

ThermoFisher SCIENTIFIC

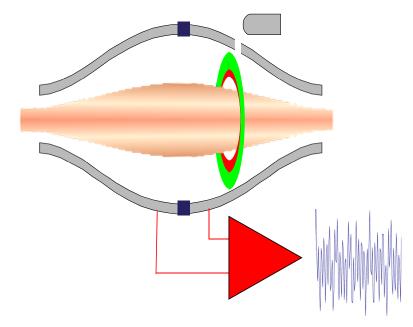
Redefining GC-MS in the Laboratory with GC Orbitrap

Michal Godula, Ph.D. Thermo Fisher Scientific michal.godula@thermofisher.com

The world leader in serving science

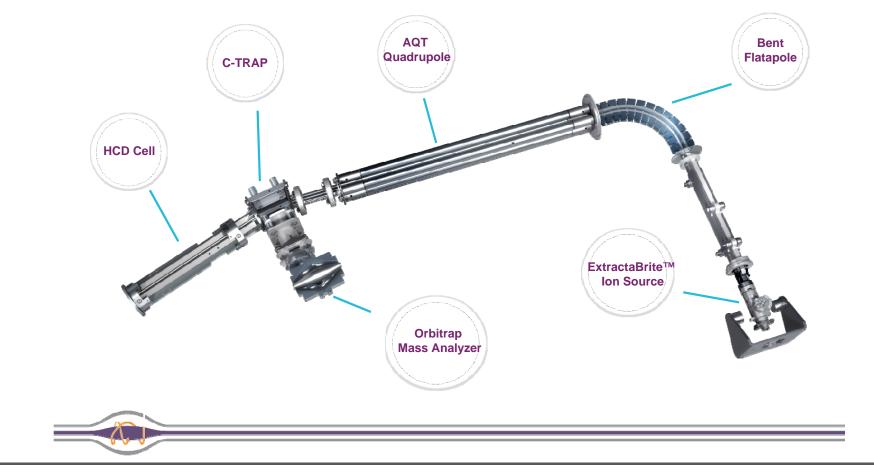
A New Chapter in GC-MS

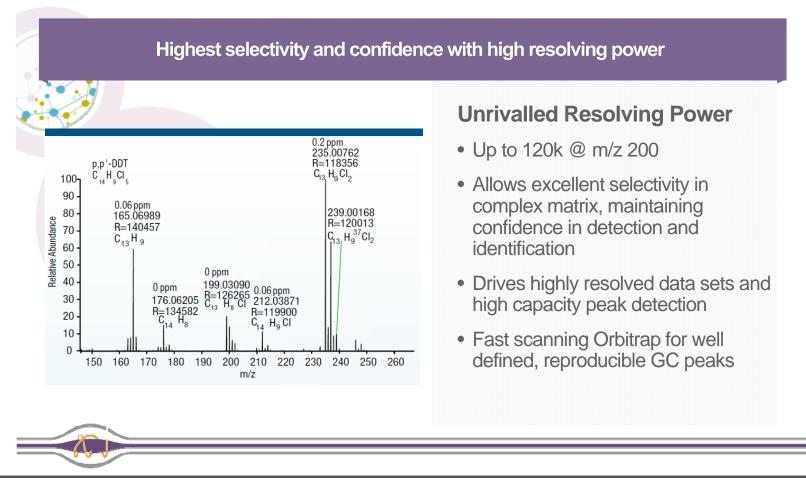
Thermo Scientific[™] Q Exactive[™] GC Hybrid Quadrupole-Orbitrap[™] GC-MS/MS System


Offering Unprecedented Depth in GC-MS Analysis

- Hugely powerful HR/AM performance for GC-MS
- Uncompromised quantitative and qualitative capability
- Reliable, robust and easy to operate

