analytical Column: 2.1×100 mm, 2.6um Accucore C18 Column Temp: 30 C Mobile Phase: [A] H₂O + 10 mM Am. Acetate; [B] MeOH Injection Volume: 3 uL

Thermo Scientific™ TSQ Quantis™ Mass Spectrometer

Ionization Mode: HESI, Negative ion mode MS Acquisition Mode: Selective Reaction Monitoring (SRM) Cycle time: 0.15 s Quad Isolation (Q1,Q3) = Unit (0.7 Da FWHM)

C8-PFAS at 50 pg/mL (0.15 pg on-column); LODs are ~10 pg/mL (0.03 pg O.C.)

PFASs C4 – C10 at 50 pg/mL (0.15 pg on-column); LODs are ~10 pg/mL (0.03 pg O.C.)

TSQ portfolio

Thermo Fisher

Thermo Scientific™TSQ Fortis™ Mass Spectrometer

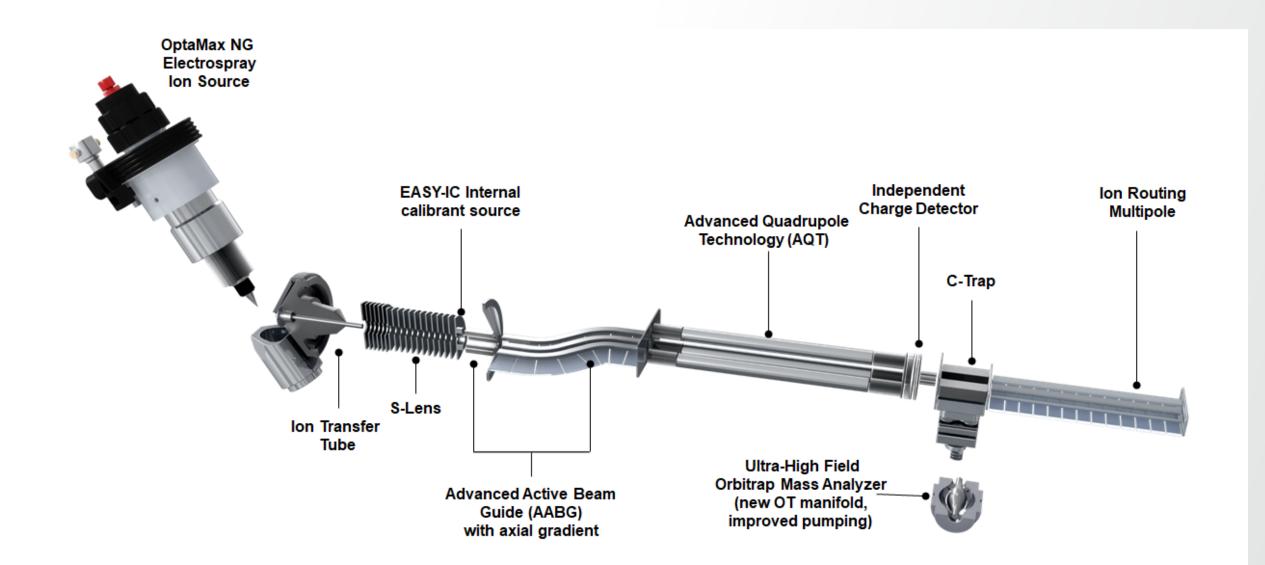
- Mass Range m/z 2 3000
- Max Resolution 0.4 FWHM
- Max 30,000 transitions per run
- Polarity Switching < 20 msec
- Dynamic interscan time
- 600 SRM/sec
- TNG software
- Chromeleon support
- 80,000:1 S/N

Thermo Scientific[™] TSQ Quantis[™] Mass Spectrometer

- Mass Range m/z 2 3000
- Max Resolution 0.4 FWHM
- Max 30,000 transitions per run
- Polarity Switching < 20 msec
- Dynamic interscan time
- 600 SRM/sec
- TNG software
- Chromeleon support
- 200,000:1 S/N

Thermo Scientific™TSQ Altis™ Mass Spectrometer

- Mass Range m/z 2 2000
- Max Resolution 0.2 FWHM
- Max 30,000 transitions per run
- Polarity Switching < 20 msec
- Dynamic interscan time
- 600 SRM/sec
- TNG software
- Chromeleon support
- 500,000:1 S/N


VALUE

Why use Orbitrap HRAM for PFAS analysis?

High Resolution Accurate Mass

- There are over 9000 known PFAS (with more PFAS being actively discovered) and a very limited number of certified reference standards commercially available for routine targeted analysis.
- HRAM analysis by LC-Orbitrap has an inherent advantage over triple quadrupole MS because it can provide both quantification and identification of target PFAS, along with the option of retrospective analysis on samples that may contain other untargeted PFAS.
- It can also overcome challenges of matrix interferences that have been observed in animal tissue extracts by tandem MS due to the low ppm mass accuracy and high mass resolution capability of orbitrap instrumentation.
- The Orbitrap exhibits excellent sensitivity on par with most triple quadrupole instruments, providing excellent quantitative data at low ppt levels.

