Stop the Bleed: Tips and Tricks on GC Column Bleed

Alexander Ucci Online Application Engineer January 27, 2021

Agenda

- What is column bleed?
- What is a bleed problem or an abnormal bleed?
- Preventive measures
- Low-bleed phases and column options

What is Normal Column Bleed?

Normal background signal is generated by the elution of normal degradation products from the column stationary phase. Column bleed is influenced by: Phase type

Column Bleed: What Causes It

What Column Types/Dimensions Produce Higher Bleed?

- Polarity: More polar = higher bleed
- Low polarity = More thermally stable
 - Look at temperature limits as a general indicator of thermal stability
- The more total mass of polymer in the column the higher the bleed (within a given phase)
 - Larger diameters
 - Longer columns
 - Thicker films

What is Column Bleed?

"Back biting" mechanism of product formation

DE44194.2740046296

Mass Spectrum of Phenylmethylpolysiloxane Column Bleed Normal background (HP-5ms UI)

DE44194.2740046296

Column Performance Testing

Performance Results		Compound Identification	Retent.	Part.	1/2-
T enformance Results		Compound Identification	Time	Ratio	Width
	3208	1. PROPIONIC ACID	1.543	0.30	0.027
Theoretical Plates/Meter:		2. 1-OCTENE	2.203	0.86	0.015
- DEGANE		3. n-OCTANE	2.282	0.92	0.016
n-DECANE		4. 1,3-PROPANEDIOL	2.552	1.15	0.020
		5. 4-METHYLPYRIDINE	3.051	1.57	0.021
		6. n-NONANE	3.738	2.15	0.027
		7. TRIMETHYLPHOSPHATE	4.482	2.78	0.033
Retention Index:	953.110 967.660	8. n-PROPYLBENZENE	5.193	3.38	0.038
		9. 1-HEPTANOL	5.682	3.79	0.041
		10. 3-OCTANONE	6.368	4.37	0.047
THEPTANOL		11. n-DECANE	6.940	4.85	0.053
	2.97	Test Conditions			
Resolution:		Inlet: Split (250°C) Detector	: FID	(325°C)	
1-OCTENE, n-OCTANE		Carrier Gas: Hydrogen Flow: 42.1 cm/sec (1.2 ml/min)			
		Holdup Compound: Penta	ne	(1.187-m	in)
		Temperature Program: Isothermal at	65°C		

Measuring Bleed

Generating a Bleed Profile

*Agilent J&W DB-1 30 m x .32 mm id, 0.25 µm Temperature program // 40 °C, hold 1 min // 20 °C/min to 320 °C, hold 10 min

What is a Bleed Problem?

An abnormal elevated baseline at high temperature

It is <u>not</u>:

- A high baseline at low temperature
- Wandering or drifting baseline at any temperature
- Discrete peaks

Troubleshooting Column Bleed

- Have you installed or conditioned the column?
- Are you exceeding the column's upper temperature limit?
- Is your column's film size too thick?
- Could leaks be present in your flow path, or are your carrier gases contaminated with air?
- Do you need to change your split vent trap?

Pay Attention to the Temperature Limits

Isothermal temperature limits

🕂 🔆 Agilent

Programmed temperature limit (<10 min)

Thermal Damage

Degradation of the stationary phase increases at higher temperatures

 Rapid degradation of the stationary phase (breakage along the polymer backbone) caused by excessively high temperatures

> Isothermal limit = indefinite time Programmed limit = 5–10 minutes

- Temporary "column failure" below lower temperature limit
- If this happens:
 - Disconnect column from detector
 - "Bake out" overnight at isothermal limit
 - Remove 10-15 cm from column end

Column continuously exposed to temperatures above its temperature limit

Oxidation (O₂ Damage)

Oxygen in the carrier gas rapidly degrades the stationary phase. The damage is accelerated at higher temperatures. Damage along the polymer backbone is irreversible. (Premature filament failure/excessive source maintenance.)