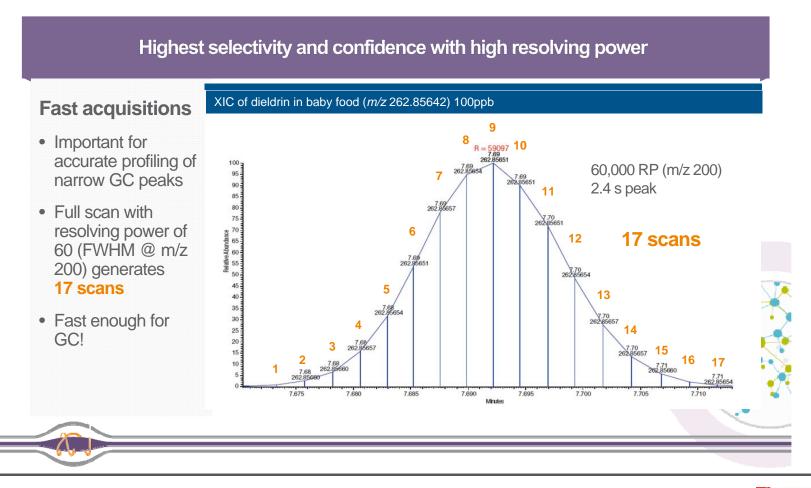
Orbitrap Principles



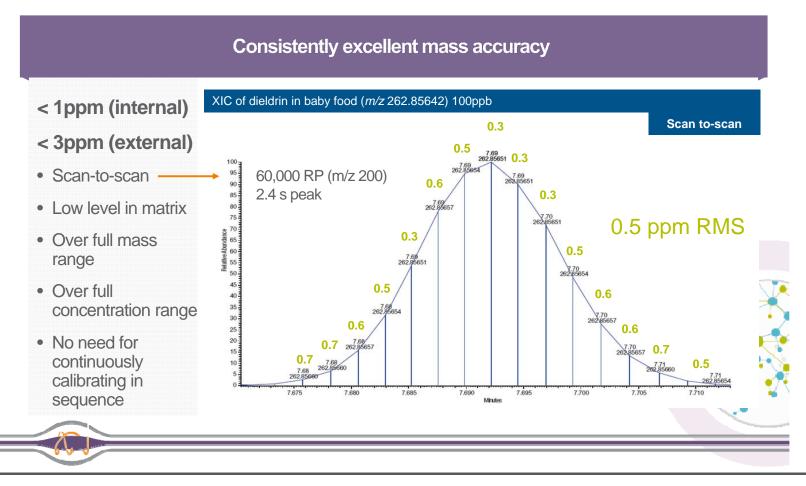


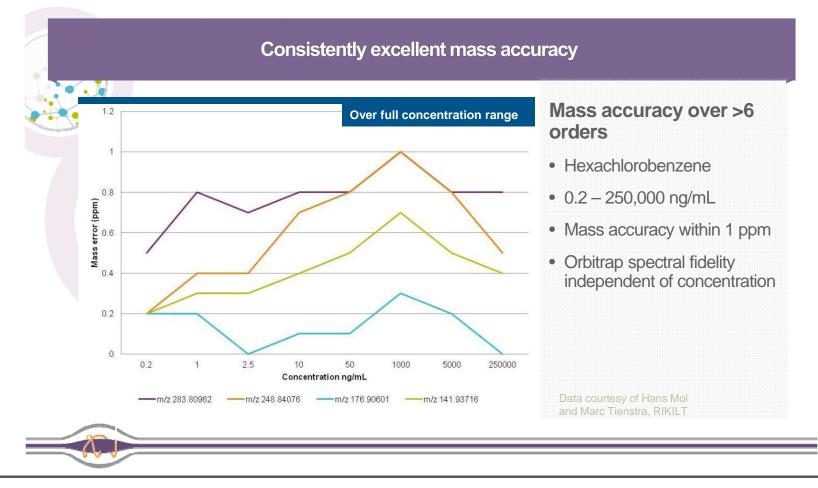
Makarov A. Anal. Chem. 2000, 72, 1156-1162.

Bringing GC and Orbitrap Technology Together



Highest selectivity and confidence with high resolving power Chlorprophram 127.02067 Mass difference = 18.4 ppm Relative Abundance 15K • 10 ng/g QuEChERS extract 127.022 127.010 127.012 127.016 127.018 127.020 127.024 127.026 127.028 127.030 127.034 127.008 127.014 127.032 of leek Mass difference = 0.9 ppm Relative Atun dance 30K • Full scan with resolving power of 127.010 127.012 127.014 127.016 127.018 127.020 127.022 127.024 127.026 127.028 127.030 127.032 127.034 127.008 >30k (FWHM @ m/z 200) provides Mass difference = 0.5 ppm Relative Abundance 60K interference free detection 127.010 127.012 127.014 127.016 127.018 127.020 127.022 127.024 127.026 127.028 127.030 127.032 127.034 127.008 • Excellent mass Mass difference = 0 ppm accuracy for Relative Atundance D2 D5 D9 08 00 Local and automation 120K Chlorpropham Matrix 127.02118 confident identification 127.034 127.008 127.010 127.012 127.014 127.016 127.018 127.020 127.022 127.024 127.026 127.028 127.030 127.032

