Basic Capillary GC Theory and Practical Troubleshooting

Part 4, Troubleshooting

Katherine K. Stenerson Supelco, 595 North Harrison Road, Bellefonte, PA 16823

T404077 HCE

sigma-aldrich.com

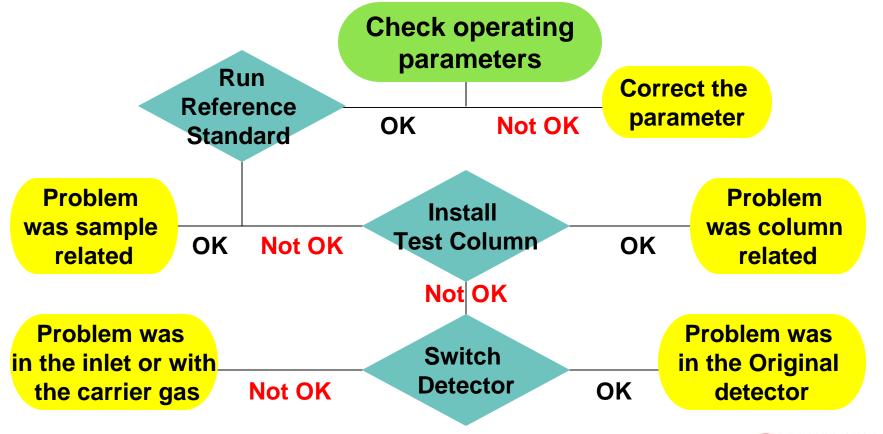
GC Troubleshooting: Topics

Basic Troubleshooting Strategy

Preventing Problems

- Gas Purification
- Injection Technique
- Liner Selection and Care
- Column Installation
- Guard Columns
- Identifying Common Problems
- Recommended Reading
- Discussion

- Have appropriate equipment and supplies on hand.
- Establish a systematic approach.
- Know what to look for first.
- Record what you did to correct the problem.



Suggested equipment to have on hand for troubleshooting:

- Electronic Leak Detector
- Flow Meter
- "Test" Column
- Replacement Accessories (Syringes, Ferrules, Septa, Liners)
- Replacement Purifiers

Isolate the source of the problem:

• Approaching the problem...

- Check first to see if a "fix" for the problem is already known.
- Check the Supelco Capillary GC Troubleshooting Guide (Bulletin 853.)
- Check the instrument maintenance record.
- Talk to others in your lab.

• Five major sources of chromatographic problems:

- Operator Error
- The Sample
- The Column
- The Gas Flow System (both internal and external to the GC)
- The GC Electrical System

- When reviewing method parameters, consider these questions:
 - Should I be doing split or splitless injection?
 - Is my starting temperature low enough to allow sufficient sample focusing?
 - For splitless injections, is my splitter opening at the appropriate time?
 - Is my column flow set to give me maximum efficiency at the most critical point?
 - Are heated zones (injectors, detectors, interfaces) set appropriately?
 - Am I using the appropriate liner type?

Preventing Problems

• The best way to solve problems is to prevent them!

- Install and maintain proper purification for all gases in the GC system.
- Maintain the injector by periodically inspecting and changing the liner, septa, and seal.
- Use the proper injection technique this includes using the right liner for the job.
- Install the column at the recommended insertion distances.
- When necessary, use a guard column to protect the analytical column.

Carrier Gas

- At minimum, remove hydrocarbons, water, and oxygen.

Hydrogen (FID)

- At minimum, remove hydrocarbons.

• Air (FID)

- At minimum, remove water and hydrocarbons.
- Nitrogen make-up (FID, ECD)
 - At minimum, remove hydrocarbons.

P-5 make-up (ECD)

- At minimum remove hydrocarbons, halocarbons, and oxygen.