DE44194.2740046296

Decreased retention

Effect of Oxygen on Peak Shape of 2-Ethylhexanoic Acid

How to Prevent Column Damage by Oxygen

- High-quality carrier gas (four 9s or greater)
- Leak free injector and carrier lines
 - Change septa
 - Maintain gas regulator fittings
- Appropriate impurity traps

Efficient, fast, easy

Knowing If You Have a Leak Before Using Your GC

p/n CP17973

www.agilent.com/chem/gasclean

🔆 Agilent

DE44194.2740046296

Use Leak Detector or Electronics Duster to Find Your Leaks

Why use a leak detector?

- High sensitivity
- Recommended for leak detection in gas plumbing and fittings

Use electronics duster

- Hold can upright (don't spray liquid)
- Spray short bursts around possible leak points
- "Live" tune profiling for ions to pinpoint leak

Example Tune Report with Leak

Target m/z	Actual m/z	Abund	Rel Abund	Iso m/z	Iso Abund	Iso Ratio
69.00	69.00	498,432	100.0%	70.00	6,216	1.2%
219.00	219.00	391,232	78.5%	220.00	18,216	4.7%
502.00	502.00	23,680	4.8%	503.00	2,467	10.4%

Air/Water Check: H20 ~1.8% N2 ~42.1% O2 ~11.4% CO2 ~1.3% N2/H20 ~2325.0%

Column(1) Flow: 1.00 Column(2): 1.20 ml/min Interface Temp: 250

Graphite/Polyimide Blend Capillary Ferrules

- Unfortunately, a leak occurred following normal temperature program runs
- Studies show that leaking continues with use of the ferrules
 - Not just after the first one or two runs

Frequent retightening of the fitting is needed to maintain a leak-free seal, as well as system performance and productivity.

Column Installation: Self Tightening Column Nut

For mass spectrometry transfer line

- Spring-driven piston continuously presses against ferrule
- Automatically retightens when ferrule shrinks
- No leaks, no downtime, no frustration
- Wing design for finger tightening
- No tools needed
- No polymer materials for durability
- Compatible with **only** short graphite
- Vespel ferrules

Increasing Ease of Use Through Continued Innovation: Self Tightening Nuts

- Easier and faster to install
- Collar holds column in place
- Single-hand installation into inlet
- No tools needed

Stop the Bleed: Tipsand Trickson GC Column Bleed DE44194.2740046296

Self Tightening Nuts: No Leaks, No Downtime, No Frustration

- Spring-driven piston continuously presses against ferrule
- Automatically retightens when ferrule shrinks
- Wing design for finger tightening
- No tools needed

24

January 27, 2021

Part Number	Description
G3440-81013	Column Nut, Collared Self-Tightening MSD
G3440-81011	Column nut, Collared Self Tightening Inlet/Detect
G3440-81012	Collar for Self Tigthening Nut

https://www.agilent.com/en/video/gc-supplies-innovation https://www.agilent.com/en/video/stcn-inlet-detector https://www.agilent.com/en/video/stcn-mass-spec

Chemical Damage

Bonded and crosslinked columns have excellent chemical resistance, except for inorganic acids and bases.

HCI NH_3 KOH NaOH H_2SO_4 H_3PO_4 HF

Chemical damage will be evident through excessive bleed, lack of inertness, or loss of resolution/retention.

Column Bleed: What It is Not

DE44194.2740046296

Septum Maintenance: Septum Coring

- After many injections, pieces of rubber from the septum may break off and fall into the inlet liner
 - This is called septa coring
 - Replace the inlet septa and liner frequently to prevent septa contamination
 - Use a cone-tipped syringe to reduce the chance of tearing the septum
 - This is also very common when making multiple injections from the same vial
 - It is not column bleed even though it looks like it spectrally

Septum Maintenance: TIC of an Inlet Septum

Common lons for Siloxane Molecules: Septa contamination in wash vials or inlet liners can be diagnosed by looking for siloxane polymers in your total ion chromatogram. Each peak in the chromatogram corresponds to a cyclized (ring structure) siloxane molecule. These molecules fragment with very similar patterns.