Orbitrap Exploris mass spectrometer schematic

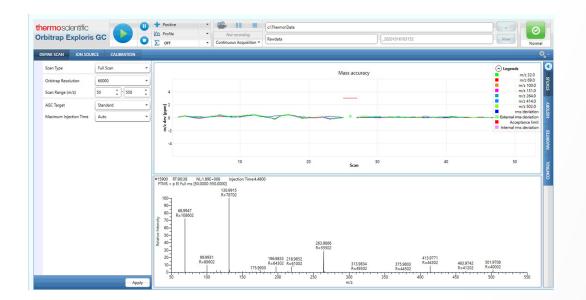


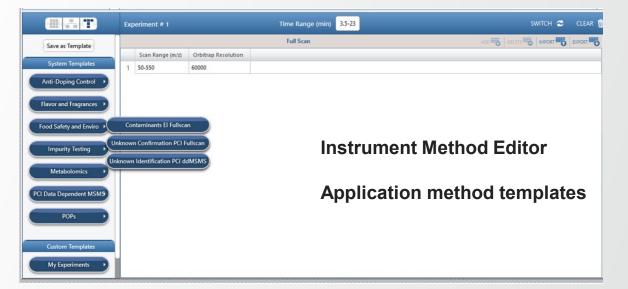
Thermo Fisher

SCIENTIFIC

One instrument series control software (GC- and LC)