Acceptable purity levels for chromatography grade gases:

					Total
Gas	O2	H2O	CO2	СО	Hydrocarbons
Helium	<1.0 ppm				
Nitrogen	<1.0 ppm				
Air	20-22%	<1.0 ppm	<1.0 ppm	<1.0 ppm	<1.0 ppm
Hydrogen	<1.0 ppm				
Argon/					
Methane	<1.0 ppm				

Impurity / Maximum Concentration

• Suggested gas purifiers:

	Hydrocarbons	Water	Oxygen	
Carrier	Supelcarb™ HC Supelpure™ HC	Mol Sieve 5A	OMI™-2	
H ₂				
Air		Mol Sieve 5A		
N ₂ makeup	•			
P-5	OMI™-2		OMI™-2	

 What are some signs that my purifiers need to be changed?

Hydrocarbon Traps

- Noise in the baseline (FID)
- Increase in background peaks on tune (MSD)
- Higher than normal baseline reading on FID
- Extra peaks visible in run

Molecular Sieve 5A

- Increase in column bleed
- Water visible in MS background
- Poor peak shapes for gaseous
 VOCs (purge and trap)
- Extra peaks visible in run
- OMI[™]-2 color change

Injector Maintenance

• Change (as needed):

- Septa
- Liner and O-ring
- Seal and washer

Inspect the Inlet Periodically

- Look for contamination in the liner
- Look for residue on the seal

- It is important to choose the injection technique that is appropriate for your analysis. In Capillary GC, the techniques used are:
 - Split
 - Splitless
 - Direct
 - On-column

Split Injection

- A vaporizing type injection designed to limit the amount of sample reaching the capillary column.
- Sample is split and a small portion flows to the column while the bulk is typically vented through the split vent port.
- Split injection can be used in an isothermal or temperature programmed analysis.

Splitless Injection

- Sample is introduced into a heated injection port operating in a nonsplitting mode.
- Sample vaporizes and sample cloud is mixed with carrier gas and transferred into the column.
- Sample condenses on head of the capillary column due to the oven temperature being 10-20°C below matrix solvent boiling point.
- After 1.5 to 2 injector volumes have entered the column, split vent is opened and inlet purged.

• The volume of a splitless liner is important:

Typical Splitless Injection Liner Volumes

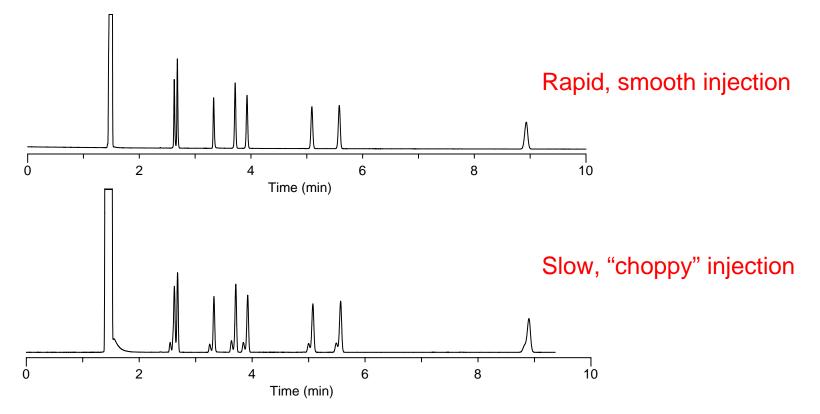
Liner Length	Liner ID	Liner Volume		
78.5mm	4.0mm	986µL		
78.5mm	2.0mm	246µL		
78.5mm	1.0mm	62µL		

 Solvent expansion volumes of 1µL injection at specified temperatures and pressures:

		200°C Inlet			300°C Inlet Temp.			
		Head pressure			Head pressure			
Solvent	BP (°C)	10	20	30	10	20	30	
Ethyl acetate	77	236	168	131	286	204	58	
Hexane	68.7	177	126	98	214	153	119	
Isooctane	99.2	140	100	77	170	121	94	
Methanol	64.5	570	406	315	691	492	382	
chloride	40.1	360	257	200	437	311	241	
MTBE	55	194	138	108	235	167	130	
Water	100	1279	910	706	1548	1102	855	