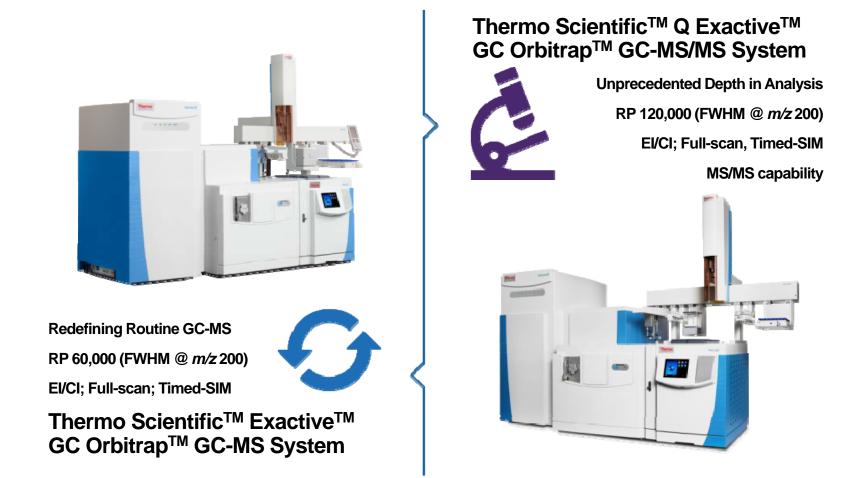

Pesticides screening



High resolving power crucial to avoid false negatives

Thermo Fisher SCIENTIFIC

Orbitrap GC-MS Family


Q Exactive GC system

Unprecedented Depth in Analysis RP 120,000 (FWHM @ *m*/z 200) El/Cl; Full-scan, Timed-SIM MS/MS capability

Orbitrap GC-MS Family

Thermo Fisher™ TRACE™ 1310 GC system

Unique modular injector and detector design

Short cycle time

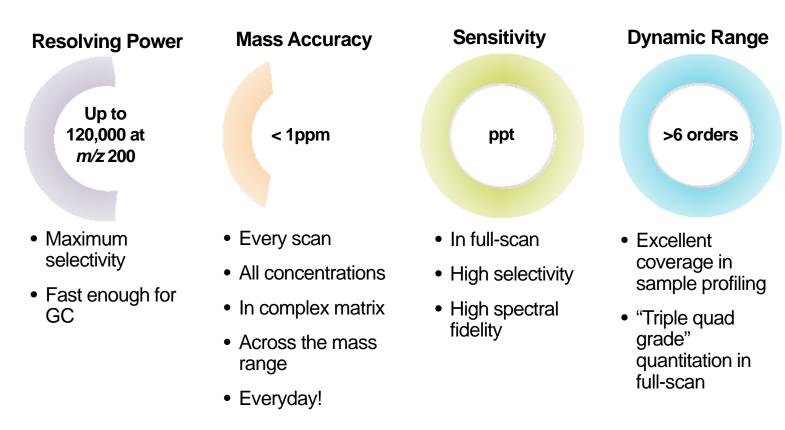
Thermo Scientific[™] ExtractaBrite[™] ion source technology

