

Poster Reprint

ASMS 2023 Poster number MP 216

Automated sample preparation using CTC PAL3 to analyze >570 pesticides in an orange by the combination of GC/MS/MS and LC/MS/MS techniques

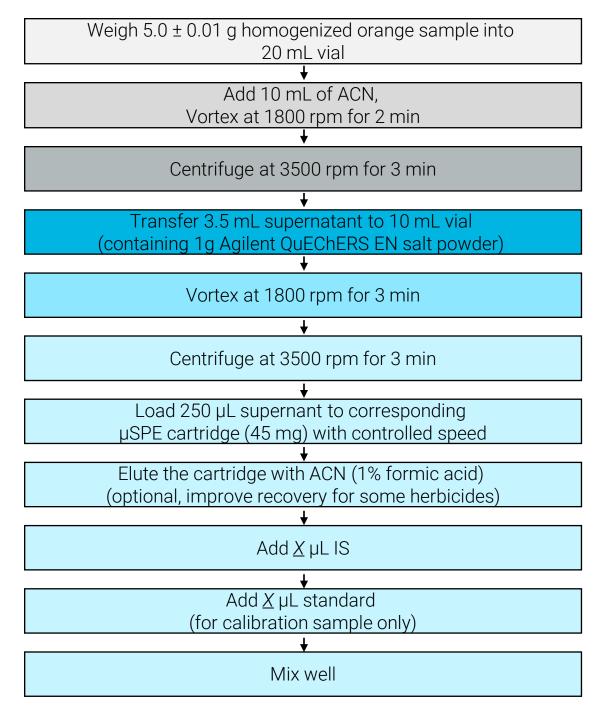
<u>Zhiming, Zhang;</u> Ge, Meng; Zhicong, Wang; Jianguo, Ji; Chunxiao, Wang, Lorna De-Leoz

Agilent Technologies, Inc., Shanghai, P.R. China

Introduction

Automated sample preparation can not only increase testing efficiency, but also reduces dependency on inperson activity. For example many lab chemists had to stay at home due to COVID-19 pandemic, resulting in a lot of sample testing been delayed due to the shortage of chemist availability. Compared with manual work, an automated workflow, especially coupled online to mass spectrometry, is less manpower reliant and a best choice to tackle this kind of situation.

The manual sample preparation process for QuEChERS includes solvent extraction, salting and cleaning, with multitime of shaking/vortex and centrifugation. This process avoids dependency on chemist time and increases the precision of the results due to reducing human error.


An automated workflow was developed to analyze multiclass pesticides in orange with the combination of GC/MS/MS and LC/MS/MS techniques. Sample preparation was automatically done with CTC PAL3 on the basis of OuEChERS, which ensured consistent and high guality results. Worth mention, using scripts, the sample preparation was done in overlapped mode, avoiding additional sample prep overhead time.

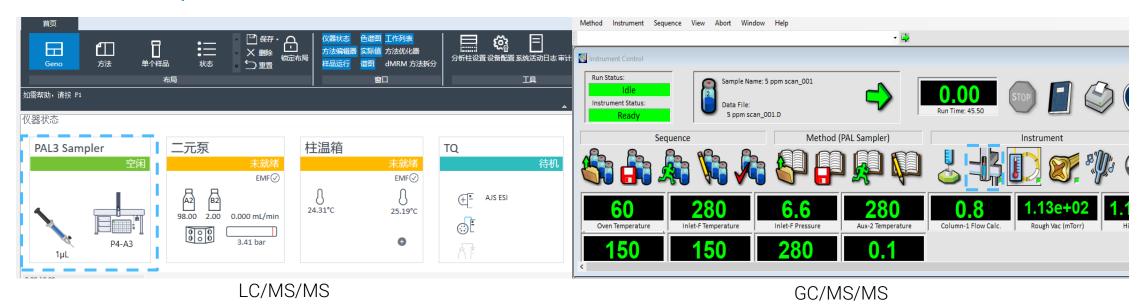
Validations were done at three different spiking levels (10µg/Kg, 20µg/Kg, 50µg/Kg) with 5 replicates for each level. The validation results for automatic sample preparation and manual sample preparation were summarized and compared.

Experimental

Automatic sample Prep.

Partial parameters of PAL3 auto sample prep.

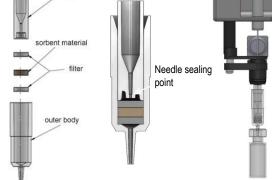
○ Conditioning			⊙ Internal Standard		
Conditioning Solvent Source	none		Internal Standard Source	none 💌	
Conditioning Solvent Index	2		Internal Standard Index	54	
Conditioning Solvent Volume	100	μι	Internal Standard Volume	7.7	μ
Conditioning Solvent Fill Speed	10	µL/s	Internal Standard Fill Speed	1	µL/s
Sample µSPE			Solvent Addition		
uSPE Sample Load Volume	257	μL	Solvent Source	none 🔻	
			Solvent Index	1	
µSPE Sample Fill Speed	5	µL/s	Solvent Volume	16.45	μL
			Solvent Fill Speed	5	µL/s
Elution Solvent Source	none		 Target Standard 		
Elution Solvent Index	2		Target Standard Source	none 💌	
Elution Volume	100	μL	Target Standard Index	52	
Elution Solvent Fill Speed	5	µL/s	Target Standard Volume	3.85	μΕ
 Protectants 			Target Standard Fill Speed	1	µL/s
Protectant Source	none		⊘ Mixing		
Protectant Index	3		Mix Cycles	5	
Protectant Volume	0	μι	Mix Volume	500	μL
Protectant Fill Speed	5	µL/s	○ Injection		