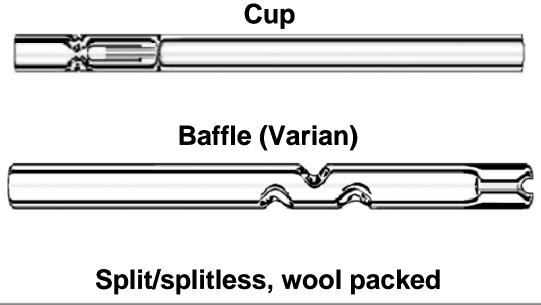
Direct Injection

- A vaporizing type injection typically used with wide bore capillary columns in a converted packed column GC.
- Sample is injected into a heated injection sleeve, vaporized, and transported directly to the column in the carrier gas flow.
 Similar to a packed column flash vaporization injector.
- Analyses can be isothermal or temperature programmed.



Cold On-Column Injection

- A non-vaporizing type injection in which the liquid sample is directly deposited at the inlet of the capillary columns.
- All analyses are temperature programmed analyses since a liquid sample is deposited in the column.
- No liners are typically required.
- Special syringes are required.
- 0.53mm ID fused silica created to allow insertion of 26 gauge needle into column.



Injection speed can have an effect.

• Some liners used for split injection:

• Some liners used for splitless injection:

2 mm ID, straight

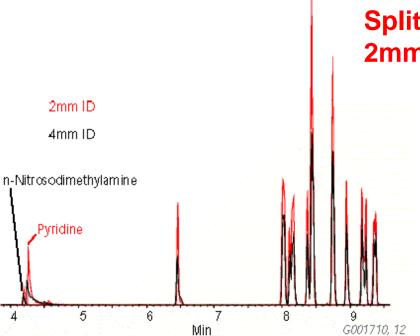
Dual-tapered

Single-tapered

Packed liners, PROs and CONs:

PROs

- Packing liners helps aid in the vaporization process
- Packing liners can help improve reproducibility of area counts by minimizing droplets reaching the head of the column
- Packing can act as a particle trap


CONs

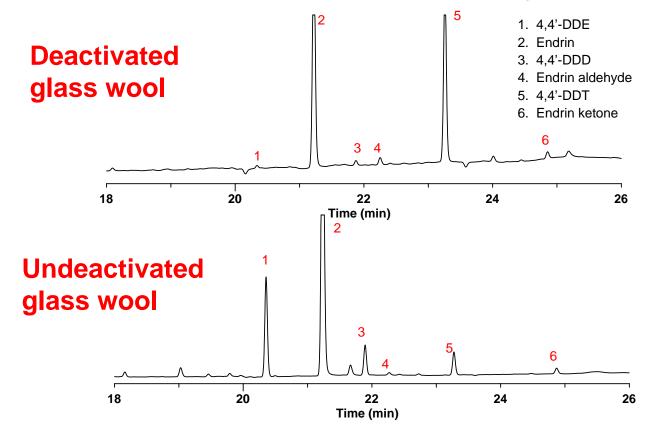
- The packing does act as a short packed column and can influence results
- Can cause discrimination of higher molecular weight compounds
- Can cause adsorption & sample degradation

• The ID of the liner can affect sensitivity:

The Use of a 2mm ID Liner will Increase Sensitivity for the Lighter Analytes

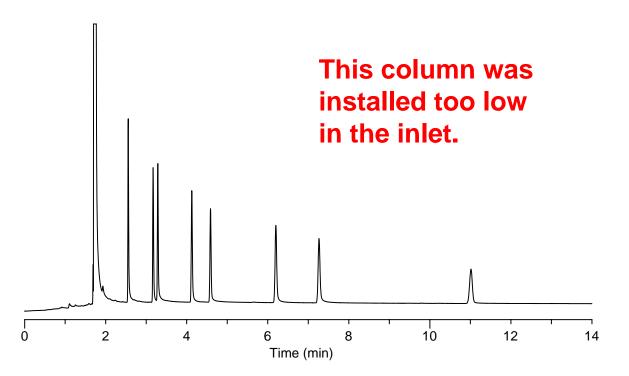
Splitless injection, 2mm vs. 4mm ID liner

Liner Care


• If you must clean a liner....