A user of one becomes a user of all systems

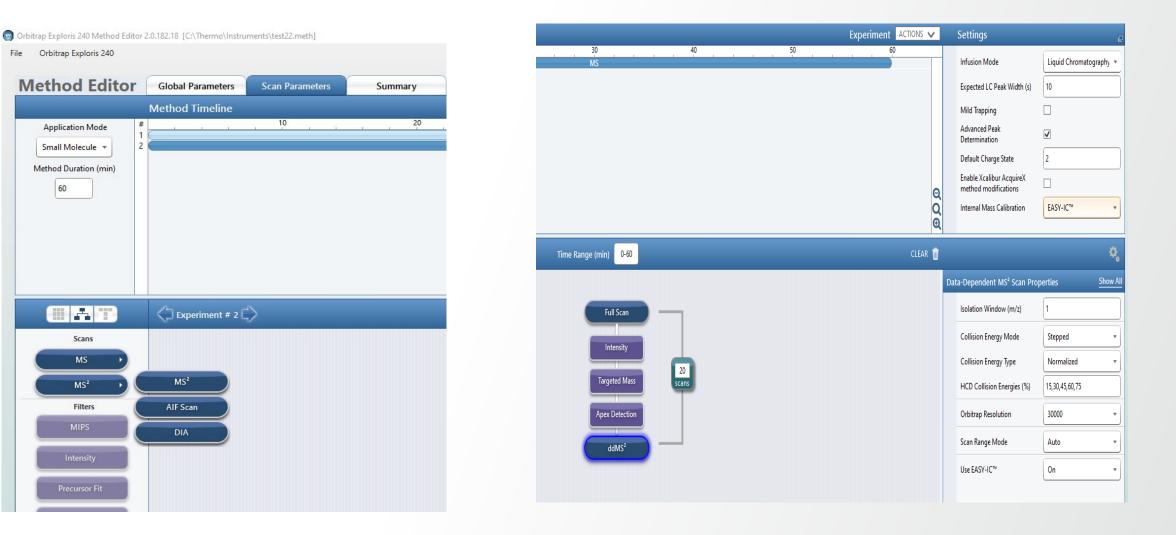




Thermo Fisher

SCIEN

Thermo Scientific[™] Orbitrap Exploris[™] Mass Spectrometers

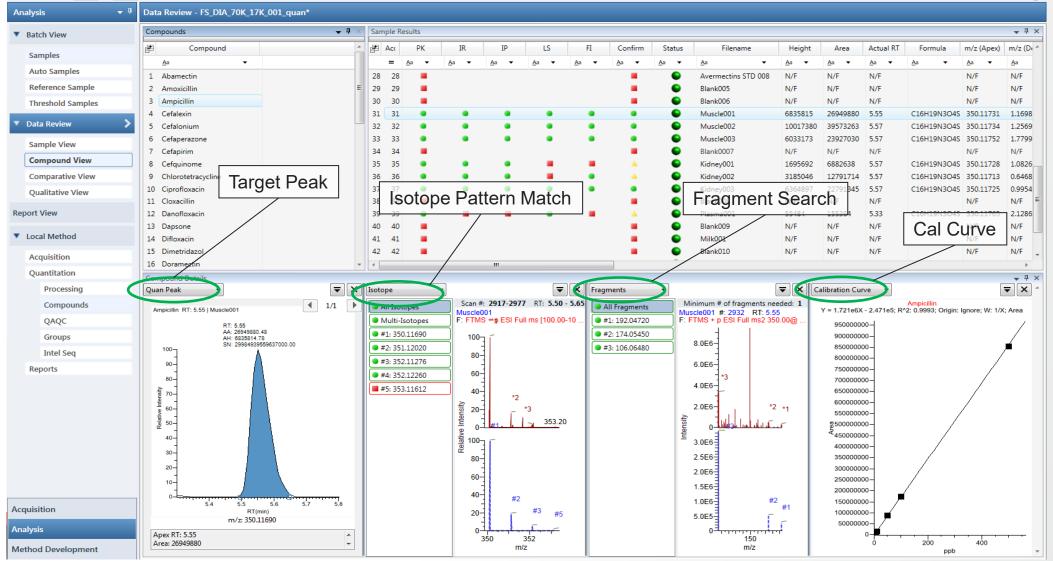


Simplified drag and drop method editor and templates

	Exp	periment # 1		Time Range (min)	3.5-23		switch 😂	CLEAR
Save as Template				Full Scan				
System Templates		Scan Range (m/z)	Orbitrap Resolution					
	1	50-550	60000					
Anti-Doping Control				Method temr	plates to en	able quick metho	d start	
Flavor and Fragrances				•		·		
Food Safety and Enviro	Contaminants El Fullscan			up across popular applications including				
			\rightarrow	 Food safety contaminants 				
Impurity Testing	Inknow	n Confirmation PCI F	uliscan		•			
Metabolomics V	nknown	Identification PCI d	dmsms	 Persisten 	t organic po	ollutants		
				Anti-dopir	าต			
PCI Data Dependent MSM9				•	0			
POPs >				 Flavor an 	d fragrance	S		
				• Impurity to	estina			
Custom Templates				inpunty t	coung			
My Experiments								

Thermo Fi

Instrument editor Orbitrap Exploris options



Thermo Fisher

SCIENTIFIC

Ampicillin @ 10 ppb in pig muscle

🗋 💕 🛃 🎯 📘 🖶 He 1 🚔 Hu He NR 🖶 🚯 🐇 👫 🕅 🕂

ThermoFisher

SCIENTIELC

What is myLibrary Enterprise platform?

 myLibrary Enterprise is the one of its kind platform that enables a company to collaboratively create spectral libraries of proprietary data for use within their own organization in a secure fashion.

 myLibrary Enterprise platform is SaaS solution hosted on Amazon Web Services (AWS) cloud within the Thermo ScientificTM ArdiaTM platform that will be individually created and dedicated to each customer.

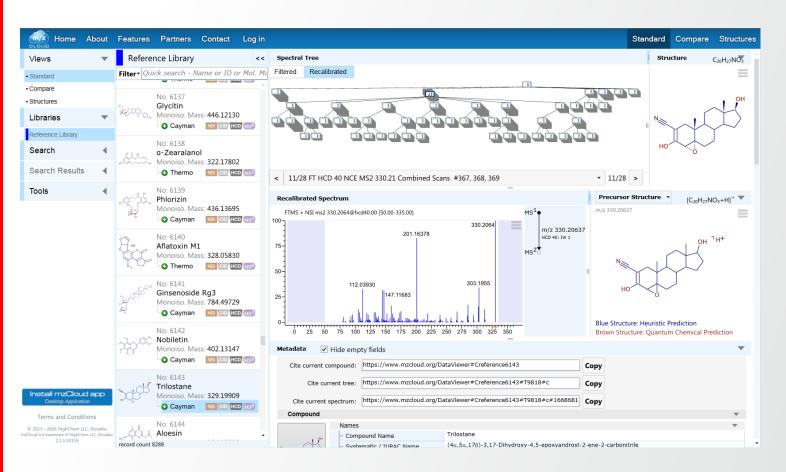
• Built to be fast, scalable, and secure.

myLibrary Enterprise was inspired by mzCloud

Thermo Scientific[™] m/z Cloud[™] Library

https://mzcloud.org

CLOUD Libraries		Spectral	Librari	≗ ^{m.ulasze} es - LC/MS Ref€
		ID	Legacy ID	Compound Name
Spectral Libraries		*	+ T	
LC/MS Reference	+	8,159	8,116	6-Deoxy-β-D-galactopyrano
Q Library Search	+	8,218	8,258	6-Deoxyhexopyranosyl-(1->
	+	6,132	6,194	Vancomycin
	+	7,296	7,230	Bacitracin A
	+	8,160	8,115	6-Deoxy-α-L-mannopyranos
	+	8,127	8,199	Methyl (3Z)-3-ethylidene-4
	+	8,157	8,118	3-O-[(2S,3R,4R)-3,4-Dihydr
	+	8,163	8,112	β-D-Glucopyranosyl-(1->3)
	+	5,883	5,843	Amphomycin


https://YourCompanyName.mylibrary.thermofisher.com

M myLibrary Data	9	Spectra	al Libraries - P	FAS
Compounds		ID	Compound Name ↓	Classes
📲 Files		\$		
Processing	+	14	11Cl-PF3OUdS	PFAS
单 Tree Builder	+	20	4:2 FTS	PFAS
네 Spectral Trees	+	17	PF4OPeA	PFAS
👜 Curation Workflow	+ vs	48	M2-6:2 FTS	PFAS
	+	30	PFBA	PFAS
Libraries	+	47	M2-4:2 FTS	PFAS
👶 Manage Libraries	+	44	M4PFHpA	(PFAS)
Spectral Libraries	+	51	M3PFHxS	PFAS
Q Library Search	+	53	M6PFDA	PFAS
Settings	+	27	PFDA	PFAS
Settings	+	33	L-PFDS	PFAS
🗐 Metadata Schema	+	10	PFTrDA	PFAS

