

Pyrolysis-GC-Orbitrap MS - A Powerful Analytical Tool for Identification and Quantification of Microplastics in a Biological Matrix

Dr. Julian Renpenning Regional Marketing Manager GC, GCMS and IOMS Thermo Fisher Scientific

Microplastics in the Environment

- Global plastics production increased by
 620% since 1975
- Largest market sector is packaging with about 40% share only in the EU
- Plastics made up at least 10% of solid waste world wide
- Up to 12.7 million tons plastic waste enter the ocean world wide every year
- Single-use plastics making up approx.
 40% of beach litter
- Jambeck et al. 2015, Science Reports

The two categories of plastics

Thermoplastics

are a family of plastics that can be melted when heated and hardened when cooled. These characteristics, which lend the material its name, are reversible. That is, it can be reheated, reshaped and frozen repeatedly.

Polyethylene (PE)	Polycarbonate (PC)	
Polypropylene (PP)	Poly methyl methacrylate (PMMA)	
Polyvinyl-chloride (PVC)	Thermoplastic elastomers (TPE)	
Polyethylene Terephthalate (PET)	Polyarylsulfone (PSU)	
Polystyrene (PS)	Fluoropolymers	
Expanded polystyrene (EPS)	PEEK	
ABS	POM	
SAN	РВТ	
Polyamides (PA)	Etc.	

Thermosets

are a family of plastics that undergo a chemical change when heated, creating a three dimensional network. After they are heated and formed these plastics cannot be re-melted and reformed.

Polyurethane (PUR) Unsaturated polyester

Epoxy resins

Melamine resin

Vinyl ester

Silicone

Phenol - formaldeyhde

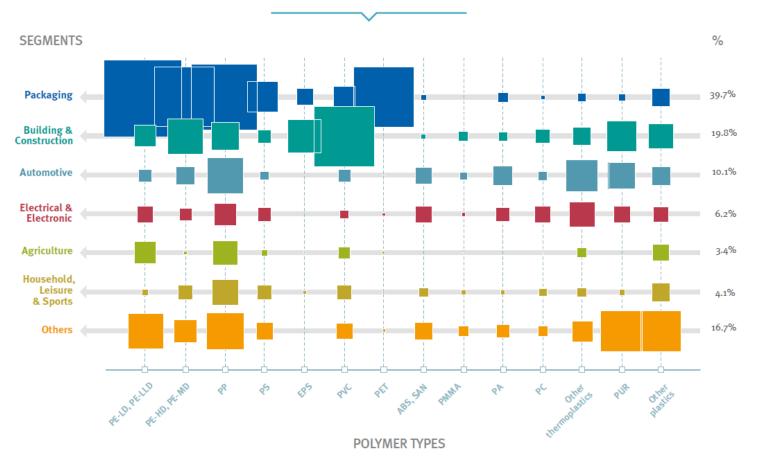
Urea - formaldeyhde

Phenolic resins

Acrylic resins

Etc.

Source: PlasticsEurope AISBL, www.plasticseurope.org



Plastic Polymers

European plastic converter demand by segments and polymer types in 2017

Data for EU28+NO/CH.

Source: PlasticsEurope Market Research Group (PEMRG) and Conversio Market & Strategy GmbH

Source: PlasticsEurope AISBL, www.plasticseurope.org

Analytical Techniques

Techniques for microplastic analysis

 Fourier Transformation Infrared (FTIR) spectroscopy

Raman spectroscopy and microscopy

Pyrolysis – Gas Chromatography Mass
 Spectrometry (py-GC-MS)

- Demonstrate the efficiency of pyrolysis GC coupled to a high-resolution mass spectrometry
- Qualitative and quantitative analysis of microplastics
- Benefit of a high resolution GC-MS system

thermoscientific APPLicATION NOTE 10643

Pyrolysis-GC-Orbitrap MS - a powerful analytical tool for identification and quantification of microplastics in a biological matrix