- Handle liners with gloves or forceps.
- Use clean compressed gas and/or a fine brush to remove particles.
- Rinse liner in an appropriate solvent and dry with clean compressed gas.
- Use mineral acid and/or detergent only if absolutely necessary. Be sure to deactivate the liner after after this process.
- If repacking with glass wool, make sure it has been deactivated.

Liner Care


 The results of using undeactivated glass wool in 4mm ID liner used for pesticide analysis:

Column Installation

 Installing the column too low in the inlet can result in peak tailing.

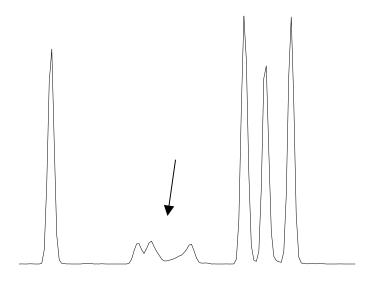
Guard Columns

- Choose a guard column that has been deactivated.
- Usually, the ID of the guard matches the analytical column.
- A 5-10 meter length is normally used.
- Connect with either a GlasSeal[™] or butt connector.

Common Problems

- 1. Poor Peak Shapes (either tailing, fronting, or just generally ugly.)
- 2. Nonlinearity
- 3. Baseline Noise and /or Drift
- 4. Ghost Peaks
- **5.** Missing Peaks / Poor Response
- 6. Insufficient Resolution

Poor Peak Shape

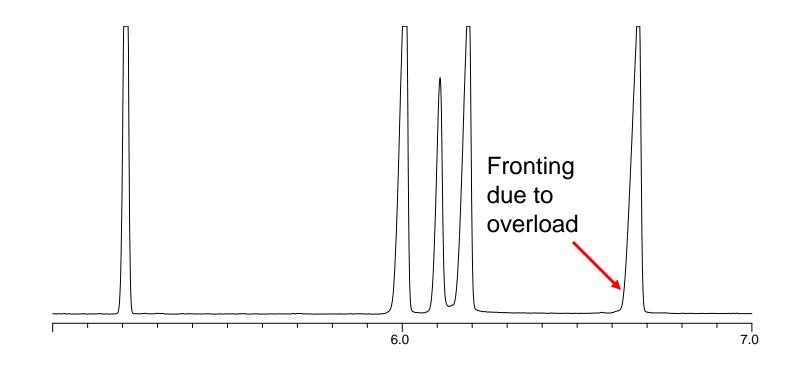

In Gas-liquid chromatography, fronting may indicate column overload.

 Tailing may indicate activity in the system or improper column installation.

Poor Peak Shape

• Generally ugly peaks, such as α , α -dimethylphenethylamine, can be caused by a variety of problems.

Nonlinearity


• The most common causes are:

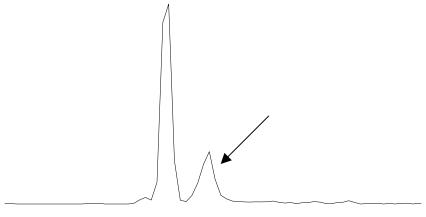
- Column overload
- Detector overload
- Standards preparation
- Poor peak shape resulting in improper integration

Nonlinearity and Column Overload

• An Example of Column Overload:

An Example of Column Overload:

• Preventing column overload:


- Inject a smaller amount and/or increase split ratio.
- Use a thicker film column.
- Use a column with a wider ID.
- Decrease upper limit of calibration range.
- Use a column of slightly different polarity.