Routine grade robustness

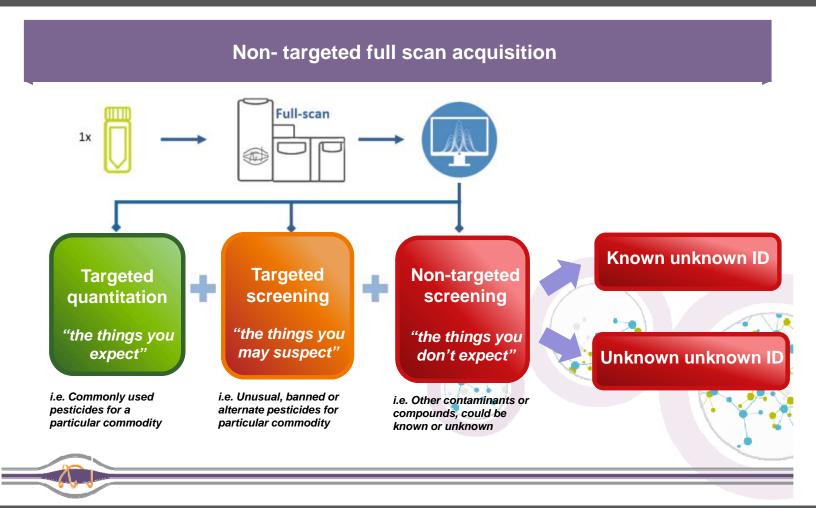
Patented RF lens

Removable without breaking vacuum through VPI

Vacuum-free column replacement through VPI


Thermo Fisher SCIENTIFIC

Removable without breaking vacuum through VPI


Vacuum-free column replacement through VPI

SCIENTIFIC

Analytical Workflows Overview

Thermo Fisher SCIENTIFIC

Pharmaceutical O-Rings Extractables Study

- 4 O-ring samples
 - A Red
 - **B** Brown
 - C White
 - D Black
 - Blank (control)

- Solvents
 - Water
 - 5M NaCl
 - 50% Ethanol
 - 100% Ethanol
 - 1% PS-80
 - 0.5N NaOH

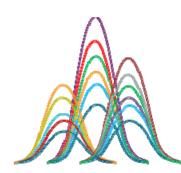
- 0.1M Phosphoric Acid
- 40 ° C for 30 days

GC-MS Instrument Conditions

Thermo Scientific[™] Q Exactive[™] GC Hybrid Quadrupole-Orbitrap GC-MS/MS

Thermo Scientific[™] Trace[™] 1310 GC

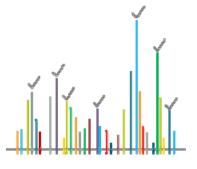
Thermo Scientific[™] TraceFinder[™]


TRACE 1310 GC Parame	_	
Injection Volume (mL):	1	_
Liner	Single gooseneck	
Inlet (°C):	280	_
Carrier Gas, (mL/min):	He, 1.2	_
Oven Temperature		
Program:		
Temperature 1 (°C):	40	
Hold Time (min):	1	
Temperature 2 (°C):	320	
Rate (°C/min)	15	
doexaictive(1000)MS Parar	meters	
Transfer line (°C):	280	
Ionization type:	EI	
Ion source(°C):	230	
Electron energy (eV):	70	
Acquisition mode:	Full scan	
Mass range (Da):	50-650	
Mass resolution		
(FWHM):	60k	
Lockmass (m/z):	207.03235	
		S C I E N T