Authors

Jörn Logemann¹, Eystein Oveland², Ørjan Bjorøy², Wibke Peters³, Oristian Cojocariu⁴, and Tanja Kögel² ¹Thermo Fisher Scientific, Dreieich, Germany ²Institute of Marine Research, Bergen, Norway ⁸S+H Analytik, Mönchengladbach, Germany ⁴Thermo Fisher Scientific, Runcorn, United Kingdom

Keywords

Exactive GC, pyrolysis, microplastics, high resolution, Orbitrap technology, gas chromatography, fishmeal

Goal

The purpose of the experiments described in this work was to assess the applicability of pyrolysis-gas chromatography-Orbitrap" mass spectrometry for the qualitative and quantitative analysis of plastic polymers in complex biological matrices.

Introduction

Plastics are synthetic organic polymers, commercially introduced on a large scale starting in the 1950s. Single-use plastics (grocery bags, food packaging, bottles, utensile) are persistent pollutants making up approximately 40% of beach litter'. This litter eventually ends up in the marine environment, with an estimated B million metric tons of plastic waste entering the oceans worldwide every year?. Most plastics have a very long degradation time, and for a timespan up to centuries they end up as macro-, micro- and nanoplastics through weathering. Due to their characteristics and additional content (monomeric residue, plasticicological effects on marine life through direct ingestion³⁴ and/or leachates⁴. This might represent a hazard for ecosystems and for human exposure through consumption and inhalation⁷.

Analytical Instrumentation

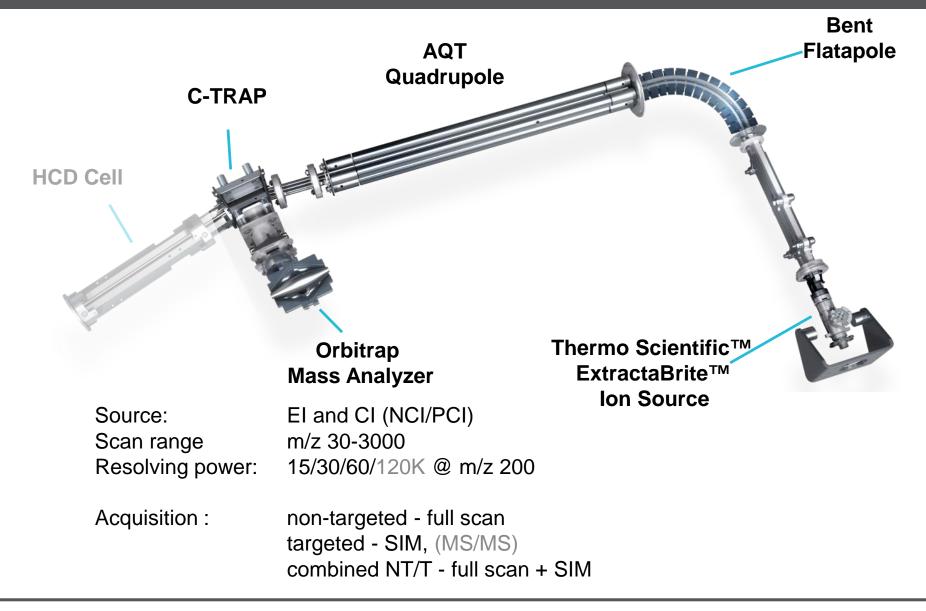
The world leader in serving science

Instrumentation: Pyrolysis-GC-Orbitrap MS

Thermo Scientific Trace 1310 GC

Thermo Scientific[™] TRACE[™] 1310: Unique modular injector and detector design

Injectors	Detectors	Additional Options	Software drivers
Thermospray SSL	FID	MS NoVent Microfluidics	Chromeleon [™] CDS
SSL	WLD	Auxiliary Oven	Xcalibur™
SSL backflush	ECD	Inj/Oven Cryo	TraceFinder
PTV	NPD	Aux carrier	
PTV backflush	FPD	Aux temperature	
OnColumn	PDD	D/A-converter (AOI)	
Gas Sampling Valve (GSV)	PFPD		
	MS		



