

Thermo Fisher SCIENTIFIC

Overcoming Analytical Challenges in PBDEs Quantification in Environmental Samples using GC-Orbitrap MS

Jane Cooper¹, Jordi Parera², Esteban Abad², Richard Law¹, and Cristian Cojocariu¹

¹ Thermo Fisher Scientific, Runcorn, UK

² Laboratory of Dioxins, Dept. of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC)

PP10657

The world leader in serving science

Synopsis

Introduction Background Current analytical methods Challenges of PBDE analysis

Objectives

Technology and Configurations

Experimental

Software

Standards

Samples Sample preparation

Results Chromatography Sensitivity, selectivity, and linearity Instrument Detection Limit (IDL) Mass Accuracy / repeatability Samples analysis

Conclusions / Acknowledgments

Thermo Fisher SCIENTIFIC

Introduction

Polybrominated diphenyl ethers (PBDEs):A group of organobromine chemicals

Many PBDEs are toxic:

with links to cancer and endocrine disruption


```
where m + n = 1 to 10
```

- Certain PBDEs (including penta, tetra and deca BDE) have been prohibited in many countries
 - listed in the Stockholm Convention inventory of persistent organic pollutants

Protecting human health and the environment from persistent organic pollutants

Thermo Fisher

- Inhibit or suppress combustion in organic material
 - Used as flame retardants in a wide range of commercial and household products:
 - textiles, building materials, electronics, furnishings, motor vehicles, and plastics

- Persistent Organic Pollutants (POPs)
- Resist degradation, persist and bioaccumulate in both the environment and food chains
 - Can be transported through air and water over long distances
 - They have been identified, in some cases far from their place of use, in a wide range of samples including air, water, sediment, fish, birds, marine mammals, and humans

- Current Routine Analytical Methods:
 - Gas Chromatography (GC)
 - electron capture detector (ECD)
 - -mass spectrometer (MS) EI/CI
- Challenges:

7

 Compound degradation – BDE-209

- Matrix interferences
 - -chromatographic separation of BDE-49 and BDE-71
- Long run times

Aims of the study

 To evaluate quantitative performance of the Thermo Scientific[™] Exactive[™] GC Orbitrap[™] GC-MS mass spectrometer for the routine analysis of PBDEs in environmental samples

 To assess the performance of Thermo Scientific[™] TG-PBDE[™] 15 m capillary column (15 m x 0.25 mm I.D. x 0.10 µm film) for this application

Thermo Fisher

Aims of the study

Answer the following questions:

- Can compound degradation be minimized?
 BDE-209
- Do matrix interferences effect chromatographic separation?
 BDE-49 and BDE-71
- What sensitivity / selectivity and linearity can be achieved?
- What is the Instrument Detection Limit (IDL)?
- What is the repeatability/mass accuracy?

Are the demands of routine sample analysis achieved?

Technology and Configurations

Exactive GC Orbitrap GC-MS system

Orbitrap mass analyzer

Incredible HRAM performance

Highly regarded Q Exactive GC system platform

Thermo Scientific[™] TRACE[™] 1310 GC System

Unique modular injector and detector design

Rapid heat cycling

Thermo Scientific[™] Exactive[™] GC Orbitrap[™] GC-MS system

Thermo Scientific[™] ExtractaBrite[™] Ion Source technology

Routine grade robustness

Patented RF lens

Participation of the second se

Removable without breaking vacuum

Exactive GC Orbitrap GC-MS system

V-Lock Source Plug

- Allows vent free GC column exchange
- No complicated fluidics / extra connections
- **NeverVent™Technology**

Vacuum Probe Interlock (VPI)

Thermo Scientific[™] Exactive[™] GC Orbitrap[™] GC-MS system

Tuning and Calibration

- Simple status
- Automated leak checking
- Automated tuning & calibration
- Source and lens tuning ~25 s
- Mass calibration ~30 s
- Ready to go < 1 min

ExtractaBrite

- Vent free ion source exchange
- Operate with spare source and clean offline
- Switch from El to Cl and back without venting

GC and injector conditions

Injection Volume (µL):	1.0	
Liner	PTV baffled liner (Siltek) (P/N: 453T2120)	
Inlet (°C):	40	
Carrier Gas, (mL/min):	Не, 1.5	
Inlet Module and Mode:	PTV, Large Volume mode	
Column:	Thermo Scientific™ TG-PBDE™ 15 m x 0.25 mm I.D. x 0.10 μm film capillary column (P/N 26061-0350)	
Transfer delay (min):	0.2	
Injection time (min):	0.1	TRACE 1310

GC and injector conditions

PTV Parameters:	Rate (°C/sec)	Temperature (ºC)	Time (min)	Flow(mL/min)
Injection		40	0.10	-
Transfer	2.5	330	5.00	
Cleaning	14.5	330	5.00	50