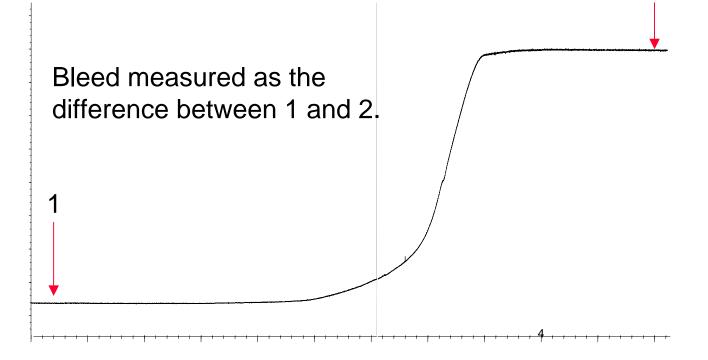
Nonlinearity and Poor Peak Shape

• An example of poor peak shape affecting linearity:

 The poor peak shape of benzoic acid here is caused by solubility problems with the 5% phenyl methylpolysiloxane phase.

Baseline Noise and Drift

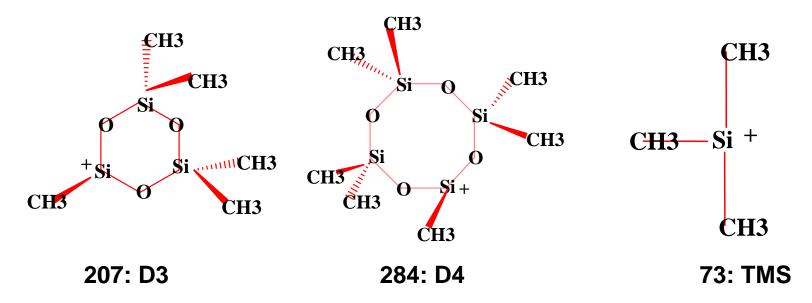
Common causes:


- Column bleed
- Septa bleed
- Dirty detector
- Contaminants in carrier gas / carrier gas purity

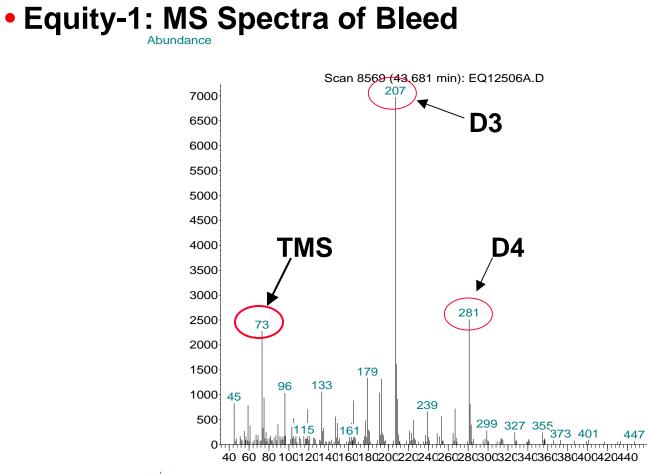
- Results from the normal degradation of the stationary phase.
- All columns bleed to some extent.
- Bleed increases with temperature.
- The amount of bleed will increase in the presence of oxygen.

• A Typical Bleed Profile:

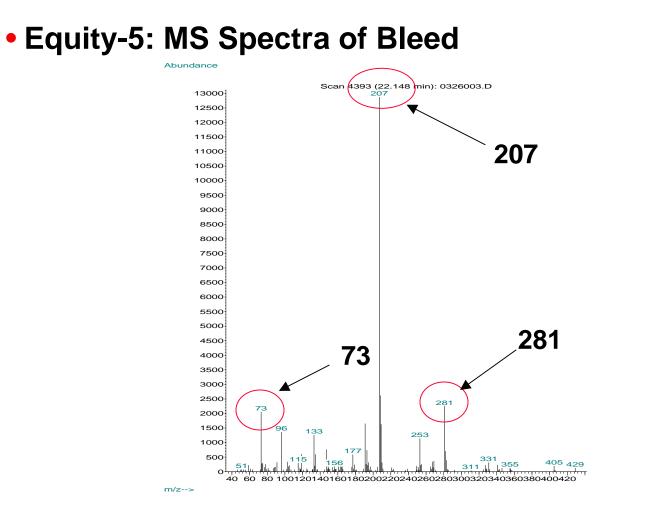
2


Column bleed and an MSD:

- Visible as baseline rise in the TIC.
- Check spectra for key bleed ions:
 - Equity-1: 73, 207, 281
 - Equity-5: 207, 281
 - Equity-1701: 207, 269
 - SPB[™]-624: 207, 269


• Make sure interface temp. is < column max. temp.