Thermo Scientific[™] Q Exactive[™] GC Orbitrap[™] GC-MS/MS system

Q Exactive and Exactive GC

Exactive GC System Features

- Ultra high resolution up to 60.000
- Data aquisition rate of 7 Hz at 60k
- Mass Accuracy:
 - Internal: < 1 ppm RMS
 - External: < 3 ppm RMS
 Under conditions defined in 1 μL,
 100 fg/μL octafluoronaphthalene
 EI Full MS installation specification
- Vent free source and routine proof source
- Vent free column exchange
- PCI and NCI
- Very good system linearity

Frontier Lab's Multi-Shot Pyrolyzer

• What is it?

 Sample introduction system for viscous liquids or solid organic materials into a GC or GC/MS

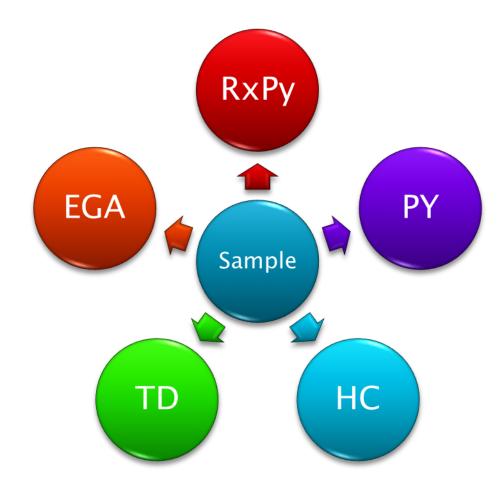
• How does it work?

 Uses vertical micro furnace technology to thermally vaporize or decompose a sample into a gaseous state - reproducibly

EGA/PY-3030D Double-Shot

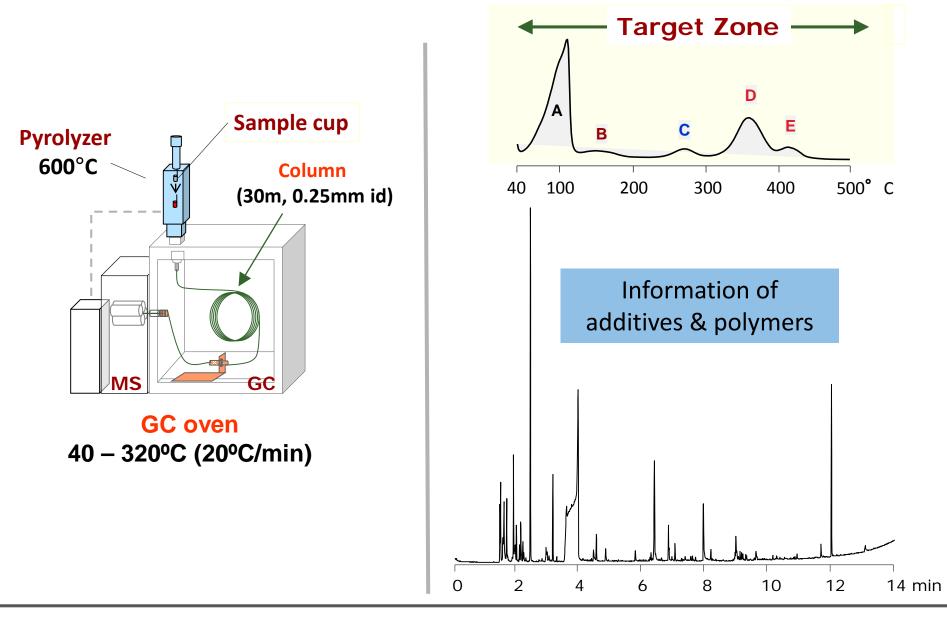
AS-1020E Auto-Shot

FRONTIER


Analytical Techniques

- 1. Single-Shot
- 2. Double-Shot
- 3. EGA
- 4. Heart-cut EGA *Programmable*

(10 - 1050 ° C)