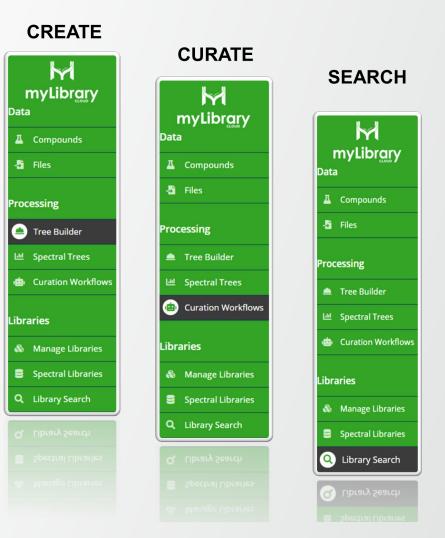
Thermo Fisher SCIENTIFIC

What is mzCloud Library?

- Worlds largest HRAM LC-MS
 reference spectral library
- Constantly growing with new data
- HRAM MS/MS and MSⁿ
- High quality curated data
- Wide chemical diversity
- Searchable web User Interface
- Online at mzCloud.org
- Integrated into Thermo Fisher Scientific software

cloud based spectral library building platform

Secure access and storage


- Secure storage in cloud instance.
- Control user access and role
 - Administrator
 - ✓ Manager
 - ✓ Creator
 - ✓ Viewer
- Single tenant utilizing Customer's own IdP.
- Accessible via major web browsers

cloud based spectral library building platform

- Define compounds
 - Supports both reference as well as "putative" compounds without structure.
- Upload MS data
 - Thermo .RAW or any other vendor through .mzML format
 - NIST MSP, mzVault or Mass Frontier libraries
- Create and Curate spectral trees
 - Batch processing and professional curation procedure of spectral trees
- Build and Manage Libraries
 - Full control over what compounds are in what libraries. Create application or product specific libraries.

Thermo Fisher

cloud based spectral library building platform

Tailored library creation

- Customizable metadata and tags that capture critical information.
 - Batch/lot \checkmark
 - Matrix/ Tissue \checkmark
 - Disease
 - **Operator**/ Season \checkmark
- Flexibly define libraries for specific needs.

M myLibrary	🚓 Manage Libraries						
Data	Name	Owner	Assigned to	Library Type	No. Records	Sync. Status	
Compounds	Pesticides	Bill	All	Reference Manual	466		
Processing	Illicit Drugs	Anna	QC Team	Reference Manual	235		
📥 Tree Builder	Flavanols	Anna	R&D Team	Reference Manual	333		
Spectral Trees Curation Workflows	Plasma Metabolites	Rob	Clinics Team	Putative Manual	74		
Libraries	Pathogen Response	Bill	R&D Team	Putative Manual	24		
Manage LibrariesSpectral Libraries	Unknown Urine	Rob	Clinics Team	Putative Manual	35		

-		

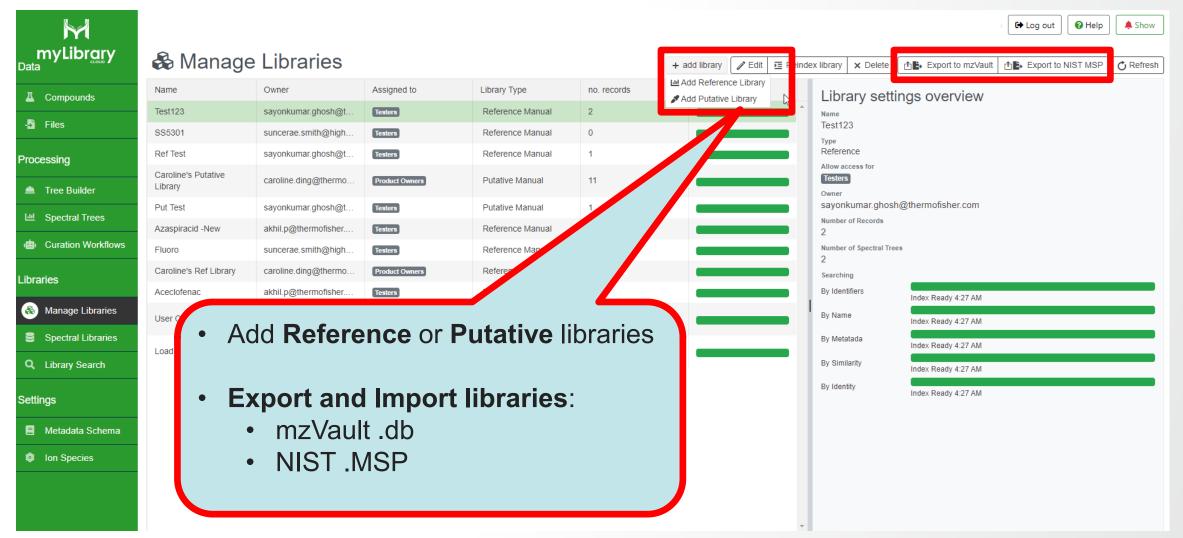
cloud based spectral library building platform