TraceFinder Non-targeted Screening Overview

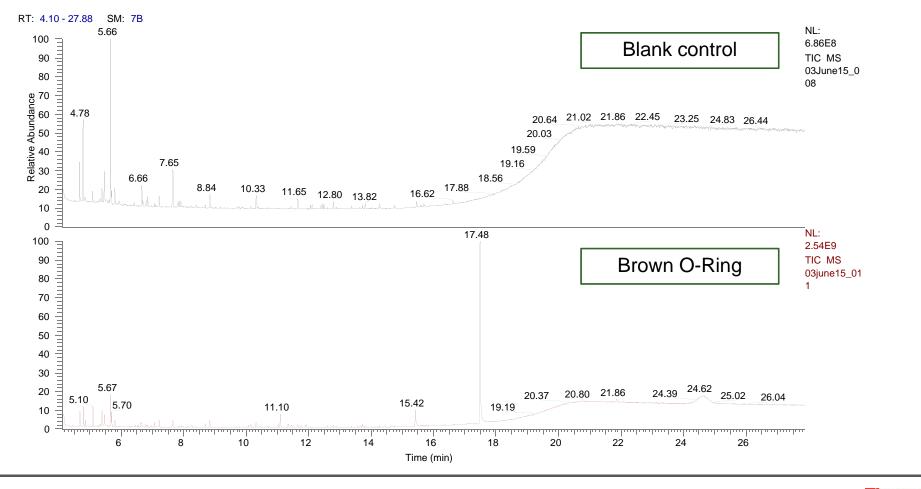
1. Detect and refine

2. Generate candidates


3. Filter and identify

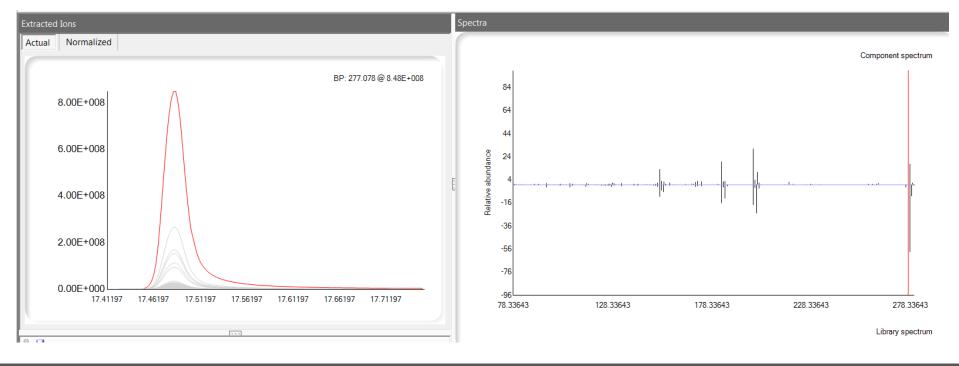
- Sensitive and selective peak detection
- High resolution spectral deconvolution
- Clean spectrum

- Search spectra against spectral libraries
- HRAM o low resolution spectral libraries (NIST, Wiley…)
- Candidates list generated



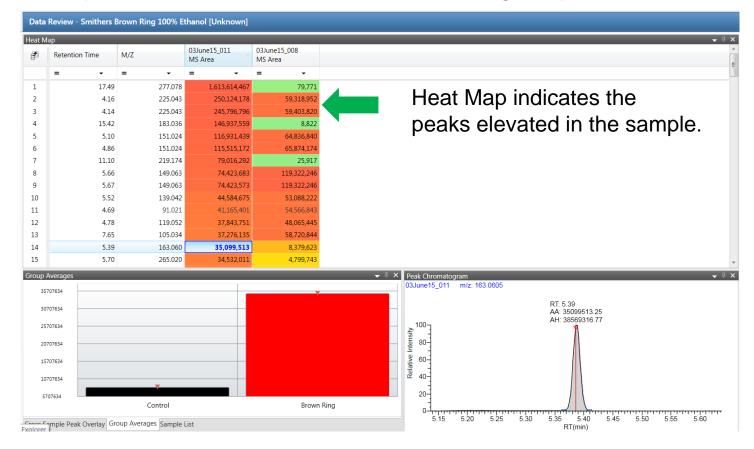
- High resolution filtering of candidates
- Putative identifications made

Automatic compound identification



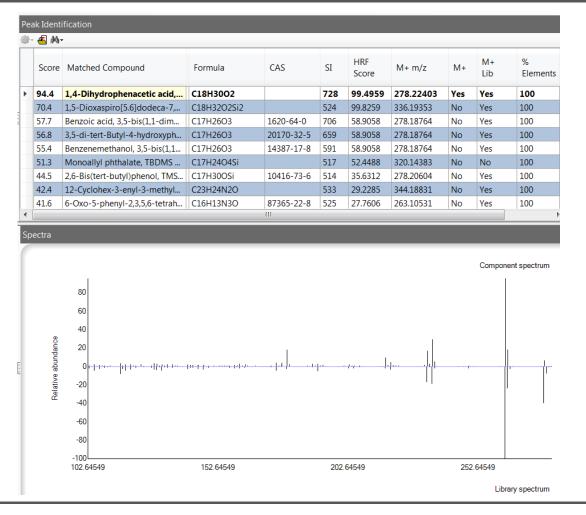
Example Results

Step 1: Deconvolution of the Data


- TraceFinder first performs an accurate mass deconvolution of the data.
- Extracts all of the peaks in the chromatogram.
- Provides a cleaned spectrum for library matching.