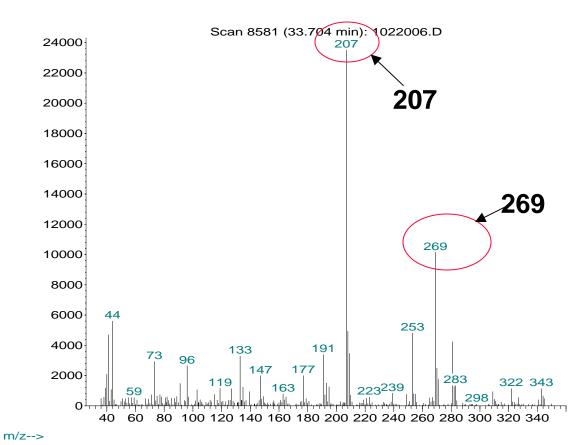
Common Bleed Ions



SUPELCO

m/z-->

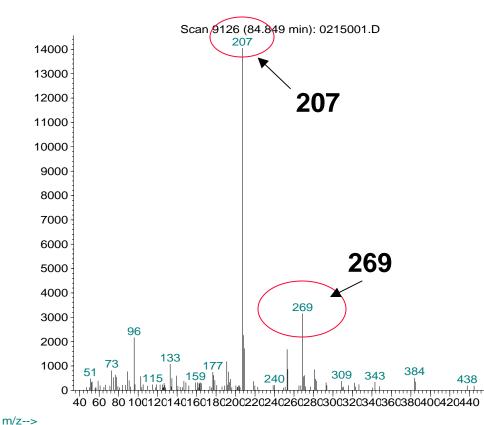
sigma-aldrich.com



sigma-aldrich.com

SPB[™]-624: MS Spectra of Bleed

Abundance

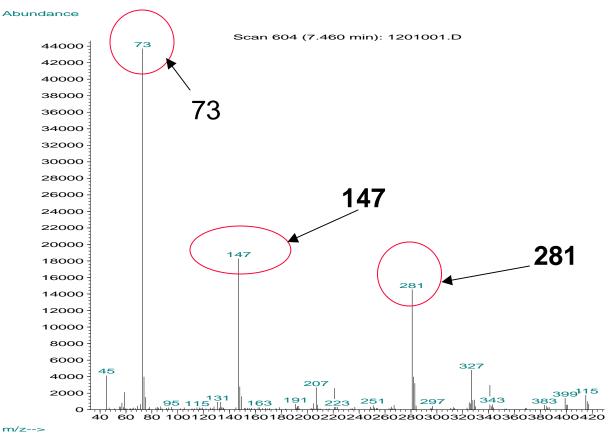


SUPELCO

sigma-aldrich.com

• Equity-1701: MS Spectra of Bleed

Abundance

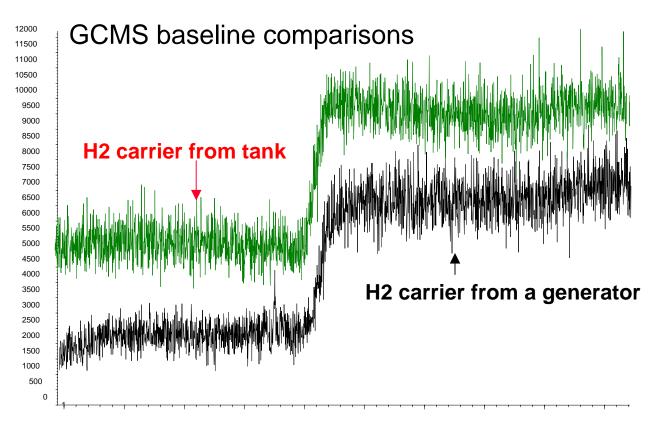


m/2

Septa Bleed

Septa Bleed: MS Spectra

Column & Septa Bleed

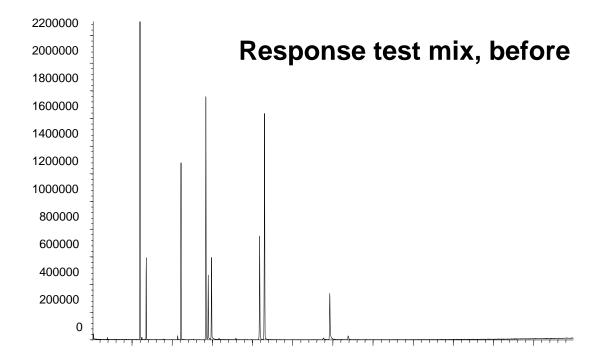

• Minimize bleed!

- Sufficiently purge column with carrier gas before ramping it up in temperature.
- Make sure carrier gas is scrubbed for water and oxygen.
- Check integrity of all fittings leading to the column.