°00°₽

Automated Curation Pipeline

M myLibrary	+ c	\\/		
Data 🏾 🐨 🖌	😬 Curation	WORKTIOWS	+ Create	Clone 🔀 Refresh 🔋 Delete 🗿 Resume 🗿 Pause
L Compounds	Name	Type (Source template)	Trees	Status
-5 Files	PFAS_Caroline02_lite	liteCuration	434	Workflow finished. 7:32 PM
Processing	PFAS_Caroline04_lite	liteCuration	247	Workflow finished. 11:54 PM
🔺 Tree Builder	TS01_lite	liteCuration	5	Workflow finished. 9:05 PM
네 Spectral Trees	marynka_test_lite	liteCuration	2	Workflow finished. 12:17 PM
Curation Workflows	Marynka_Full	fullCuration	6	Workflow finished. 4:59 PM
Libraries	Bhenic acid_full	fullCuration	1	Workflow finished. 12:35 PM
👶 Manage Libraries	Default_Full_Curation	fullCuration	7	Workflow finished. 7:06 PM
Spectral Libraries	ASMS_Unused	fullCuration	0	Workflow finished. 7:44 PM
Q Library Search	Eric_lite	liteCuration	2	Workflow finished 5:45 PM

Workflow type


Lite Curation

- Remove Empty Spectra
- Average Spectra
- Select Significant Spectra

Advanced Curation

- Lite Curation Steps
- Structure Fragmentation
- Fragment Structure Annotation
- Spectra Recalibration

cloud based spectral library building platform

Sample preparation

Based on USFDA Method C-010.01

Step	Action			
1	Weigh 5g ground pork sample into a 50 mL polypropylene (PP) centrifuge tube			
2	Add isotopically labeled PFAS compounds (500 ppt)			
3	Add 5mL UHPLC-MS Ultra Pure Water (P/N W8-1) to the 50 mL PP conical centrifuge tube			
4	Add 10 mL acetonitrile (Ultra Pure grade P/N A956-1) to the centrifuge tube			
5	Add 150 µL Formic Acid, 99% Ultra-Pure LCMS Grade			
6	Vortex for 2 minutes, then add a QuEChERS salt packet (Thermo Fisher Product #60105-210 with 6000 mg MgSO4 and 1500 mg C2H3NaO2)			
7	Place on benchtop shaker at 1500 rpm with pulse set to 70 for 5 minutes			
8	Centrifuge for 5 minutes at 10000 rcf			
9	Add 6 mL supernatant to 15 mL PP conical centrifuge tube with dSPE sorbent (Thermo Scientific #60105-205 900 mg MgSO4, 300 mg PSA, 150 mg graphitized carbon black)			
10	Vortex/shake for 2 minutes; Centrifuge 5 min at 10000 rfc			
11	Transfer 300 μL to a PFAS free polypropylene vial with cap and septa (Thermo Scientific #C4015-100)			
12	Add 50 μ L Ultra Pure Water, vortex, and place in A/S ready for injection			

- Additional SPE clean-up step with a polymeric weak-anion exchange column was not required (recommended in FDA method)
- A contamination study was performed on combinations of reagents, containers, and solvents used in the study.

Thermo

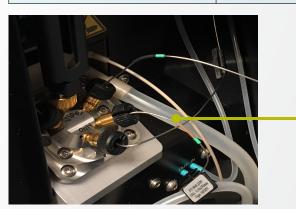
DSPE rgts+ MeCN+H2O+FA	MeCN+H2O+FA+tube	MeCN+H2O+FA +tube		
DSPE Tube+Reagents	ExtSolventBlank	ExtSolventBlank	MeCN (pure)	Water (pure)

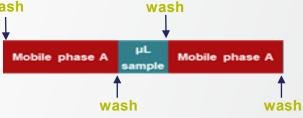
PFBA and PFOA were detected above 5 ppt. PFBA was present in all solvent blanks and reagents; PFOA was present primarily in the dSPE cleanup tube with

reagents.