Oven Temperature		RT(min)	Rate (°C/min)	Target	Hold Time
Program:				Temperature (°C)	(min)
	Initial	0	-	100	2.00
	Final	2.00	30	340	3.00
BI	ın Time	13	_	_	

TRACE 1310

thermo scientific

MS conditions

Exactive GC Mass Spectrometer Parameters				
Transfer line (°C):	300			
Ionization type:	EI			
lon source(°C):	250			
Electron energy (eV)	35			
Acquisition Modes:	Targeted SIM / full scan			
Mass range (Da):	68 - 1000			
Mass resolution (FWHM):	60,000 (FWHM at <i>m/z</i> 200)			

MS conditions

Mass (<i>m/z</i>)	Start time (min)	End time (min)	BDE number
260.02339	4.00	4.50	3L, 3
327.89164	4.50	5.60	7, 15
339.93186	4.50	5.60	15L
405.80214	5.60	6.60	17, 28
417.84237	5.60	6.60	28L
485.71063	6.60	7.30	47, 49, 66, 71, 77
497.75084	6.60	7.30	47L, 79L
563.62113	7.30	8.00	85, 99, 100, 119, 126
575.66135	7.30	8.00	99L, 100L, 126L
483.69498	7.80	8.62	138, 153, 154, 156
495.73518	7.80	8.62	153L, 154L, 138L
561.60525	8.58	9.20	183. 184, 191
573.64569	8.58	9.20	183L
641.51390	9.20	9.70	196, 197
653.55416	9.20	9.70	197L
719.42446	9.70	10.40	206, 207
731.46467	9.70	10.40	207L, 206L
799.30000	10.40	12.50	209
811.30000	10.40	12.50	209L

Isolation window = 25.0 m/z

Software

Thermo Scientific[™] Chromeleon[™] 7.2 Chromatography Data System (CDS) software was used for instrument control, data acquisition, processing and reporting

<u>Chromeleon 7.2</u>

Standards

BDE	Native BDEs	Chemical formula	CAS number	Calibration
number			er to Humber	range ng/mL
3	4-Bromodiphenyl ether	C ₁₂ H ₉ BrO	101-55-3	1.0 to 400
7	2,4-Dibromodiphenyl ether	C ₁₂ H ₈ Br ₂ O	171977-44-9	1.0 to 400
15	4,4'-Dibromodiphenyl ether	C ₁₂ H ₈ Br ₂ O	2050-47-7	1.0 to 400
17	2,2',4-Tribromodiphenyl ether	C ₁₂ H ₇ Br ₃ O	147217-75-2	0.96 to 384
28	2,4,4'-Tribromodiphenyl ether	C ₁₂ H ₇ Br ₃ O	41318-75-6	1.0 to 400
47	2,2',4,4'-Tetrabromodiphenyl ether	C ₁₂ H ₆ Br ₄ O	5436-43-1	1.0 to 400
49	2,2',4,5'-Tetrabromodiphenyl ether	C ₁₂ H ₆ Br ₄ O	243982-82-3	1.0 to 400
66	2,3',4,4'-Tetrabromodiphenyl ether	C ₁₂ H ₆ Br ₄ O	189084-61-5	1.0 to 400
71	2,3',4',6-Tetrabromodiphenyl ether	C ₁₂ H ₆ Br ₄ O	189084-62-6	1.0 to 400
77	3,3',4,4'-Tetrabromodiphenyl ether	C ₁₂ H ₆ Br ₄ O	93703-48-1	1.0 to 400
85	2,2',3,4,4'-Pentabromodiphenyl ether	$C_{12}H_5Br_5O$	182346-21-0	1.0 to 400
99	2,2',4,4',5-Pentabromodiphenyl ether	C ₁₂ H ₅ Br ₅ O	32534-81-9	1.0 to 400
100	2,2',4,4',6-Pentabromodiphenyl ether	$C_{12}H_5Br_5O$	189084-64-8	1.0 to 400
119	2,3',4,4',6-Pentabromodiphenyl ether	$C_{12}H_5Br_5O$	189084-66-0	1.0 to 400
126	3,3',4,4',5-Pentabromodiphenyl ether	C ₁₂ H ₅ Br ₅ O	366791-32-4	1.0 to 400
138	2,2',3,4,4',5-Hexabromodiphenyl ether	C ₁₂ H ₄ Br ₆ O	446254-95-1	2.0 to 800
153	2,2',4,4',5,5'-Hexabromodiphenyl ether	C ₁₂ H ₄ Br ₆ O	68631-49-2	2.0 to 800
154	2,2',4,4',5,6'-Hexabromodiphenyl ether	$C_{12}H_4Br_6O$	207122-15-4	2.0 to 800
156	2,3,3',4,4',5-Hexabromodiphenyl ether	C ₁₂ H ₄ Br ₆ O	405237-85-6	2.0 to 800
183	2,2',3,4,4',5',6-Heptabromodiphenyl ether	C ₁₂ H ₃ Br ₇ O	207122-16-5	2.0 to 800
184	2,2',3,4,4',6,6'-Heptabromodiphenyl ether	C ₁₂ H ₃ Br ₇ O	117948-63-7	2.0 to 800
191	2,3,3',4,4',5',6-Heptabromodiphenyl ether	C ₁₂ H ₃ Br ₇ O	446255-30-7	2.0 to 800
196	2,2',3,3',4,4',5,6'-Octabromodiphenyl ether	C ₁₂ H ₂ Br ₈ O	446255-39-6	2.0 to 800
197	2,2',3,3',4,4',6,6'-Octabromodiphenyl ether	C ₁₂ H ₂ Br ₈ O	117964-21-3	2.0 to 800
206	2,2',3,3',4,4',5,5',6-Nonabromodiphenyl ether	C ₁₂ HBr ₉ O	63936-56-1	5.0 to 2000
207	2,2',3,3',4,4',5,6,6'-Nonabromodiphenyl ether	C ₁₂ HBr ₉ O	437701-79-6	5.0 to 2000
209	Decabromodiphenyl ether	C ₁₂ Br ₁₀ O	1163-19-5	5.0 to 2000