- Do not heat the column above its maximum temp.
- Precondition the column prior to use.
- Use a high quality, high temperature septa and ferrules.

Baseline Noise and Drift

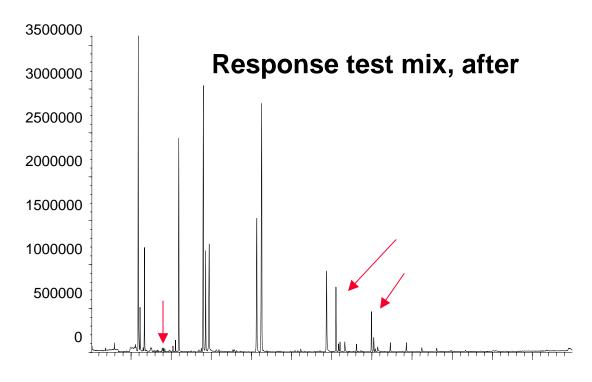
Effect of carrier gas purity on baseline noise:

Ghost Peaks


Possible causes:

- Residue in the inlet liner and at the head of the column
- Contaminated syringe / and or wash solutions on an autosampler
- Sample carryover
- Contaminated carrier gas

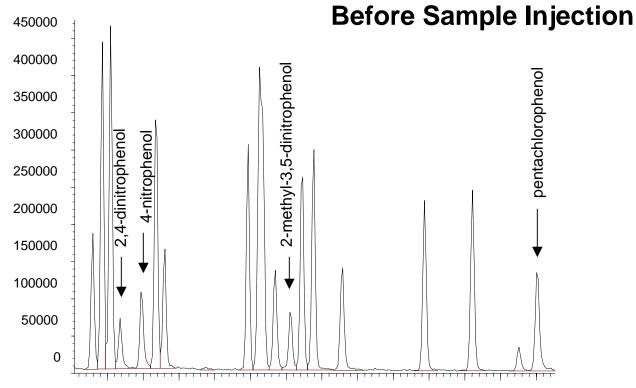
Ghost Peaks


• If pieces of septa get into an inlet liner...

Ghost Peaks

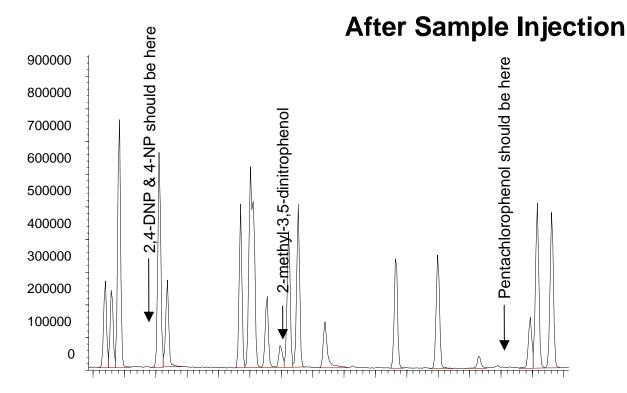
...even a simple analysis can be ruined.