Step 2: Quickly Isolate the Peaks of Interest

• 2051 peaks were extracted from the brown O-ring sample


Top 10 Differential Peaks in Brown O-ring

ŧ 🗖	Retention Time		M/Z	Control Average Area	Brown Ring Average Area	Brown Ring Fold	
	-	•	= •				
1		11.9 3	<mark>26</mark> 3.201	1	15,395,040	15,395,046	
2		16.33	260.075	1	2,782,29	2,782,295	
3		12.89	219.037	1	2,770,680	2,770,686	
4		17.49	277.078	79,771	1,613,614,46	20,228	
5		15.42	183.036	8,822	146,937,559	16,655	
6		13.57	185.042	1,249	5,963,2 <mark>4</mark> :	4,773	
7		11.10	219.174	25,917	79,016,292	3,049	
8		11.02	221.154	2,586	4,183,05	1,617	
9		<mark>11.4</mark> 6	185.042	6,077	6,840,822	1,126	
10		18.01	183.036	4,685	4,161,114	888	

Peaks list can also be sorted by <u>fold difference</u> compared with control to isolate the differential peaks that could be low or high intensity.

Thermo Fisher SCIENTIFIC

Step 3: Identify the Compound – Searching NIST 14

26 Hits from NIST are sorted based on:

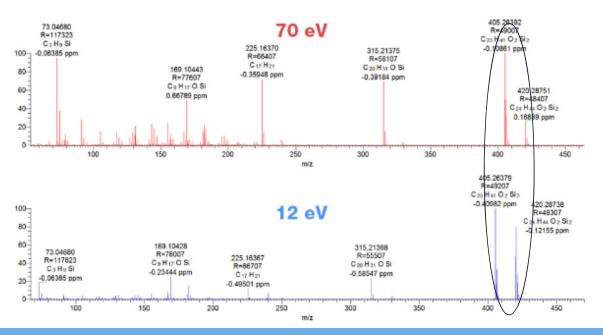
Spectral matching

 High Resolution Filtering (HRF) score.

Step 3: Identify the Compound – Searching NIST 14

Combined SI and HRF values give an overall score (%) to quickly and confidently identify the compound. Eliminates other hits that would be valid if only SI used.

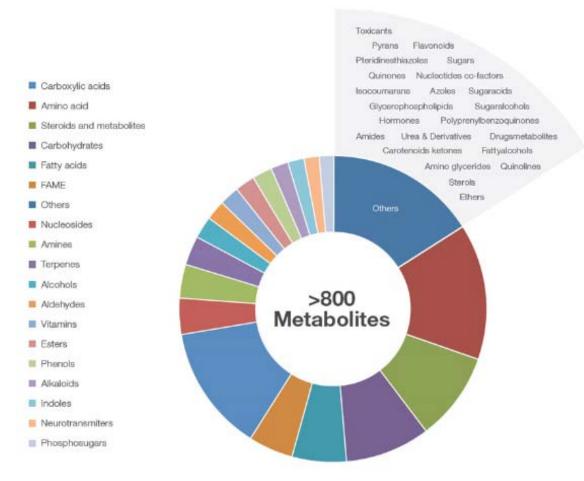
Peak entification											
eeeeeeeeeeee											
	Score		Formula	CAS	SI	HRF Score	м	1+ m/z	M+	M+ Lib	% Elements
•	94.4	1,4-Dihydrophenacetic acid,	C18H30O2		728	99.4959	2	8.22403	Yes	Yes	100
	70.4	1,5-Dioxaspiro[5.6]dodeca-7,	C18H32O2Si2		524	99.8259	33	6.19353	No	Yes	100
	57.7	Benzoic acid, 3,5-bis(1,1-dim	C17H26O3	1620-64-0	706	58.9058	2	8.18764	No	Yes	100
	56.8	3,5-di-tert-Butyl-4-hydroxyph	C17H26O3	20170-32-5	659	58.9058	21	8.18764	No	Yes	100
	55.4	Benzenemethanol, 3,5-bis(1,1	C17H26O3	14387-17-8	591	58.9058	2	8.18764	No	Yes	100
	51.3	Monoallyl phthalate, TBDMS	C17H24O4Si		517	52.4488	32	0.14383	No	No	100
	44.5	2,6-Bis(tert-butyl)phenol, TMS	C17H30OSi	10416-73-6	514	35.6312	21	8.20604	No	Yes	100
	42.4	12-Cyclohex-3-enyl-3-methyl	C23H24N2O		533	29.2285	34	4.18831	No	Yes	100
	41.6	6-Oxo-5-phenyl-2,3,5,6-tetrah	C16H13N3O	87365-22-8	525	27.7606	26	3.10531	No	Yes	100



