Přihlášení
Registrace
Nastavení
Filtrování
Filtrování
Obnova hesla
Obnova hesla
21. Škola hmotnostní spektrometrie: Orbitální pasti ve vývoji biofarmak
St, 16.9.2020
| Originální článek z: Pragolab/Lukáš Plaček
V přednášce na 21. Škole hmotnostní spektrometrie se zameříme na podporu a implementaci moderních chromatografických a hmotnostně spektrometrických postupů v charakterizaci a kvantifikaci biofarmak a nečistot.

Pragolab: Orbitální pasti ve vývoji biofarmak

Biofarmaka zaujímají vedle kompletně synteticky připravených látek významnou a stále expandující oblast na poli léčiv. Může se jednat o krev a krevní komponenty, buňky, tkáně, vakcíny či celé živé organismy, ale hlavně monoklonální protilátky (mAb, struktura proteinu) a fúzní proteiny, které na trhu podle serveru Pharmacompass.com dominují. Díky nim se poslední léta biofarmaka umísťují v žebříčcích nejprodávanějších (dle objemu peněz) léčiv na předních příčkách a v loňském roce se jich v prvních deseti umístilo úctyhodných šest (viz Obr. 1). Biologická léčba (tedy taková, kde jsou použita biofarmaka) našla nezastupitelnou roli ve zvyšování kvality života při onkologické a imunologické terapii nejen díky své efektivitě, ale hlavně díky minimalizaci vedlejších účinků.

Obr. 1: nejprodávanější léčiva/účinné látky roku 2019 dle serveru pharmacompass.com

Vakcíny nikdy nepatřily k hlavním tahounům farmaceutického průmyslu, což se však může brzy změnit díky současnému koronavirovému rozšíření (milovníci konspiračních teorií zvedají obočí). Nelze opomenout fakt, že významní potenciální producenti očkovacích agens proti SARS-CoV-2 viru nekonstruují vakcínu na bázi oslabených či mrtvých virů jak je běžně zvykem, ale na základě produkce (in vitro v bioreaktorech nebo in vivo v těle po vakcinaci) tzv. spike proteinů („satelitní struktury“ na povrchu viru, viz Obr. 2), které mají přítomnost koronaviru navodit a nastartovat kýženou imunitní reakci.

Obr. 2: skladba SARS-CoV-2 viru spolu s proteinovými strukturami (N Engl J Med 2020; 382:2261-2264)

V kontextu s výše uvedenými skutečnostmi stojí analytičtí chemici před úkolem, jak zvládnout charakterizaci a následnou kvantifikaci účinných látek a potenciálních nečistot. Specialisté přicházející z prostředí ortodoxních molekulárně biologických technik nastavili a formálně v direktivách ukotvili praktická a v jistých mezích i dostatečná kritéria s pomocí technik jako je ELISA a SDS-PAGE. Jiní specialisté (léta bičovaní regulemi jakosti syntetických molekul), kteří využívají moderní chromatografické postupy s vysoko rozlišující hmotnostní spektrometrií (HRMS) bývají často zaskočeni, udiveni a navrhují nekompromisní zásahy založené na masivním využití platformy HRMS. Vždyť i k biologickým léčivům lze přistupovat v komplexním analytickém pojetí (i nejprodávanější účinnou bio-látku adalimumab lze popsat sumárním vzorcem C6428H9912N1694O1987S46).

První logický krok s HRMS přístupem se nabízí provést chromatografickou separaci na reverzní fázi s následnou hmotnostně spektrometrickou analýzou. Zde platí pravidlo o nastavení co největšího rozlišení na hmotnostním spektrometru (běžně 150 000, nejlépe > 200 000 FWHM), čemuž vyhovují spektrometry s iontovou cyklotronou rezonancí nebo orbitální pastí. Díky cenové dostupnosti, bench-top uspořádání a nízkým provozním nákladům se orbitrapy (viz Obr. 3) stávají první volbou. Krásně vykreslená obálka různých nábojových stavů monoklonální protilátky ve stavu denaturovaném a nativním je znázorněna na Obr 4. Zajímavé zjištění přinese zoom jednoho nábojového klastru, resp. spektrum po dekonvoluci, kde lze elegantně pozorovat glykosylační adukty (lišící se počtem navázaných galaktózových jednotek, tj. s hmotnostním rozdílem 162), produkty posttranslační modifikace při bioprodukci. Detailní studium glykosylace může být provedeno iontově chromatografickou separací po kyselé hydrolýze (analýza monosacharidů)) nebo po glykosidázovém štěpení (analýza glykanů/oligosacharidů) nebo proteomickým bottom-up přístupem.