Time-->

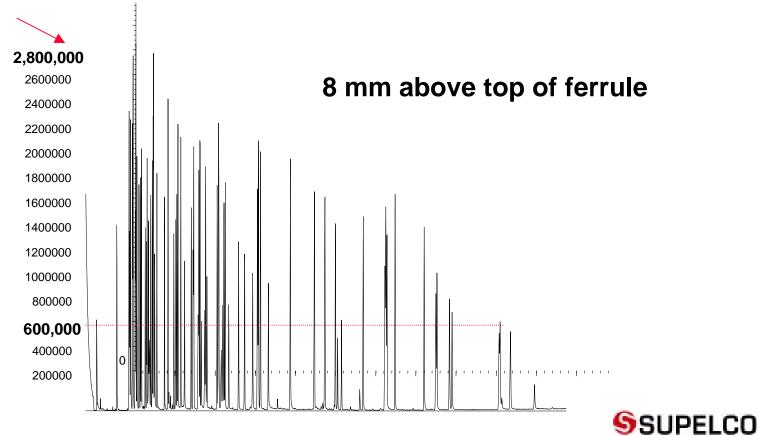


Sample decomposition

- Activity in the inlet or column
- Injection port temperature too high
- Sample not stable enough for GC
- Standards not stable
- Coelution
- Insufficient run time / final temperature
- Sample not volatile enough for GC
- Improper column installation

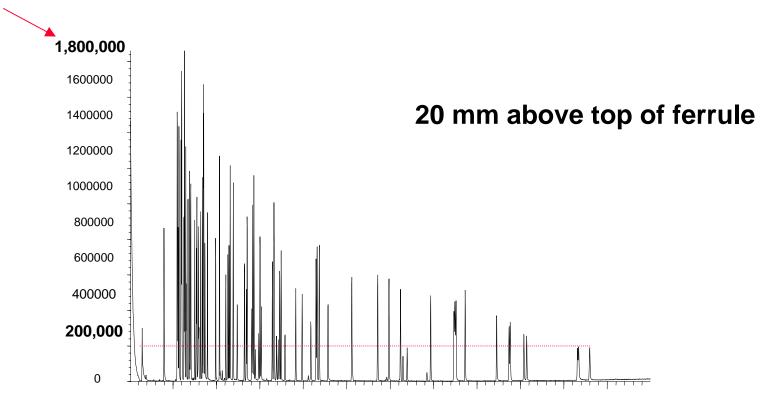

Nasty samples can damage a column by creating active sites.

Responses of some acidic compounds were affected.


Abundance

SUPELCO

Time-->


 Response can also be affected by the position of the column in the inlet.

Insufficient Resolution

Column

- Longer columns increase resolution
- Smaller ID columns increase resolution
- A different phase altogether may be needed

Conditions

- Carrier gas flow too fast or slow
- Oven ramp rate too fast
- Wrong starting or ending temperature

Supelco Bulletins

- 741: The Supelco Guide to Leak-Free Connections
- **783: Cleaning Flame Ionization Detectors**
- 853: Capillary Troubleshooting Guide
- 875: Supelco Capillary GC Selection Guide
- 895: Installation and Maintenance Instructions for 0.25 mm and 0.32 mm ID Fused Silica Capillary Columns
- 897: Installation and Maintenance Instructions for 0.53 mm ID Fused Silica Capillary Columns
- 898: Gas Management Systems for GC
- 899: Capillary GC Inlet Sleeve Selection Guide
- 916: Purge and Trap System Guide
- 918: Selecting Purifiers for Gas Chromatography

Supelco Service

Supelco Technical Service

- phone: 1-800-359-3041 (US only), 814-359-3041
- email: techservice@supelco.sial.com

Supelco Customer Service

- phone: 1-800-247-6628 (US only), 814-359-3441
- email: <u>supelco@sial.com</u>

Sigma-Aldrich Website

- www.sigma-aldrich.com

Discussion