Step 4: Fragments Can Be Explained With < 1ppm Mass Accuracy

	Measured m/z	Area	Fragment ID	Theo m/z	Mass error (ppm)
►	278.22412	956521	C(12)18 H30O2	278.22403	0.32348
	264.20401	2825159	C(12)16 C(13)1 H27O2	264.2039	0.39818
	263.20071	15464145	C(12)17 H27O2	263.20055	0.6079
	249.18506	17789	C(12)16 H25O2	249.1849	0.64209
	236.17262	717539	C(12)14 C(13)1 H23O2	236.1726	0.06436
	235.16931	4502672	C(12)15 H23O2	235.16925	0.25514
	234.19318	420047	C(12)15 C(13)1 H25O	234.19334	0.70369
	233.19005	2618908	C(12)16 H25O	233.18999	0.2573
	233.15364	179702	C(12)15 H21O2	233.1536	0.17156
	232.18231	164562	C(12)16 H24O	232.18216	0.64604
	222.15691	15338	C(12)13 C(13)1 H21O2	222.15695	0.20166
	221.15359	145557	C(12)14 H21O2	221.1536	0.04522
	220.17767	117435	C(12)14 C(13)1 H23O	220.17769	0.11264
	220.14131	70817	C(12)13 C(13)1 H19O2	220.1413	0.02362
	219.17430	717976	C(12)15 H23O	219.17434	0.1825
	219.13797	551886	C(12)14 H19O2	219.13795	0.09127
	218.16208	227603	C(12)14 C(13)1 H21O	218.16204	0.16135
	217.15871	1435532	C(12)15 H21O	217.15869	0.0921
	207.13797	43932	C(12)13 H19O2	207.13795	0.09655
	205.15869	28947	C(12)14 H21O	205.15869	0
	205.12231	94843	C(12)13 H17O2	205.1223	0.04875

NEW: VeV Electron Ionization Technology


Top: spectrum acquired with classic 70eV
Bottom: spectrum acuquired with low 12eV, showing enhancement of molecular ion

The key benefits of VeV are:

Fully automated for optimum performance: VeV set-up is very simple and easy with fast, fully automated tuning.

Increased confidence in identification: VeV promotes molecular ion and diagnostic high mass signals, important information for compound identification and confirmation.

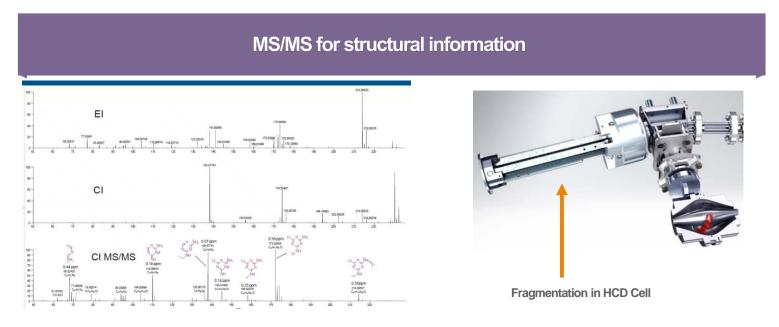
NEW: HRAM Library for Metabolomics Database

High resolution, high mass accuracy spectra acquired at 60,000 RP (*m/z* 200)
Spectra refined and curated with elemental composition of each EI fragment verified

Kovats retention index for each entry
PubChem ID for unique metabolites
Can be used in combination with existing unit mass libraries