Obr. 3: hmotnostní spektrum adalimumabu, ESI+, rozlišení 200 000 FWHM, orbitální past

Obr. 4: princip detekce a zpracování signálu na orbitální iontové pasti

Další krok při charakterizaci biofarmak by měl směřovat k ortogonální separaci (proti reverzní fázi) na iontoměniči. Protože monoklonální protilátky a fúzní proteiny mají díky přítomnosti amino- a karboxylových skupin dostatečný náboj v širokém rozmezí pH, očekává se zajímavý profil, neboť na základě poznatků z glykosylačních studií podléhají biofarmaka rozsáhlým posttranslačním modifikacím.

Obr. 5: glykosylační adukty adalimumabu (lišící se počtem navázaných galaktózových jednotek, tj. s hmotnostním rozdílem 162), produkty posttransalční modifikace při bioprodukci

Výsledek je bez zardění překvapující. Díky vazbě až dvou molekul lysinu na C-konce protilátky a procesu vícenásobné deamidace aminokyselin asparaginu a glutaminu v řetězci proteinu dochází k tvorbě (a nikoliv na úrovni stopových množství) k řadě různě nabitých variant oddělitelných jak chromatograficky tak i hmotnostně spektrometricky, viz Obr. 6, 7 a 8.

Obr. 6: chromatografická separace finální monoklonální protilátky na iontoměniči odhalující přítomnost nábojových variant

Obr. 7: chromatografická separace adalimumabu na iontoměniči odhalující přítomnost nábojových variant (deamidace + lysinové modifikanty); HRMS spektrum dokladuje charakterizaci trojnásobného deamidačního produktu, navíc glykosylovaného, na nízké koncentrační úrovni

Obr. 8: profily jednotlivých finálních forem komerčně dostupných biofarmak z pohledu přítomnosti nábojových variant z procesu posttranslační modifikace

Studium dalších a dalších modifikací biofarmak se zdá být bezbřehé. S orbitálními pastmi lze odhalovat oxidace na methioninu a tryptofanu, tvorbu pyroglutamátů nebo např. rozpad disulfidické vazby; významná kapitola odhalování nečistot při bioprocesu je také detekce a následná eliminace proteinů z hostitelské buňky (host cell proteins). Podpora a implementace moderních chromatografických a hmotnostně spektrometrických postupů se stává klíčem k úspěšnému analytickému zvládnutí problematiky charakterizace a kvantifikace biofarmak a příbuzných nečistot.

Spektroskopická společnost Jana Marka Marci
 

Mohlo by Vás zajímat

VITATOX 2020: Nové plynové chromatografy Agilent 8890, 8860 Intuvo 9000

Prezentace
| 2020 | Ostatní
Instrumentace
GC
Výrobce
Agilent Technologies
Zaměření
---

VITATOX 2020: Specifika přípravy vzorku v analýze potravin a krmiv

Prezentace
| 2020 | Ostatní
Instrumentace
Příprava vzorků
Výrobce
---
Zaměření
Potraviny a zemědělství

VITATOX 2020: Novinky v chromatografickém spotřebním materiálu - ANALYTICKÉ KOLONY

Prezentace
| 2020 | Ostatní
Instrumentace
GC kolony, Spotřební materiál, LC kolony
Výrobce
Thermo Fischer Scientific
Zaměření
---
 

Podobné články

Článek | Akademie

Elektroforéza – úspěšná analytická metoda

Vznik elektroforézy jako analytické separační metody je datován do roku 1937, kdy Arne Tiselius publikoval práci o elektroforetické separaci proteinů v krevním séru.
Článek | Popularizace

Hmotnostní spektrometrie a velké molekuly

Ionizační metody analýzy biologických makromolekul. Málokdy se stává, aby cenu sdíleli dva vědci, z nichž jeden je bezmála dvakrát tak stár než druhý – Johnu Fennovi je 85 let, K. Tanakovi jen 43.
Článek | Různé

Fyziologický ústav AV ČR: Místo, kde se přichází na kloub civilizačním chorobám

Nervová soustava, kardiovaskulární fyziologie a metabolismus – v třítaktním rytmu bije srdce Fyziologického ústavu AV ČR, který patří mezi přední vědecké instituce na poli biomedicínského výzkumu.
21. Škola hmotnostní spektrometrie: Orbitální pasti ve vývoji biofarmak
St, 16.9.2020
| Originální článek z: Pragolab/Lukáš Plaček
V přednášce na 21. Škole hmotnostní spektrometrie se zameříme na podporu a implementaci moderních chromatografických a hmotnostně spektrometrických postupů v charakterizaci a kvantifikaci biofarmak a nečistot.

