

Low level quantification of PCDD/Fs in animal feedstuffs using the Thermo Scientific TSQ 9000 GC-MS/MS system with AEI source

Runcorn, UK

PP10604

The world leader in serving science

Introduction

- Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), commonly referred to as *dioxins*, are persistent environmental pollutants (POPs).
- Dioxins are highly toxic and can cause reproductive and developmental problems, damage the immune system, interfere with hormones and cause cancer.
- Dioxins are ubiquitous in the environment and bioaccumulate in the food chain. Main route of exposure for humans is food.
 Daily intake in industrialised countries is 1-3 pg TEQ/kg body weight, close to the tolerable intake value set by WHO
- Due to the high toxicity and bioaccumulative nature of dioxins, any national authorities have programmes in place to monitor the food supply.

- European Union (EU) has set maximum levels (MLs) in foodstuffs and feedstuffs to minimise human exposure.
- Current EU Regulation* requires official confirmatory analytical methods to give accurate confirmation and quantification of PCDD/Fs at **ppt level** in food and feed.

 \bigcirc

- To assess the performance of the Thermo ScientificTM TSQTM 9000 triple quadrupole GC-MS/MS system equipped with a new Advanced Electron Ionization (AEI) source
- To demonstrate its performances in terms of sensitivity, selectivity and robustness, and ultimately its capability to operate in a routine environment.

 Accurate confirmation and quantification of PCDD/Fs at ppt level is required in food and feed (LOQ, compliancy at 1/5th of the maximum levels (MLs))

For the calculation of LOQ, in GC-MS/MS Triple Quad instruments

 \rightarrow S/N approach is not applicable as the noise level is too small to perform a reliable signal-to-noise ratio calculation^{*}.

 \rightarrow Calibration curve approach is used instead:

"The LOQ of an individual congener may be defined as the lowest concentration point on a calibration curve that gives an **acceptable** (\leq 30 %) and **consistent** (measured at least at the start and at the end of an analytical series of samples) **deviation to the ARRF** calculated for all points on the calibration curve in each series of samples .

(The LOQ is calculated from the lowest concentration point taking into account the recovery of internal standards and sample intake)."

S/N in HRMS

* Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Feed and Food

- Accurate confirmation and quantification of PCDD/Fs at **ppt level** is required in food and feed.
 - GC-MS/MS analytical methods are allowed for confirmatory analysis, proven to show specific performances in terms of selectivity, robustness and sensitivity at the LOQ:

Experimental

• For all experiments in this study, a Thermo Scientific TSQ 9000 triple quadrupole mass spectrometer with AEI source was used.

 Sample introduction was performed using a Thermo Scientific[™] TriPlus[™] RSH autosampler, and chromatographic separation was obtained with a Thermo Scientific[™] TRACE[™] 1310 GC system.

GC and Injector conditions

TRACE 1310 GC System Parameters

Injection Volume ([]L):	2			
	Thermo Scientific [™] LinerGOLD [™] single taper w	ith wool	Ī	
Liner:	(P/N: 453A0924-UI)			
Inlet (°C):	280		-	
Carrier Gas, (mL/min):	He, 1.2		_	
Inlet Mode:	Splitless (split flow 120mL/min after 2 min)		_	
	Thermo Scientific™ TraceGOLD™ TG-Dioxin GC		_	
Column:	(60m x 0.25mm, 0.25μm) (P/N: 26066-1540)		_	
Oven Temperature Prog	ram		_	
Temperature 1 (°C):	120		_	
Hold Time (min):	0			
Temperature 2 (°C):	250			150 9000
Rate (°C/min):	25	themp sostil		- H.
Hold Time (min):	0			
Temperature 3 (°C):	285		1	
Rate (°C/min):	2.5			
Hold Time (min):	0			
Temperature 4 (°C):	320			
Rate (°C/min):	10			
Hold Time (min):	15			
Total Run Time (min):	39.7			