LC Setup for sandwich injection on Thermo Scientific[™] Vanquish[™] Flex UHPLC System

Custom Injection Program


- Sample loop: 100 µL
- Sandwich injection
- In needle mixing

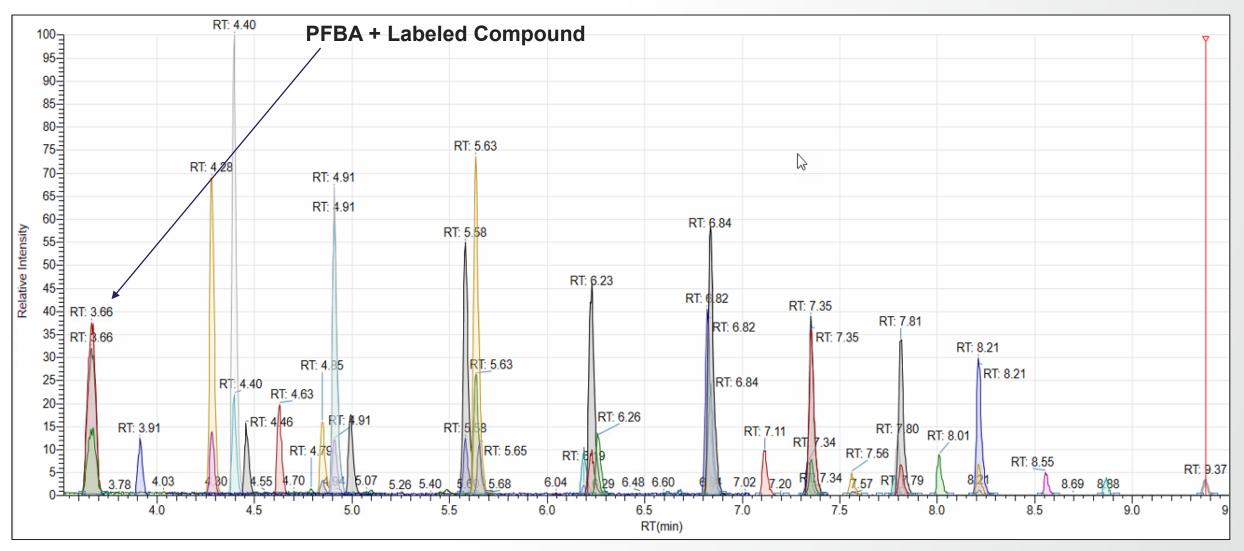

•

.

Polypropylene A/S vials

-		
f		

Inj. Volume	15 μL sample with 2 plugs 30 μL MF A
Col Temp. and Flowrate	40 C; 400 uL/min
Analytical Column	Thermo Scientific™ Accucore™ C18, 100 x 2.1 mm, 2.6 µm
Trap Column	Thermo Scientific™ Hypersil Gold™ C18, 50 x 4.6 mm, 1.9 µm
Run Time	19 minutes
Mobile Phase A	5mM Ammonium Acetate in H2O
Mobile Phase B	Methanol

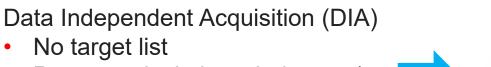

- Sampler valve to column
- Viper capillary 0.18 mm ID x 350 mm

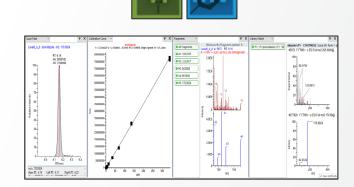
Thermo Fisher

SCIENTIFLO

Optimized peak shapes

Extracted full scan precursor ions of calibration standard 100 ppt


Orbitrap Exploris 120 MS settings and workflow


Spray voltage	1.0 kV
Sheath gas	35 arb
Aux gas	5 arb
Sweep gas	1 arb
Capillary temp.	220 °C
Vaporizer temp.	450 °C
lon polarity	Negative

Full scan range	100-1000 m/z
Full scan resolution	60,000
MS2 resolution	15,000
HCD collision energy:	Stepped 10,50
RF Lens	50
DIA m/z windows	5 @ 200 m/z