Calibration standards containing 27 native PBDE congeners at five concentration levels

Standards

BDE isomer number	13C labelled PBDEs	Chemical formula	Concentration (ng/mL)
3L	4-Bromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₉ BrO	100
15L	4,4'-Dibromo[¹³ C ₁₂]diphenyl ether	$^{13}C_{12}H_8Br_2O$	100
28L	2,4,4'-Tribromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₇ Br ₃ O	100
47L	2,2',4,4'-Tetrabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₆ Br ₄ O	100
79L	3,3',4,5'-Tetrabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₆ Br ₄ O	100
99L	2,2',4,4',5-Pentabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₅ Br ₅ O	100
100L	2,2',4,4',6-Pentabromo[¹³ C ₁₂]diphenyl ether	${}^{13}C_{12}H_5Br_5O$	100
126L	3,3',4,4',5-Pentabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₅ Br ₅ O	100
138L	2,2',3,4,4',5-Hexabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₄ Br ₆ O	200
153L	2,2',4,4',5,5'-Hexabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₄ Br ₆ O	200
154L	2,2',4,4',5,6'-Hexabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₄ Br ₆ O	200
183L	2,2',3,4,4',5',6-Heptabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₃ Br ₇ O	200
197L	2,2',3,3',4,4',6,6'-Octabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ H ₂ Br ₈ O	200
206L	2,2',3,3',4,4',5,5',6-Nonabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ HBr ₉ O	500
207L	2,2',3,3',4,4',5,6,6'-Nonabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ HBr ₉ O	500
209L	Decabromo[¹³ C ₁₂]diphenyl ether	¹³ C ₁₂ Br ₁₀ O	500

16 (¹³C labelled) PBDE internal standards

• suffix "L" indicates masslabelled

Sample Preparation

Chromatography – Extracted Ion Chromatogram

Thermo Fisher

Thermo Fisher

Selectivity

BDE-28 and 17 (1 ng/mL, 1 pg on column), identified in a sludge sample at a similar level

Thermo Fisher

Linearity

Linearity

Instrument Detection Limit

Thermo Fisher

Sample analysis

- The results of this study demonstrate that using the simple set up of an Exactive GC Orbitrap GC-MS coupled with a TRACE 1310 GC system provides an excellent solution for the targeted quantification of PBDEs in complex environmental samples
 - The predominant PBDE congeners identified in analyzed samples were BDE-209, 206, 207 and 99 in sludge, BDE-209, 47 and 99 in filter dust, BDE-99, 47 and 100 in air, and BDE-15, 47 and 99 in sediment
- Using Thermo Scientific TG-PBDE 15 m capillary column, good chromatographic separation in < 11 minutes for all the PBDE congeners considered was achieved, with excellent chromatographic resolution of the critical pair (BDE-49 and BDE-71)

- Excellent linearity was demonstrated with R² >0.998 and residual values RSD% <13%, over five calibration levels
- All PBDEs were detected in the lowest calibration standard:
 - 1.0 ng/mL for mono- to penta-PBDEs, 2.0 ng/mL for hexa- to octa-PBDEs, and 5 ng/mL for nona- to deca-PBDEs.
- Instrument detection limits (IDLs) of between 6 and 250 fg on column were achieved for the PBDEs considered
- Thermo Scientific Chromeleon Chromatography Data System (CDS) software, offers an ideal solution for the targeted isotopic dilution quantification of PBDEs in environmental samples

Acknowledgements

Richard Law and Cristian Cojocariu

Thermo Fisher Scientific, Runcorn, UK

