#### **Thermo Fisher** s c | e N T | F | C

### How clumped isotopes drive a deeper understanding of petrochemical processes

#### Darren Tollstrup

IOMS Sales Manager Americas

#### Nina Albrecht

Senior Product Specialist Gas IRMS

October 12<sup>th</sup>, 2022

The world leader in serving science

## What are Clumped Isotopes?

Thermo Fisher

000

C

000

Principle Explained

#### "Classical" Isotopes of CO<sub>2</sub>: 44, 45, 46



#### Single substitution

**ThermoFisher** 

SCIENT

#### "Clumped" Isotopes of CO<sub>2</sub>: 47, 48



**Thermo Fisher** 

SCIENT

#### **Double substitution**

"Clumped" Isotopes of CH<sub>4</sub>





**Double substitution** 

#### How are "Clumped Isotopes" useful?

Thermo Fisher SCIENTIFIC

- The degree of "clumping" of heavy isotopes in molecules is solely temperature dependent in thermodynamic equilibrium
- Deviation from equilibrium clumping indicates kinetic fractionation processes or mixing with non-equilibrated sources.
- **Clumped isotopes add new dimensions** to the classical isotope signatures and open new dimensions in for instance source apportionment and process identification.

#### **Analytical Setup**



Thermo Scientific<sup>™</sup> 253 Plus<sup>™</sup> 10 kV IRMS Thermo Scientific<sup>™</sup> Kiel IV Carbonate Device



Thermo Scientific<sup>™</sup> Qtegra<sup>™</sup> Intelligent Scientific Data Solution (ISDS) Software



Thermo Scientific™ Ultra™ HR-IRMS

Clumped Carbonate Analysis

### Clumped Methane Analysis



arren.tollstrup@thermofisher.com | October-2022

#### **Clumped Carbonate: Typical Samples**





Limestone

Forminifera



Corals



Travertine

#### **Clumped Carbonate: Thermometry (\Delta\_{47})**



Carbonate formation temperature (°C)

" $\Delta_{47}$  data of travertines show an excellent correlation with temperature [...] and our calibration can be used to derive the deposition temperature of ancient carbonate deposits." Kele et al., 2015

#### **Dual Clumped Carbonate Thermometry (** $\Delta_{47}$ - $\Delta_{48}$ **)**



**Thermo Fisher** 

#### **Deciphering Kinetic Biases**



"We show that dual clumped isotope thermometry can achieve reliable palaeotemperature reconstructions, devoid of kinetic bias."

Bajnai et al., 2020

Temperature based on dual clumped isotope thermometry with 2 SE\*

 $\leftarrow$ ---- Temperature based on  $\Delta_{47}$  only

### **Reconstructing Maximum Burial Temperature**





"The case study [...] suggests that  $\Delta 47$  can be used to reconstruct the MBT of ancient carbonate strata lacking vitrinite and detrital zircon data."

Li et al. (2021)

### **Clumped Methane**

Thermo Fisher

**N00**0

0

000

0

Principle and Applications

#### **Clumped Methane: Typical Samples**



#### **Conventional Methane Analysis**









#### **Clumped Methane Analysis**



**Thermo Fisher** 

SCIENTIFIC

#### **The Benefit of High Resolution IRMS**



HR-IRMS enables full peak separation of clumped methane isotopologues  $(^{13}CH_3D \text{ and } ^{12}CH_2D_2)$  from another and from ionization by-products  $(^{13}CH_5 \text{ and } CH_4D)$ .

#### **Clumped Methane: Geothermometry**



#### Experiments

#### **Clumped Methane: Geothermometry**





#### **Clumped Methane: Geothermometry**



#### **Clumped Methane: Source Discrimination**



#### **Clumped Methane: Source Discrimination**



#### **Clumped Methane: Identification of Formation Mechanisms**



**Thermo Fisher** 

SCIENT

#### **Clumped Methane: Assessing Maturity**



#### **Clumped Methane: Safer Carbon Capture and Storage**

#### **Clumped Methane**



$$\delta^{13}$$
C vs. CO<sub>2</sub>/<sup>3</sup>He



**Thermo Fisher** 

#### **Future Perspectives: Clumped Hydrogen**



**Thermo Fisher** S C I E N T I F I C



## **Clumped Hydrogen**

Principle and Application Fields

### **Clumped Hydrogen: Thermometry**



### **Clumped Hydrogen: Application Fields**



000

### **Clumped Nitrogen**

darren.tollstrup@thermofisher.com | October-2022

Principle and Application Fields

#### **Clumped Nitrogen: HR-IRMS Mass Scan**



HR-IRMS enables full peak separation of species which share the same cardinal mass.

#### 

**Thermo Fisher** 

SCLEN

### **Clumped Nitrogen: Application Fields**

darren.tollstrup@thermofisher.com | October-2022

33



Modelling of thermospheric  $\Delta_{30}$  constrains global denitrification rates.



**Thermo Fisher** 





#### Whitepaper: Clumped isotope analysis of methane using **HR-IRMS**

**Thermo Fisher** 

thermo scientific

Clumped isotope analysis of methane using HR-IRMS: New insights into origin and formation mechanisms of natural gases and a potential geothermometer

Authors: Guannan Dong, Hao Xie, Nivedita Thiagarajan, John Eiler, California Institute of Technology, Pasadena, USA; Naizhong Zhang, Mayuko Nakagawa, Naohiro Yoshida, Earth-Life Science Institute, Tokyo Institute of Technology,



Daniel Eldridge, Daniel Stolper, University of California, Berkeley, USA; Nina Albrecht, Issaku E. Kohl, Thermo Fisher Scientific, Bremen, Germany

Keywords: HR-IRMS, methane, clumped isotopes, <sup>12</sup>CH<sub>2</sub>D<sub>2</sub>, <sup>13</sup>CH<sub>3</sub>D, geothermometry, reaction kinetics, natural gas, petroleum geochemistry

This white paper describes the analytical capabilities of the Thermo Scientific" Ultra" High Resolution Isotope Ratio Mass Spectrometer (HR-IRMS) for the analysis of doubly substituted isotopologues ('clumped isotopes') of methane, including both  $^{12}\text{CH}_3\text{D}$  and  $^{12}\text{CH}_2\text{D}_2,$  and for analysis of the  $\delta^{\rm sp}C$  and  $\delta D$  signatures of methane with exceptional precision

Berkeley Caltech

Methane (CH $_{a}$ ) is widely distributed in the solid earth, ocean and atmosphere. It is a primary constituent of geological gas deposits and a significant resource for global energy production; the fact that it generates less CO2 per unit energy on combustion means its expanded use over recent decades has been a significant factor in mitigating the rate of rise of atmospheric greenhouse gases. In addition to its commercial importance, it plays a major role in the global carbon cycle and is involved in various fluxes within atmospheric, microbial, hydrothermal and magmatic systems. It even has potential to be utilized as an extraterrestrial biosignature. Methane is also amongst the most effective greenhouse gases and as a result could play a significant role in the anthropogenic acceleration of climate change.

The importance and versatility of methane fuels the development of methods to decipher its origins, sources and sinks, formation conditions, and transport paths.

SCIENTIFIC

30767

#### Written in collaboration with Caltech, Berkeley, and Tokyo Tech.

#### Free to download at thermofisher.com/ultra

#### Email:

#### darren.tollstrup@thermofisher.com

# Thank you Questions are welcome!

35 darren.tollstrup@thermofisher.com | October-2022