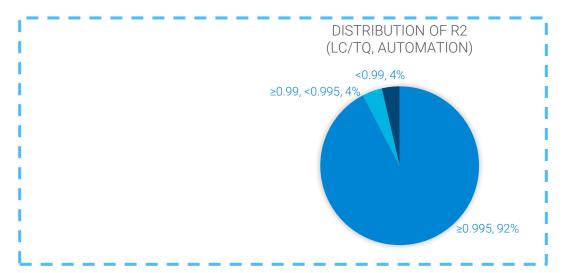

Conditioning			Internal Standard			
Conditioning Solvent Source	none		Internal Standard Source	none	•	
Conditioning Solvent Index	2		Internal Standard Index		54	
Conditioning Solvent Volume	100	μL	Internal Standard Volume		7.7	μΕ
Conditioning Solvent Fill Speed	10	µL/s	Internal Standard Fill Speed		1	µL/s
Sample µSPE			Solvent Addition			
µSPE Sample Load Volume	257	μί	Solvent Source	none	•	
			Solvent Index		1	
µSPE Sample Fill Speed	5	µL/s	Solvent Volume		16.45	μL
 Elution 			Solvent Fill Speed		5	µL/s
Elution Solvent Source	none					
Elution Solvent Index	2		Target Standard Source	none	*	
Elution Volume	100	μL	Target Standard Index		52	
Elution Solvent Fill Speed	5	µL/s	Target Standard Volume		3.85	μL
Protectants			Target Standard Fill Speed		1	µL/s
Protectant Source	none		⊘ Mixing			
Protectant Index	3		Mix Cycles		5	
Protectant Volume	0	μι	Mix Volume		500	μL
Protectant Fill Speed	5	µL/s	 Injection 			

1290Infinity II LC + 6470

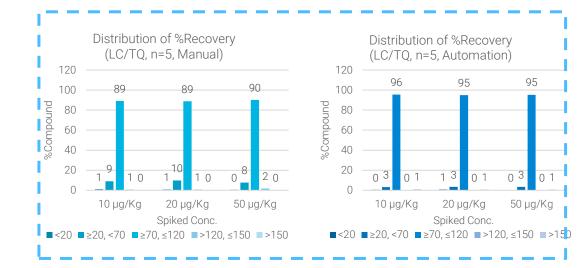
Figure 1. Instruments used in the experiment

Experimental

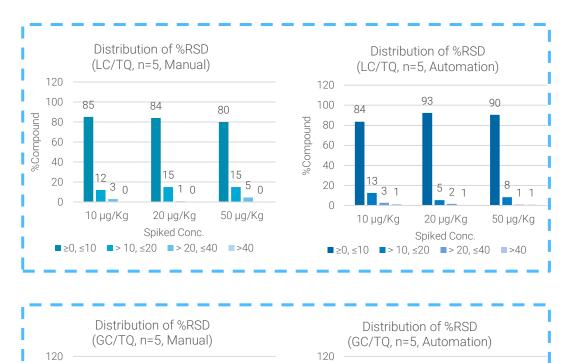

Instrument control panel

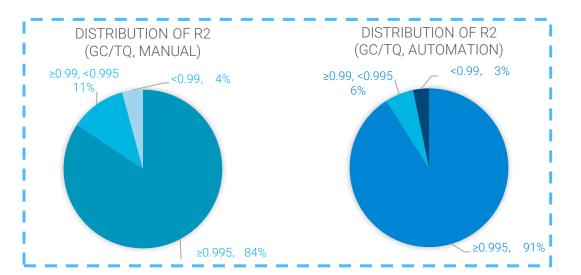

Picture: liquid tools

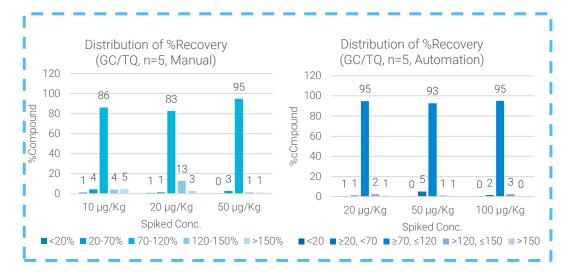
Picture: centrifuge


Picture: vortex

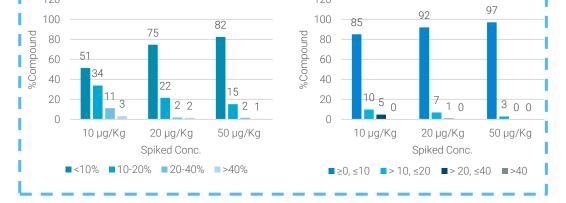
Picture: Design of μ SPE


Linearity (manual vs. automation)




Accuracy (manual vs. automation)

Accuracy (manual vs. automation)


Conclusions

Full automation, high efficiency, low cost

This is the first time to develop a whole automatic sample preparation workflow for analyzing > 570 pesticides in orange by the combination of GC/MS/MS and LC/MS/MS techniques.

In general, automatic workflow has better performance than manual workflow by comparison of linearity, accuracy and repeatability of validation results done by manual and automated sample preparation.

References

GB2763-2021: National food safety standard- Maximum residue limits for pesticides in food.

GB23200.121-2021: National food safety standard- Determination of 331 pesticides and metabolites residues in foods of plant origin-LC/MS/MS

GB23200.121-2018: National food safety standard- Determination of 208 pesticides and metabolites residues in foods of plant origin-GC/MS/MS

https://www.agilent.com/en/promotions/asms

This information is subject to change without notice.

DE71854168 © Agilent Technologies, Inc. 2023 Published in USA, May 31,2023