MS conditions

TSQ 9000 Mass Spectrometer Par	rameters			
Transfer Line (°C):	300	_		
Ionization Type:	EI – with AEI source	_		
lon Source (°C):	300	_		
Electron Energy (eV):	50	_		
Acquisition Mode:	Timed SRM with Dwell Time Prioritization (x10 – natives HIGH, labelled LOW) Detector gain factor x7	• • • • • • • • • • • • • • • • • • •	TISS 9000	thermo
Tuning parameters:	AEI Full Tune (Default)			Scientific TRACE 1310
Collision gas and pressure (psi):	Argon, 70			
Resolution :	0.7 @ FWHM (both Q1 and Q3) Resolu- equa that resolu- resolu- two pe u	ution for each upole to be set I to or better n unit mass tion (unit mass tion: sufficient ion to separate eaks one mass nit apart).		

Animal feedstuff samples (and relevant quality control samples and procedural blanks) were
provided by the University of Liege. Sample types, weights and maximum levels allowed (ML) are
given below.

	Alfalfa	Pork Fat	Premix	Premix	Sheep	QC – Pork fat	QC - Feed (grass)
Sample intake (g)	32.13	4.57	10.17	11.1	2.55	6.8	20.71
Regulatory ML [WHO-PCDD/F-TEQ(pg/g)] *	0.75	1	1	1	2.5	1	0.75**
1/5th ML [WHO-PCDD/F-TEQ(pg/g)] *	0.15	0.2	0.2	0.2	0.5	0.2	0.15

* maximum limits taken from European directive 2002/32/EC ⁽³⁾

** lower limit applied

 European method EN:1948 standard solutions (Wellington Laboratories Inc., Canada) were utilized for initial performance tests and for calibration and quantitation.

Chromatography

Chromatography – Separation

Linearity

Congener	Average RF from Calibration	RF standard deviation	RF RSD (%)	Calibration range (pg/µL)
2378-TCDF	1.06	0.06	5.6%	0.01 - 80
2378-TCDD	1.13	0.06	5.6%	0.01 - 80
12378-PeCDF	1.02	0.02	2.3%	0.02 - 160
23478-PeCDF	1.08	0.02	1.9%	0.02 - 160
12378-PeCDD	1.11	0.03	2.4%	0.02 - 160
123478-HxCDD	1.08	0.03	3.1%	0.04 - 160
123678-HxCDD	1.04	0.04	3.8%	0.04 - 160
123789-HxCDD	1.05	0.04	3.7%	0.04 - 160
123478-HxCDF	1.04	0.02	2.3%	0.02 - 160
123678-HxCDF	1.04	0.03	2.4%	0.02 - 160
234678-HxCDF	1.04	0.04	3.9%	0.02 - 160
123789-HxCDF	0.98	0.04	4.4%	0.02 - 160
1234678-HpCDF	1.09	0.02	1.8%	0.04 - 320
1234789-HpCDF	1.13	0.03	2.5%	0.04 - 320
1234678-HpCDD	1.16	0.08	7.3%	0.04 - 320
OCDD	1.15	0.05	4.5%	0.16 - 320
OCDF	0.99	0.06	5.8%	0.16 - 320

Example of response factors over 8 calibration injections for 2,3,7,8-TCDD

IDL performance of the TSQ 9000 for 2,3,7,8-TCDD using repeated injections of 5 fg on-column

IDL_{RSD} = **0.58** fg

2378-TCDD

Attogram levels of sensitivity!

LOQ calculation

 IDL describes the suitability of a system for trace level analysis, but it does NOT represent method LOQ and cannot be used for TEQ calculation.

"...the lowest concentration point on a calibration curve that gives an **acceptable** (≤ 30 %) and **consistent** (measured at least at the start and at the end of an analytical series of samples) **deviation to the ARRF**..."

 Specific performances in terms of selectivity and robustness must be met at the LOQ.