Techniques Used For Samples

EGA	Evolved Gas Analysis
TD	Thermal Desorption
HC	Heart-Cutting
PY	Pyrolysis
RxPy	Reactive Pyrolysis

Single-Shot Py-GC/MS Information

Analysis of Microplastic and Microplastic in Spiked Fish

The world leader in serving science

Experimental and Analytical Conditions

1. Polymer Standards Aliquots of PMMA and PS standards (0.05 – 5µg) dissolved in ethyl acetate

2. Spiked Fishmeal

Analysis in decomposed fishmeal as a complex matrix. Fishmeal sample spiked with PMMA (2.5 μ g) and PS (2.7 μ g)

3. Polymer Mixture

Qualitative analysis of a PA, PC, PE, PMMA, PP, PS, PVC and PET polymer mixture (10-100 µg of each polymer) with TMAH as methylation agent.

Multi-Shot Pyrolyzer EGA/PY-3030D Parameters Oven Temp.: 600 °C Interface Temp. : 300 °C **TRACE 1310 GC System Parameters** Thermo Scientific[™] Instant Connect Injector: Thermospray (TSI) Inlet: 270 °C Carrier Gas: He, 1.2 (mL/min) Split Flow: 200 mL/min **Oven Temperature Program** Temperature 1: 50 °C Hold Time: 1 min Temperature 2: 320 °C 15 °C/min Rate: Hold Time: 5 min **Exactive GC Orbitrap Mass Spectrometer Parameters** 320 °C Transfer Line: Ionization Type: EI Ion Source: 280 °C **Electron Energy:** 70 eV **Emission Current:** 20 µA Acquisition Mode: Full-scan, centroid 50-650 Da Mass Range: **Resolving Power:** 60,000 FWHM at m/z 200 Lockmass. Column Bleed: 207.03235 m/z

1. Polymer Standards - Sensitivity and Linearity

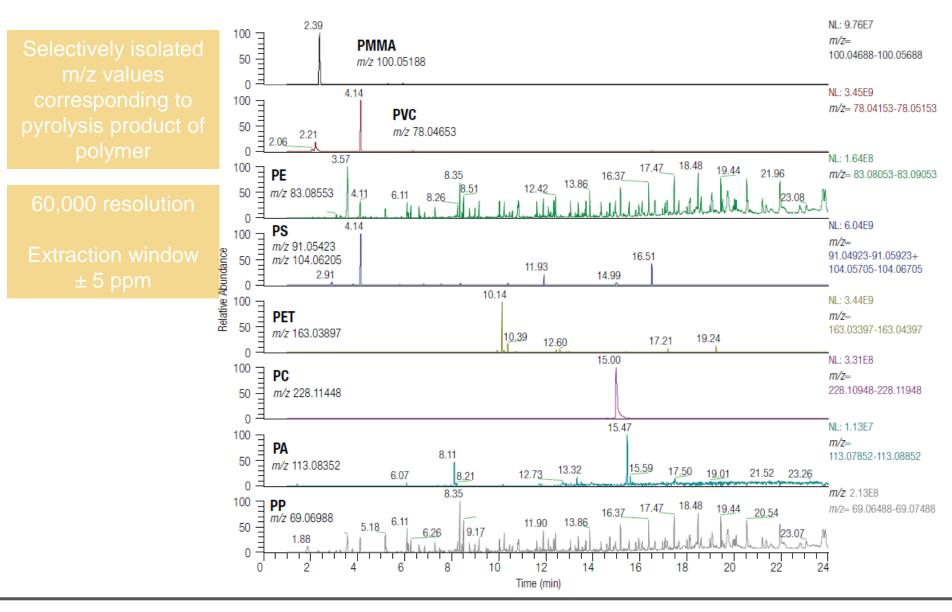
Analysis of standards with concentration of 0.05, 0.5, 5 and 50 µg