Q Exactive GC: Compound Discovery and Identification

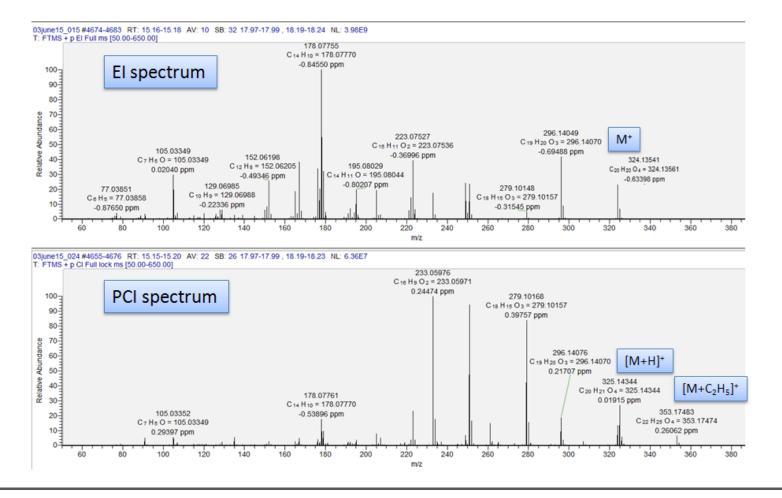
Chemical ionization for molecular ion



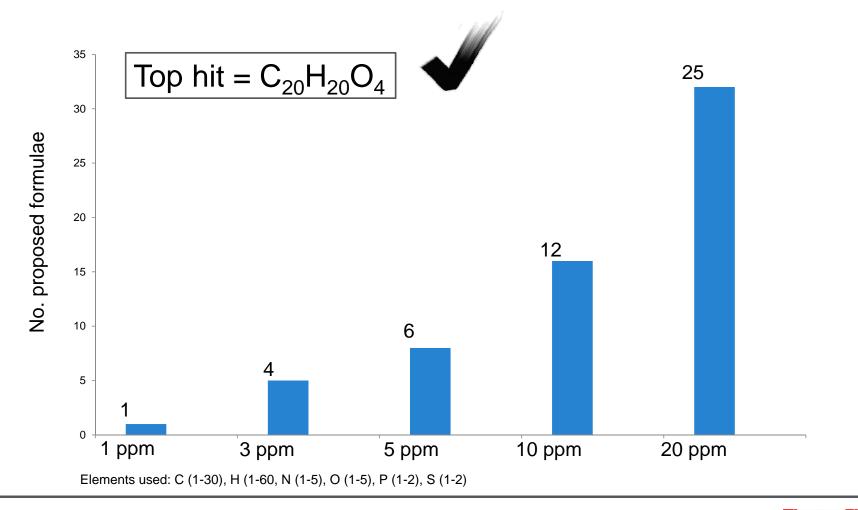
Remove entire ion source or change to CI source in under 2 minutes without venting

. . .

Q Exactive GC: Compound Discovery and Identification



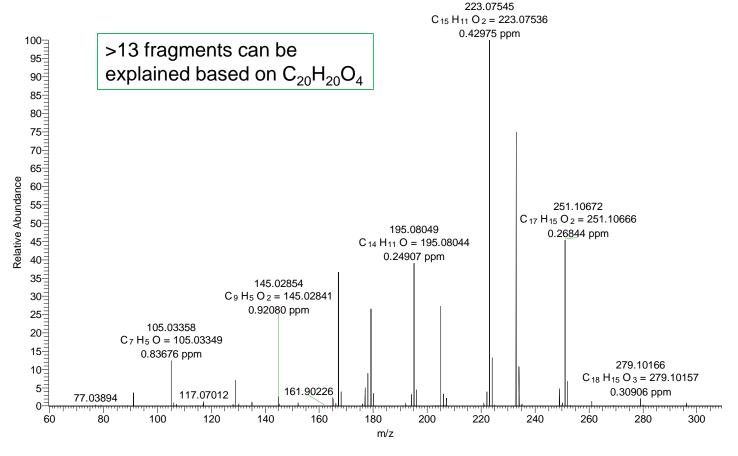
- Thermo Scientific[™] Mass Frontier[™] software can be used for sub-structural interpretation
- Sub ppm accurate mass allows for higher confidence in fragment IDs



Thermo Fisher SCIENTIFIC

EI & PCI Spectra for Peak at 15.17 mins.

Number of Proposed Formulae for *m/z* 324.13541



SCIENTIFIC

34

MS/MS m/z 325.14 to Support Proposed Formula

T: FTMS + p CI Full ms2 325.14@hcd10.00 [50.00-350.00]

Conclusion

- Thermo Scientific Q Exactive and Exactive GC systems are easy-to-use, dedicated HRAM GC-MS platforms that provides highly sensitive, routine grade performance in both targeted and untargeted screening experiments
- Thanks to the superior resolving power, accurate mass measurements and extended linear dynamic range, the Orbtrap GC-MS systems provide a greater confidence in the discovery, identification and quantification of compounds for the ultimate sample analysis workflow

Find out more about our GC Orbitrap GC-MS and GC-MS/MS

http://info1.thermoscientific.com/OrbitrapGCMS

Thank you for your attention!

