Agilent Trusted Answers

Scratching Your Head Over Headspace? We'll Help Make Things Simple

Method development, method optimization, and troubleshooting

Mark Sinnott GC Application Scientist 22 September 2022

DE.4178703704

https://www.chem.agilent.com/Library/usermanuals/Public/5955-5398_030756.pdf https://www.agilent.com/cs/library/usermanuals/public/user-manual-gcms-hydrogen-safety-g7003-90053-en-agilent.pdf

What Is Headspace?

Types of Headspace Static versus dynamic

Dynamic – A continuous gas stream is passed through a sample that then elutes the compounds of interest onto a trap, where they are held and concentrated. At some point in the process, the trap is heated to desorb the analytes of interest onto the column to be chromatographed.

- Typically purge and trap
- Headspace trap

Static – The sample is placed into a closed vial, the vial is heated and shaken, and the sample is extracted and injected directly into the GC.

- Loop system
- Syringe
- Pressure balance

Why Headspace?

Offers clean injections into GC systems

• Less maintenance – only the volatile vapors are injected into the system

Less sample preparation

Ideal for analysis of volatile analytes in matrices that can't be directly injected into the GC.

*Not suitable for some applications

Types of Static Headspace Autosamplers

Gas tight syringes

• Not a 'true' closed system. A small amount of sample can be lost as the syringe moves from the vial to the inlet.

Balanced pressure

• The sample volume injection is regulated by time. Vial pressure is depressurized onto the column. The amount of sample injected is controlled by injection duration.

Pressure/loop systems

• Fixed loop size determines injected volume. The metal surface area is greater in the loop system.

What Should We Focus On?

Partition coefficient: $K = \frac{Cs}{Cg}$

The smaller the "K", the greater the concentration of the analyte in the gas phase.

<u>Like dissolves like</u>. The greater the solubility or affinity that an analyte has for the matrix, the larger the K.

What drives *K*?

What Drives *K*?

Temperature:

• Higher temperatures drive *K* down

Solubility:

- Add salt
- Add another solvent to the matrix

What Parameters Drive Success?

Incubation temperature

• Typically 20 °C below the solvent BP

Incubation time

Shaking

Efficient transfer of the sample from the vial to the column

Use of salts

Things to Consider

- You will need to have at least 5 mL of headspace in the vial.
- Keep the incubation temperature 10 to 20 °C below the BP of the solvent/matrix.
- Long incubation times 'generally' only delay the first sample.
- Higher split ratios help get the sample onto the column more efficiently; this results in sharper peaks.
 - Lower splits are 'OK' with larger id columns. Higher volumetric flow transfers sample faster.
- Shake, but try to keep the sample from touching the vial septum.
 - Sample can get into the sample probe and contaminate the loop
- Think about the temperature limitation of vial septa
 - Be considerate of sample/analyte degradation

Headspace Parameters

Temperatures	 Oven Sample loop Transfer line Transfer line interface
Times	 Vial equilibration Injection duration GC cycle time
Vial and loop	 Vial size Shake vials while in oven Vial fill mode Loop fill mode

Incubation Temperature Increase

20 minutes K decreases with *T* Not equal for all analytes

Change in Vial Size

*must leave >/= 5 mL of HS in the vial

Change in Sample Volume in a 10 mL Vial

Change in Sample Volume in a 20 mL Vial

What Else Can Affect Signal?

Loop size

Loop pressure

Split ratio

Liner type

Using salt

Change in Loop Size

40:1 split (64 mL/min)

Change in Split Ratio

Change in Split Ratio

Change in Loop Pressure First two eluting peaks

Vial fill pressure: 40 psi Loop fill rate: 30 psi/min Inlet pressure: 28.3 psi

Is That a Good Way to Increase Signal?

The Effect of Vial Pressure, Loop Pressure, and Fill Rate

Changing Vial Pressure

5 psi final loop pressure

Liner Size and Type

Use of Salts

Decreases the solubility of polar analytes in aqueous samples Decreases *K*, favoring the gas (headspace) phase

Potassium carbonate (K_2CO_3) Ammonium chloride (NH_4CI) Ammonium sulfate ((NH4)₂SO₄) Sodium chloride (NaCl) Sodium citrate ($Na_3C_6H_5O_7$) Sodium sulfate (Na_2SO_4)

Use high quality, low impurity salts

How Much Salt Do I Add?

20 mL vial 80 °C oven temperature 20-minute incubation

Change in Matrix Volume with Salt

Can I Inject Multiple Times?

Headspace of Solid Matrices

Samples are ground to increase surface area

They are used for solvents in plastics or polymers

When a matrix match is not available, MHE – "multiple headspace extraction" is used

"Multiple Headspace Extraction for the Quantitative Determination of Residual Monomer and Solvents in Polystyrene" 5991-0974EN

Method Development Tools

🝵 Edit Method Parameters

Standalone HS Method Development Viewer

🛉 Agilent 7697A Method Development Viewer

Method Development

Manual

Would you like to increment a method setting over subsequent runs?

