

Solid Phase Micro Extraction Quantification and Troubleshooting

SIGMA-ALDRICH Chemie GmbH Eschenstraße 5, 82024 Taufkirchen Germany

First:

SPME is an Equilibrium Technique!

Reproducibility / Quantification

- Sample-Parameter
 - Temperature
 - Time
 - Volumes
- Equilibrium
 - Stirring
- Matrix
 - Salt
 - Organic content
 - pH value

- Linearity
 - Dynamic Range
- Calibration
 - Internal
 - Standard addition
- Background
 - Cross contamination
 - Lab Air
- Loss of analyte
 - Transport

Handling

- Fiber Breakage
 - Septa
 - Stableflex, Metal
- Fiber Durability
 - Headspace
 - Conditioning
- Septum pieces
 - Septum free injection

- Peak shape
 - Liner
 - Column
 - Temp. Program
- Accessories
 - Autosampler
 - Stirbar / flea
 - Vials/Septa

Quantification

SPME is a <u>quantitative</u> Technique.

However

"SPME does not solve the calibration problem!"

Quantification / Calibration in SPME

- External Calibration
 - For Samples with simple matrix e.g. drinking water
- Standard addition
 - Calibration into the sample
- Internal Standard (always recommended)
 - Use of compound with similar distribution constant
 - Compound should not be present in the sample
 - Deuterated Standards (MSD required, GC/MS)

Important aspects of a calibration for proper quantification:

- Calibration must cover all steps
- Work with idealy diluted aqueous solutions.
 - to prevent inter analyte interaction
- Work with lager Volumes (minimize wall interactions and prevent exhaustive extraction)
- Optimal simulation of the sample (pH, T, V, Salt content, etc.) by adjusting the calibration standards properly

Extraction parameter must be constant

- Stir velocity, fiber position in the sample
- Temperature
- Sample
 - Matrix (Salt?)
 - Volume (small samples!)
 - Vial size
- Extraction time

SPME - Extraction Time

SIGNA

Stirring in SPME

sigma-aldrich.com

Stir effects – Static Layer

Without Stirring

With Stirring

Stirring influences the extraction efficiency

- Stirring greatly decreases Equilibrium Time
- Stirring reduces Variability between Extractions
- Inconsistent Stirring may cause worse results than no Stirring
- Ultra sonication might be suitable, but it heats sample (const. T?)

Stirring in manual SPME Fiber position?

Stir Velocity

Headspace vs. Direct Immersion

- Immersion:
 - 2 Phases / 1 Equilibrium
- Headspace:
 - 3 Phases / 2 Equilibriums

Headspace Sampling

Figure 3.33 Total ion current chromatogram of 16 straight chain hydrocarbons sampled by Headspace SPME from spiked sand at 25°C (a), 130°C (b) and 200°C for 60 minutes: 1, C10; 2, C11; 3, C12; 4, C13; 5, C14; 6, C15; 7, C16, 8, C17; 9, C18; 10, C20; 11, C24; 12, C28; 13, C32; 14, C36; 15, C40.

Temperature effects in HS-SPME

Higher Pick Up for less volatiles.

Desorption of Volatiles during Extraction?

SIGMA-ALDRICH

Tips for Headspace SPME

- Reduce the Headspace volume
- Minimize temperature for heated samples
 - in general 40°C to 60°C are sufficient
- Salt addition commonly increases sensitivity
- Stirring of aqueous samples

Dynamic Range Recommendations for Using Particle Fibers

Particle fibers for trace level analyses (ppt and ppb range)

- Dynamic range 10²-10³
- Use Headspace if possible
- Clean fiber prior to use
 - Blanks
 - Check for carry over

Adsorbent vs. Absorbent Fibers

Adsorbent type fibers

- Physically traps or chemically reacts bonds with analytes
 - -porous material
 - -high surface area
- Analytes may compete for sites
- Fibers have limited capacity