Pick the Right Septa for Your Analysis

Multiple Injections From the Same Vial: Siloxanes

DE44194.2740046296

Low Bleed Phases

• Phases tailored to "mimic" currently existing polymers Examples: DB-5ms, DB-35ms, DB-17ms, VF-1701ms

Siarylene backbone

- New phases unrelated to any previously existing polymers Examples: DB-XLB
- Optimized manufacturing processes Examples: DB-1ms, HP-1ms, HP-5ms, VF-5ms

Agilent J&W DB-5ms Structure

- DB-5ms:
- Increased stability
- **Different selectivity**
- Optimized to match DB-5 as much as possible

DB-5ms vs. DB-5 Selectivity

Solid line: Agilent J&W **DB-5ms 30 m x 0.25 mm id x 0.25 mm** Dashed line: Agilent J&W **DB-5 30 m x 0.25 mm id x 0.25 mm** Oven: 60 °C isothermal Carrier gas: H_2 at 40 cm/s

1: Ethylbenzene
2: m-Xylene

3: p-Xylene 4: o-Xylene

DE44194.2740046296

Comparison of Agilent J&W DB-35MS vs Standard DB-35

Traditional WAX and Going Above the MAOT

Traditional WAX: Thermal Stability and Retention Time Shifting

🕂 Agilent

New J&W DB-HeavyWAX

The WAX column you've been waiting for

- Increased temperature range
 - 280 °C isothermal
 - 290 °C programmed
- Increased thermal stability
- Lower bleed

www.agilent.com/chem/db-heavywax

Bleed Summary at 280 °C Over 100 Hours

DB-HeavyWAX

8 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 2.8 2.9 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 3 3.9 4.9 5 5.1 5.2 6.1 6.2 6.3 4 53 54 55 56 57 5.8 50

DE44194.2740046296

Benefits of Low Bleed

Pyrolysis gasoline

- ASTM D6563
- Heavier aromatic compounds
- Lower bleed at 280 °C than traditional WAX at 250 °C

GC Conditions		
Column	$60m \ x \ 0.25 \ mm \ x \ 0.25 \ \mu m$	
Carrier	Helium, constant flow, 1.2 mL/min	
Oven	70 °C (10.0 min), ramp 5 °C/min to 280 °C (30 min)	

- Increased sensitivity for later eluting compounds
- Increased column lifetime

Pyrolysis Gasoline

It Is a WAX

Application note: 991-9078EN

Benefits of the J&W DB-HeavyWAX

- Increased Thermal Stability
 - Stable Retention Times
 - Consistent Peak Order
- Deceased Column Bleed
 - Greater sensitivity for "heavier" compounds
 - Increase analyte range
 - Decrease analysis time
 - Safely bake out column
 - Up to 290 °C
- Behaves like a WAX because it is a WAX
 - Simpler method translation

Increased thermal stability + decreased column bleed = longer lifetime

Increased temperature range

- 280°C isothermal
- 290 °C programmed

Always Remember

- Column bleed is expected and will never show up as a discrete peak
- Bleed is influenced by column dimensions
- Avoid thermal, chemical, and oxygen damage
- Be careful not to overtighten or overuse GC septa
- Consider a low-bleed column alternative

January 27, 2021

Contact Agilent Chemistries and Supplies Technical Support

1-800-227-9770 Option 3, Option 3:

Option 1 for GC and GC/MS columns and supplies Option 2 for LC and LC/MS columns and supplies Option 3 for sample preparation, filtration, and QuEChERS Option 4 for spectroscopy supplies Option 5 for chemical standards Available in the USA and Canada 8–5, all time zones

gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com