Assisted

 \times

Method Development Tool

Method Development Tool

Method Development Tools

Create method based on a specific application	×
Sample Matrix	
Matrix Type:	
Vial Size: 20 mL V	
Sample Volume: 2 mL	
Solvent	
Solvent: Hexadecane \checkmark	
Boiling Point: 287 °C	
Compound(s) of Interest	
Highest Boiling Point: 160 °C	
Preview Changes Cancel Help	

Create Method Based on Specific Application

Red parameters are what will be change from the initial method.

Green parameters are the new settings.

Confirm method changes			×
Original Method		Modified Method	
Original Method Temperature Settings: Oven Temperature (°C): Loop Temperature (°C): Transfer Line Temperature (°C): Timing Settings: Vial Equilibration (min): Injection Duration (min): GC Cycle Time (min): Vial and Loop Settings: Vial Size: Vial Size: Vial Size: Vial Shaking: with acceleration of 125 cm/s ² Fill Mode: Fill Pressure (psi): Loop Final Pressure (psi): Loop Equilibration Time: Carrier Settings: Carrier Control Mode: Advanced Settings: Extraction Mode: Vent After Extraction: Post Injection Purge: min Acceptable Leak Check: Sequence Actions: Vial Missing:: Wrong Vial Size: Leak Detected: System Not Ready:	<pre>80 85 120 20.00 1.00 20.00 20 Level 3, 36 shakes/min Default 40 Custom 30 0.05 GC controls Carrier Single Extraction ON Default, 100 mL/min for 1 Default, 0.2mL/min Skip Continue Abort</pre>	Modified Method Temperature Settings: Oven Temperature (°C): Loop Temperature (°C): Transfer Line Temperature (°C): Timing Settings: Vial Equilibration (min): Injection Duration (min): GC Cycle Time (min): Vial and Loop Settings: Vial Size: Vial Size: Vial Shaking: with acceleration of 60 cm/s ² Fill Mode: Fill Pressure (psi): Loop Final Pressure (psi): Loop Equilibration Time: Carrier Settings: Carrier Settings: Extraction Mode: Vent After Extraction: Post Injection Purge: min Acceptable Leak Check: Sequence Actions: Vial Missing:: Wrong Vial Size: Leak Detected: System Not Ready:	145 145 160 30.00 0.50 25.00 20 Level 1, 18 shakes/min Default 15 Custom 20 9 0.05 GC controls Carrier Single Extraction ON Default, 100 mL/min for 1 Default, 0.2mL/min Skip Continue Abort
Print		Accept	Reject Help
	г	DE63543352	

Convert an Existing Pressure Transfer Method

Convert an existing pressure transfer Headspace method			×		
	Temperatures	Setpoint		Timing	Setpoint
nd or	🗹 Oven Thermostattin	g 80 °C	(+)	GC Cycle	25 min
	✓ Needle	80 °C		Thermostatting	15 min
	✓ Transfer Line	120 °C		Pressurization	0.2 min
				Withdrawal	0.5 min
				Pre/Post Cryofocusing	0 min
				Inject	0.5 min
	Pressure	Expected Value	Ê	Other Settings	
3	Carrier	28 psi		Shaker	On 🗸
	Vial	15 psi			
				Preview Changes Canc	el Help

Convert an Existing Pressure Transfer Method

Confirm method changes				×
Original Method		Modified Method		
Temperature Settings:		Temperature Setting	s:	
Oven Thermostatting Temperature (%	c):80	Oven Temperature (°	C): 80	
Needle Temperature (°C):	80	Loop Temperature (°	C): 80	
Transfer Line Temperature (°C):	120	Transfer Line Tempe	rature (°C): 120	
Timing Settings:		Timing Settings:		
GC Cycle Time (min):	25.00	Vial Equilibration	(min): 15.00	
Thermostatting Time (min):	15.00	Injection Duration	(min): 0.50	
Pressurization Time (min):	0.20	GC Cycle Time (min)	25.00	
Withdrawal Time (min):	0.50			
Pre/Post Cryofocusing Time (min):	0.00	Vial and Loop Setti	ngs:	
Injection Duration (min):	0.50	Vial Size:	20	
		Vial Shaking:	Level	5. 71 shakes/min
Pressure Settings:		with acceleration o	of 260 cm/s ²	-,,
Carrier (nsi):	28	Fill Mode:	Defaul	t
Vial (nsi):	15	Fill Pressure (nsi)	: 15	-
		Loon Fill Mode:	Defaul	+
Advanced Settings:			001001	-
Vial Shaking:	ON	Carrier Settings:		
The shaking.	0.1	Carrier Control Mod	e: GC con	trols Carrier
		Advanced Settings:		
		Extraction Mode:	Single	Extraction
		Vent After Extracti	on: ON	Exclude 200
		Post Injection Pure	e Defaul	t 100 mL/min for 1
		min	ci berudi	c, 100 mc/min 101 1
		Acceptable Leak Che	ck: Defaul	t, 0.2mL/min
		Sequence Actions:		
		Vial Missing::	Skip	
		Wrong Vial Size:	Contin	ue
		Leak Detected:	Contin	ue
		System Not Ready:	Abort	
1				
Print		Accer	ot Reject	Help