Congener	LOQ, absolute amount injected on column (pg)
2378-TCDF	0.02
2378-TCDD	0.02
12378-PeCDF	0.04
23478-PeCDF	0.04
12378-PeCDD	0.04
123478-HxCDF	0.04
123678-HxCDF	0.04
234678-HxCDF	0.04
123478-HxCDD	0.08
123678-HxCDD	0.08
123789-HxCDD	0.08
123789-HxCDF	0.04
1234678-HpCDF	0.08
1234678-HpCDD	0.08
1234789-HpCDF	0.08
OCDD	0.32
OCDF	0.32

Ion ratios for the lowest level calibration standard (LOQ) showing compliance from the beginning of the sequence to the end.

> 2 specific precursor and one specific corresponding transition product ion for all labelled and native congeners.

Robustness – Ion ratio 2,3,7,8-TCDD

Ion ratios shown over the full calibration range (0.01 – 80pg/µL) for the two native 2,3,7,8-TCDD transitions

Robustness – Ion ratios for all native congeners

Matrix LOQ and QC results

		Sai	mple: QC - feed		Sample: QC - feed
	On column		Matrix LOQ	TSQ 9000 result Upperbound	Sample weight (g) 20.71
Congener	100 (ng)	2005)	WHO-TEQ-PCDD/Fs (2005)	WHO-TEQ-PCDD/Fs (2005)	Final volume (μL) 10
	LOQ (P6/	20037	pg/g	pg/g	Sample injection volume (µL) 2
2378-TCDF	0.02	0.1	0.00048	0.02010	Standard injection volume (µL) 2
2378-TCDD	0.02	1	0.00483	0.01884	EU ML (sum WHO-TEQ-PCDD/Fs [2005] pg/g) 0.750
12378-PeCDF	0.04	0.03	0.00029	0.00304	1/5th EU ML 0.150
23478-PeCDF	0.04	0.3	0.00290	0.06221	Expected sum WHO-TEQ-PCDD/Fs [2005]
12378-PeCDD	0.04	1	0.00966	0.05556	pg/g derived from LOQ 0.028
123478-HxCDF	0.04	0.1	0.00097	0.02632	
123678-HxCDF	0.04	0.1	0.00097	0.01530	
234678-HxCDF	0.04	0.1	0.00097	0.01606	
123478-HxCDD	0.08	0.1	0.00193	0.00389	The sum of the calculated
123678-HxCDD	0.08	0.1	0.00193	0.01723	
123789-HxCDD	0.08	0.1	0.00193	0.00556	upperbound values at the LOQ*
123789-HxCDF	0.04	0.1	0.00097	0.00717	are significantly lower than the
1234678-HpCDF	0.08	0.01	0.00019	0.01185	
1234678-HpCDD	0.08	0.01	0.00019	0.00101	1/5" EU maximum level
1234789-HpCDF	0.08	0.01	0.00019	0.01565	requirements
OCDD	0.32	0.0003	0.00002	0.00308	
OCDF	0.32	0.0003	0.00002	0.00033	
		SUM	0.02844	0.28319	QC results, all congeners > LOQ Results in line with HRMS measurements√

Sample results – Chromatography and quantification

a) Alfalfa

b) Premix

c) Pork Fat

- Chromeleon[™] 7.2 Chromatography Data System (CDS) software was used for instrument control, data acquisition, processing and reporting.
- One-click Thermo Scientific[™] eWorkflows[™] available for simplified method, sequence creation and reporting.
- Integration with Thermo Scientific[™] SampleManager LIMS[™], SDMS and LES to manage the complete laboratory workflow.

- The **sensitivity** achieved with the new AEI source was proven to be suitable for trace level analysis.
 - On-column LOQs between 20 fg (TCDD/TDCF) and ~300 fg (OCDD/OCDF). This shows compliance with the regulations
 for sample intake weights as low as 5g for feed samples.
- The reported matrix LOQ (pg TEQ/g) results reported for low level samples below the MLs were significantly lower than the 1/5th MLs required, giving both reassurance and flexibility when analysing multiple sample types.
- The method was repeatable and robust throughout a continuous two day analytical sequence, suitable for routine work.
- Ultimately the TSQ 9000 GC-MS/MS system configured with the AEI source satisfies all of the current EU commission requirements for the detection and confirmation of dioxins in food and feed samples.