<u>Ab</u>sorbent type fibers

- Analytes are extracted by partitioning

 liquid phase
 retains by thickness of coating
- Analytes do not compete for sites
- Fibers can have high capacity

Analyte recovery vs. conc. (Carboxen-PDMS)

Analyte recovery vs. conc. (100µm PDMS)

Recommendations for use of Carboxen™/PDMS Fibers

- For trace analysis (ppt and ppb range)
- If possible use headspace sampling
- For analytes with boiling points < 220°C
- If possible extraction times below 30min
- Keep injector hot (above 280°C)
- Cleaning of Fiber prior use
 - by blank desorption if fiber is not used for more than 1h

Exposure of SPME Fiber in a Research Lab

Septum free Injections systems - Merlin Microseal

Requires 23 gauge needles for tight seal!

24 Gauge

23 Gauge

sigma-aldrich.com

Autosampler - CTC Analytics Combi PAL

Fiber Conditioning Station

Summary - Desorption Temperature, Time, and Injection Depth (These variables are interrelated)

 Select minimum temperature necessary to produce sharp peaks and minimize carryover: To reduce septum & fiber bleed To increase life of fiber

• Temperature guidelines:

PDMS fibers:	200-260°C,	7µm PDMS up to 320°C
Polyacrylate fibers:	250-300°C	
Divinylbenzene fibers:	220-265°C	
Carboxen™ fibers:	240-310°C	

 Desorption time depends on sample and matrix. Longer desorption times: Remove contaminants (2-10 min)

Minimize carryover

Keep fiber clean for next extraction

Depth of fiber should be in the hottest zone in the injection port.

For most instruments, expose 5-6cm of the fiber or set the top of the black depth gauge between the 2.5 and 3.5 markings. Depth of the fiber into injection port must be consistent. Set o-ring or use numbered scale on fiber holder to ensure consistency.

SIGMA-AI DBICH

Injector and Liner

- SPME is generally compatible with all heated injector ports
- Temperature programmable injectors should be kept hot
- Keep the fiber in the hottest part of the injector block
- Straight unpacked liner (split/splitless o. direct)
 - 0.78mm ID is the optimum
- Reducing the inlet volume leads to sharper peaks and reduces the need for cryogenic

Inlet-Liner comparison for Analysis of VOCs by SPME

SIGMA-ALDRICH

Troubleshooting Suggestions

- Observe and Record Conditions and Changes
 - Fiber, Sampling, Desorption, Inlet, Column, Detector Response, etc.
- Spare Parts at Hand
 - Backup Fibers & Pre-tested Fiber w/ known Performance
 - Backup Column & Pre-tested Column w/ known Performance
 - Spare Injection Port Septa and Liner
 - Spare Sampling Vials and Septa
- Instruction Sheets and Manuals
 - "If every Trail fails, read the Manual"

Troubleshooting Steps

- Step 1 Inject Standard directly
- Step 2 Sample a clean Matrix
- Step 3 Analyze Fiber under previous used Conditions
 - No problem Investigate the Sample Matrix
 - Still problem \rightarrow Step 4
- Step 4 Check
 - Sampling vial, Fiber, Fiber Position

SPME Troubleshooting Guide Bulletin 928

- Troubleshooting Suggestions
- Isolating the Problem
- Tips for Problem Prevention
- Trouble Shooting Table
- Helpful Products

or

 Call our Technical Service for advice

Practical Guide to Quantification SPME Bulletin 929

- Quantification Guide Table
- Approaches to Quantification
- Tips for Improving Quantification

Summary

- Keep Parameters constant
 - Equilibrium / Kinetics
 - "Watch your T's!" Time, Technique, Temperature
- Adjust System for SPME
 - Liner, Column, Temp. program, Sample (ionic strength), Handling of fiber
- Calibration
 - Check matrix influence (external calibration or standard addition)
 - Calibration over whole sample system
 - Use internal Standards
 - Autosampler Use
- \rightarrow Get support from Supelco

Thank you!