39 September 22, 2022 Scratching your Head

Common Issues

Carryover/contamination	 Too much sample in the vial Shaking is set too high Sample condensing in the loop
Septum or caps blowing off	 Oven temperature is too high creating too much pressure in the vial
High %RSD	 Vial leaks. Check vial crimping. Sequence actions and logbook. Condensation in the flow path. Check temperatures. Vial equilibration time too short Can run leak check
	that equilibration time tee enert - Can fair leak eneek
Sequence makes it through first sample only	 GC cycle time is too short. Check sequence actions and logbook.

Change the Loop Purge Time and Flow Carryover issues

Vial Leaks

Logbook is in the Instrument Control Screen

Starting Parameters

Temperatures	 Oven 20 °C below the BP of the matrix Sample loop Same temp as oven Transfer line Hot enough not to have anything condense Transfer line interface Same as inlet
Times	 Vial equilibration 10 minutes, but use method development Injection duration 0.5 minutes GC cycle time Run time + cool down to ready
Vial and Loop	 Vial size 20 mL Shake vials while in oven 3 (low) Vial fill mode Default 15 psi Loop fill mode Default

Consumables

Good for SPME 8010-0139 (thinner septum) Safet (5183) Tears

Max temp **125 °C** Butyl/PTFE (5183-4479) Safety cap (5183-4478) Tears at 45 psi

Max temp 180 °C silicone/PTFE (5183-4477)

High-Performance Septa

Max temperature 300 °C Reduced siloxane interferences at high temperature

5190-3987*

8010-0428

*High-power crimpers are required for steel crimp caps

A-line High-Power Crimper

- 5191-5624 (High Powered crimper with 20 mm jaw set)
- 5190-4062 (11 mm crimper jaws)
- 5190-4063 (11 mm de-capper jaws)
- 5191-5617 (Tool only + power supply; no jaws)

5190-4066 Base

https://www.agilent.com/cs/library/usermanuals/public/manual-A-Line-crimper-high-power-5191-5627-en-agilent.pdf

A-line Crimpers

How Tight is Right?

Common Issues

Installation of liner

- 2 mm liner is ideal for HS applications for narrower peaks
- Standard 2 mm liner is too small to accept
- 5190-6168 has slightly large ID, but still a tight fit

Common Confusion

Terminology

- Sample probe/needle
- This is on the HS itself and probes the HS vial
- Transfer line "needle"
- For 7697 and newer transfer line itself is the "needle"
- No such needle when transfer line is plumbed laterally to the inlet

This is not a needle but an extension of the fused silica xfer line that is inserted through the inlet septum

Figure 79

Sample Probe

52

Sleeve for Pro-Steel Transfer Line

ProSteel Transfer Line Sleeve (4177-0607)

If you intend to use ProSteel and plan to operate the transfer line at temperatures 200 °C and higher, you must use the ProSteel protective sleeve (4177-0607). Without the protective sleeve, the ProSteel can permanently bind to the internal transfer line tubing.

Common Confusion

Terminology

- Sample probe/needle
- This is in the HS itself and probes the HS vial
- Transfer line "needle"
- For 7697 and newer transfer line itself is the "needle"
- No such needle when transfer line is plumbed laterally to the inlet

Figure 79 Sample Probe

Summary

- Stay 10 to 20 °C below the boiling point of the solvent/matrix
- Keep a minimum of 5 mL of headspace in the vial
- Use the Method Development tools
 - Don't forget to turn off the function
- Try to maximize parameters based on compounds with highest K
 - Not every compound responds/reacts the same way
- Use 10 mL vials if appropriate
- Be consistent with crimping vials. Set the crimper properly so that every user is successful.
- When troubleshooting, think about what may or may not be causing the issues you are experiencing.

DE63543352

Contact technical support

- Aqilent

Additional Resources

7697A Headspace Sampler Troubleshooting (PDF) G4556-90018

7697A Headspace Sampler Advanced Operation (PDF) G4556-90016

Search for 7697A Headspace Sampler on Agilent.com

Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 Option 3, Option 3:
Option 1 for GC and GC/MS columns and supplies
Option 2 for LC and LC/MS columns and supplies
Option 3 for sample preparation, filtration, and QuEChERS
Option 4 for spectroscopy supplies
Option 5 for chemical standards
Available in the USA and Canada 8–5, all time zones

gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com