Screening and Quantitation

- Precursor isolation windows w/ stepped NCE
- MS2 triggered across entire peak

Fragment Match and Library Search

Reporting

Thermo Fisher

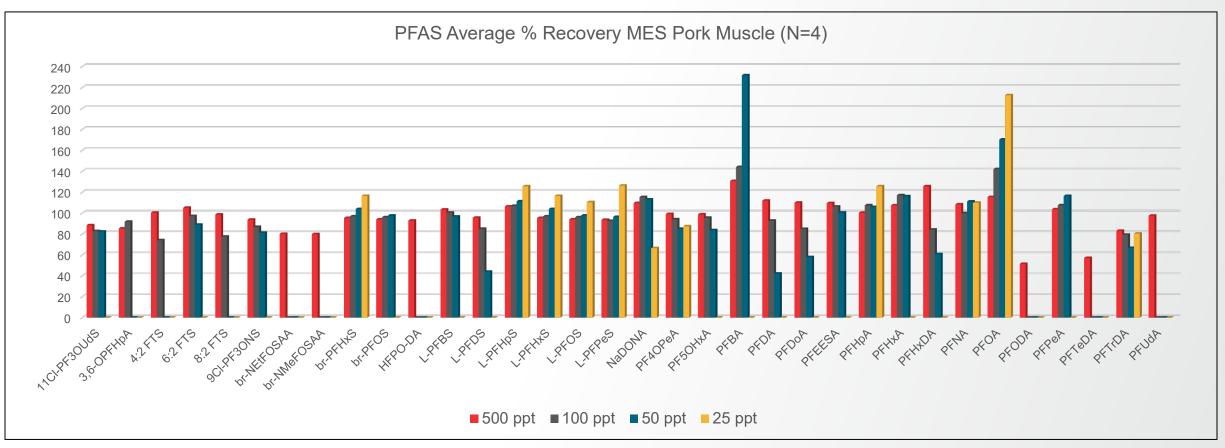
Calibration

Prepared in Solvent with Isotopically Labeled Standards

- 34 Target PFAS Compounds + 23 labeled analytes
- Cal Range for most analytes: 5- 5000 ppt (in-vial concentration)
- Standards prepared in neat solvent matching the initial QuEChERS extraction solvent composition (70:30 MeCN:H2O + 1% Formic Acid).
- Branched and linear isomers of PFOS and PFHxS were summed together.
- Some labeled compounds were not available for certain targets during the development of the method. In those cases, either an external standard calculation method was used, or another labeled compound was used
- r2 range: 0.9516 to 0.9993, with Calibration Average % RSDs < 7 % for all compounds

Recovery experiments

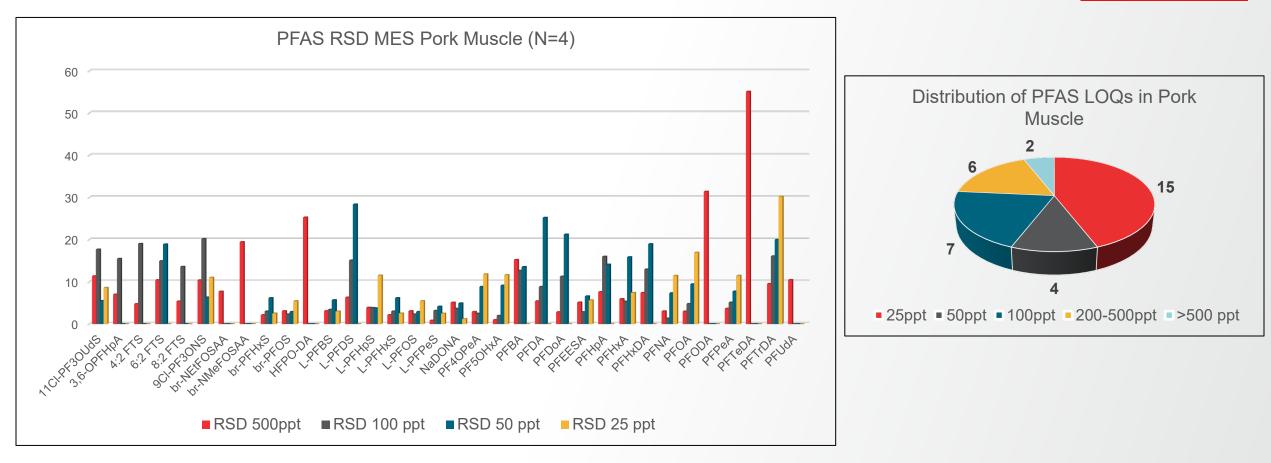
Pork Muscle Meat


- Biological replicates (N = 4) of ground pork meat samples were spiked with PFAS labeled compounds along with native analytes and taken through the entire extraction and cleanup process (Matrix Extracted Spikes-MES).
- The labeled analytes were spiked at 500 ppt, and the replicates (N=4 at each concentration) had native PFAS levels of 25, 50, 100, and 500 pg/g).

Spike Concentration, pg/g	Final Extract Concentration (ppt)
25	8.3
50	16.7
100	33.3
500	167

Quan						
031	4_MES_Pork_2	5ppt_R1 Pl	FHxA m/z	312.9728		
Allerity	4_MES_Pork_2! 7.5E4 7.0E4 6.5E4 6.5E4 5.5E4 5.5E4 4.5E4 4.5E4 4.5E4 3.5E4 3.5E4	5ppL_R1 Pi	FH×A m/z	312.9728 RT 4 90 AA: 142741 AH: 79168		
	2.5E4 2.0E4 1.5E4					
	1.0E4 5.0E3					
	4	7	4.8	4.9 RT(min)	5.0	

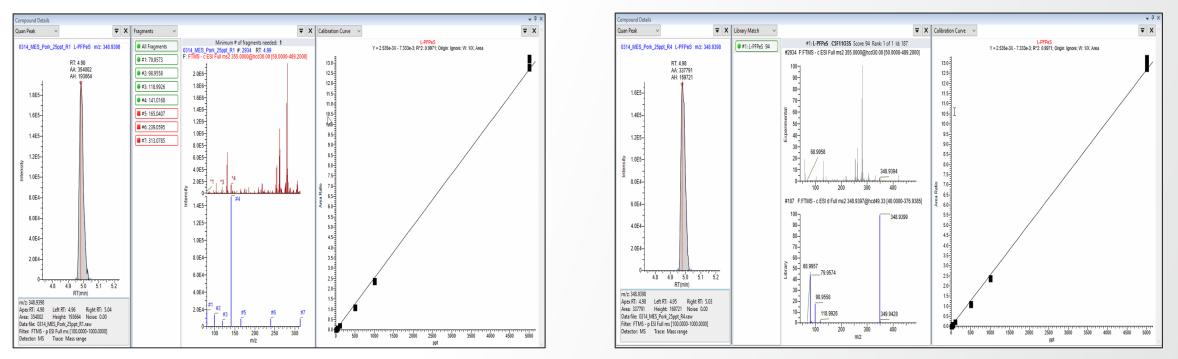
Extracted ion chromatogram for PFHxA 25 ppt MES