Polystyrene (PS) ₹ × ₹X Calibration Curve **Calibration Curve** B polymethylmethacrylate (PMMA) styrene Y = 4.032e7X - 4.879e5; R^2: 0.9992; Origin: Ignore; W: 1/X; Area Y = 1.978e8X + 4.572e6; R^2: 0.9990; Origin: Ignore; W: 1/X; Area 12000000000 2400000000-11000000000 2200000000-10000000000 2000000000-9000000000 1800000000-8000000000 $R^2 = 0.999$ 1600000000- $R^2 = 0.9992$ 7000000000 1400000000-Area 6000000000 ₹1200000000-5000000000 1000000000-4000000000 800000000-3000000000 600000000-2000000000 400000000-1000000000 200000000-50 10 20 30 40 20 10 30 40 50 60

Polymethyl methacrylate (PMMA)

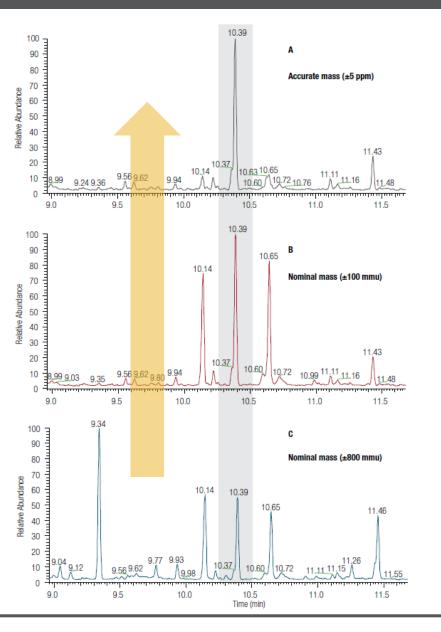
2. Spiked Fishmeal

Stability and mass accuracy irrespective of compound concentration



Accuracy of quantification for PS and PMMA

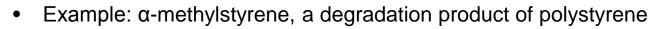
Compound	Spiked Amount (µg)	Measured Amount (µg)
Polystyrene (PS)	2.7	2.9
Polymethyl methacrylate (PMMA)	2.5	2.2



3. Polymer Mixture - Selectivity in High-Resolution

Thermo Fisher

Benefit of High-Resolution and Accurate Mass Selectivity



- Full-scan accurate mass selectivity demonstrated for PS in a mixed sample containing PS, PA, PC, PE, PMMA, PP, PVC, and PET
- Accurate mass measurements enable confident detection (±5 ppm, A), whereas at nominal mass acquisitions additional interfering compounds can be detected

Non-Targeted Unknown Compound Identification

 With routine full-scan, high-resolution mode additional untargeted analysis of sample can be done with TraceFinder software

Summary and Outlook

The world leader in serving science

- py-GC-MS system in combination with pyrolysis a promising analytical technique that opens new possibilities in environmental microplastic analysis
- Exactive GC Orbitrap GC-MS system provides excellent linearity (0.05 50 µg) with accurate quantitative estimation of plastic polymer in real sample
- High resolving power facilitates sub-ppm accuracy at low and high concentrations -> confidential selectivity and identification of pyrolysis products
- Routine full-scan enables detection and identification of non-targeted and potentially unknown microplastic by-products during pyrolysis

Dr. Wibke Peters S+H Analytik GmbH Handel Im Abtsfeld 15 41066 Mönchengladbach

Tel.: 02161/6 94 92-0 Mobil: 0171/4 58 86 08 peters@shanalytik.de Dr. Jörn Logemann Produktspezialist GC, GC/MS Thermo Fisher Scientific Im Steingrund 4 – 6 63303 Dreieich

Mobil: +49 172/6883078 joern.logemann@thermofisher.com

Thank you for your attention