Recovery experiments

- Most recoveries between 80-120%
- PFOA and PFDA had high biased recoveries due to reagent contamination
- Some analytes exhibited poor recovery especially at 25 and 50 ppt, could be due to absorption on GCB for the longer chain PFAS

Proprietary & Confidential | frans.schoutsen@thermofisher.com | 7-September-2022

% RSD and estimated LOQs in pork meat


- Most % RSDs are below 20%
- Higher RSDs (>30%) for PFTeDA and PFODA- also exhibited poor recovery
- Most LOQs observed to be </= 100ppt

Identification and library search

 A detected and confirmed analyte is defined as the native PFAS precursor ion detected at <5 ppm mass accuracy with S/N ≥ 3, AND at least one MS2 fragment detected at < 5 ppm.

Thermo Fishei

 A spectral library search result also adds confidence in the confirmation process, using the spectral library created in myLibrary Enterprise and exported to mzVault for use in Thermo Scientific[™] TraceFinder[™] software.

The left plot shows the fragment ions match for L-PFPeS at 25 ppt in the pork meat MES. The plot ion the right is a library

search result vs. the user created mzVault spectral library for the same spike level.

31 Proprietary & Confidential | frans.schoutsen@thermofisher.com | 7-September-2022

Conclusions

- The Vanquish Flex UHPLC system and using solvent sandwich injection technique coupled to the Orbitrap Exploris 120 Mass Spectrometer provided excellent quantitative sensitivity with qualitative confirmation in FS-DIA mode, with most PFAS LOQs in pork meat matrix less than 50 pg/g (16.7 ppt in final extract), without the need for further extract concentration.
- myLibrary Enterprise allows users to easily create highly curated spectral libraries for added confidence in confirmation- and the ability to expand screening and share libraires across organizations.
- The method was shown to be fit-for-purpose and may be explored for future expansion into other food matrices. Further work at USFDA is on-going to improve method performance and expand the scope
- Orbitrap HRAM will always have a clear value proposition in the lab as more complex matrices are being addressed for PFAS analysis (i.e. cosmetics, food contact materials, tissues, plasma, etc.), as well as ability to look for non-targeted PFAS in retrospective analysis

Tell us how we did

Your feedback is important to us!

Together with your pad you will find a survey form. Share your comments about today's event, this will help us to improve in the future.

Return your survey at the exit and **you will receive an apron** as a thank you gift.

ther		Event Name			Margor	Event Leader (Full Name)				_
scier	ntífic	E.22CMD.	EL137.0903			FY22 EL RAFA - TEA and IOMS vendor session	n - 8 Sep	ptembe	r	
00101	luno	Campaign Tr	acking Cod	e (Campaign Elemer	nt ID) Semina	r Name (If applicable)				
Customer C	ontact Info	mation -	Pleas	e provide	complete cont	act information				
alutation		Mrs ⊐Miss	oMs o	Prof	Date					
rst Name					Last Name					
b Title					Company					
idress ty					Address2 State/Province					
stal Code					Country					
lone					eMail					
About Toda	y's Event –	Tell us ho	w we	did						
low did vou lea	rn about this e	vent?								
	□ Website □		My Loca	al Salesperson	Other					
lease rate you	r overall satisfa	ction with ea	ich of th	e following:	Please evaluate t	he items below pertaining to t	his e	vent	:	
		Very Low		Very High		Very L	w		Verv	High
leating Content					Time given to topics	was sufficient				
								-	_	-
leeting Instructor(s)				Content matched up	to my expectations				
earning Environm	ent				Content was relevant	t to my work				
verall Meeting Ex	perience				Content was useful a	and applicable in my laboratory				
-				□ Yes □	No					
What did you lik	ke most about t	his event?		□Yes □	No					
What did you lik	ke most about t	his event?		□ Yes □	No					
What did you lik	ke most about t	his event?		Ves D	No					
What did you lik What would you	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
What did you lik What would you	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
What did you lik What would you	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
Vhat did you lik Vhat would you	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
What did you lik What would you	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
What did you lik What would you	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
What did you lik What would you	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
What did you lik What would you	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
What did you lik What would you	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
Would you reco What did you lik What would you What other topi	ie most about ti 1 change to mai	his event? ke it better?	ague?		No					
What did you lik	te most about ti u change to mai	his event? (e it better? ke to see pre	sented?	?						
Vhat did you lik Vhat would you Vhat other topi	te most about ti u change to mai	his event? (e it better? ke to see pre	sented?	?	No	e to receive				

Thank you

Proprietary & Confidential | frans.schoutsen@thermofisher.com | 7-September-2022