Pragolab: Orbitální pasti ve vývoji biofarmak

Biofarmaka zaujímají vedle kompletně synteticky připravených látek významnou a stále expandující oblast na poli léčiv. Může se jednat o krev a krevní komponenty, buňky, tkáně, vakcíny či celé živé organismy, ale hlavně monoklonální protilátky (mAb, struktura proteinu) a fúzní proteiny, které na trhu podle serveru Pharmacompass.com dominují. Díky nim se poslední léta biofarmaka umísťují v žebříčcích nejprodávanějších (dle objemu peněz) léčiv na předních příčkách a v loňském roce se jich v prvních deseti umístilo úctyhodných šest (viz Obr. 1). Biologická léčba (tedy taková, kde jsou použita biofarmaka) našla nezastupitelnou roli ve zvyšování kvality života při onkologické a imunologické terapii nejen díky své efektivitě, ale hlavně díky minimalizaci vedlejších účinků.

Obr. 1: nejprodávanější léčiva/účinné látky roku 2019 dle serveru pharmacompass.com

Vakcíny nikdy nepatřily k hlavním tahounům farmaceutického průmyslu, což se však může brzy změnit díky současnému koronavirovému rozšíření (milovníci konspiračních teorií zvedají obočí). Nelze opomenout fakt, že významní potenciální producenti očkovacích agens proti SARS-CoV-2 viru nekonstruují vakcínu na bázi oslabených či mrtvých virů jak je běžně zvykem, ale na základě produkce (in vitro v bioreaktorech nebo in vivo v těle po vakcinaci) tzv. spike proteinů („satelitní struktury“ na povrchu viru, viz Obr. 2), které mají přítomnost koronaviru navodit a nastartovat kýženou imunitní reakci.

Obr. 2: skladba SARS-CoV-2 viru spolu s proteinovými strukturami (N Engl J Med 2020; 382:2261-2264)

V kontextu s výše uvedenými skutečnostmi stojí analytičtí chemici před úkolem, jak zvládnout charakterizaci a následnou kvantifikaci účinných látek a potenciálních nečistot. Specialisté přicházející z prostředí ortodoxních molekulárně biologických technik nastavili a formálně v direktivách ukotvili praktická a v jistých mezích i dostatečná kritéria s pomocí technik jako je ELISA a SDS-PAGE. Jiní specialisté (léta bičovaní regulemi jakosti syntetických molekul), kteří využívají moderní chromatografické postupy s vysoko rozlišující hmotnostní spektrometrií (HRMS) bývají často zaskočeni, udiveni a navrhují nekompromisní zásahy založené na masivním využití platformy HRMS. Vždyť i k biologickým léčivům lze přistupovat v komplexním analytickém pojetí (i nejprodávanější účinnou bio-látku adalimumab lze popsat sumárním vzorcem C6428H9912N1694O1987S46).

První logický krok s HRMS přístupem se nabízí provést chromatografickou separaci na reverzní fázi s následnou hmotnostně spektrometrickou analýzou. Zde platí pravidlo o nastavení co největšího rozlišení na hmotnostním spektrometru (běžně 150 000, nejlépe > 200 000 FWHM), čemuž vyhovují spektrometry s iontovou cyklotronou rezonancí nebo orbitální pastí. Díky cenové dostupnosti, bench-top uspořádání a nízkým provozním nákladům se orbitrapy (viz Obr. 3) stávají první volbou. Krásně vykreslená obálka různých nábojových stavů monoklonální protilátky ve stavu denaturovaném a nativním je znázorněna na Obr 4. Zajímavé zjištění přinese zoom jednoho nábojového klastru, resp. spektrum po dekonvoluci, kde lze elegantně pozorovat glykosylační adukty (lišící se počtem navázaných galaktózových jednotek, tj. s hmotnostním rozdílem 162), produkty posttranslační modifikace při bioprodukci. Detailní studium glykosylace může být provedeno iontově chromatografickou separací po kyselé hydrolýze (analýza monosacharidů)) nebo po glykosidázovém štěpení (analýza glykanů/oligosacharidů) nebo proteomickým bottom-up přístupem.

Obr. 3: hmotnostní spektrum adalimumabu, ESI+, rozlišení 200 000 FWHM, orbitální past

Obr. 4: princip detekce a zpracování signálu na orbitální iontové pasti

Další krok při charakterizaci biofarmak by měl směřovat k ortogonální separaci (proti reverzní fázi) na iontoměniči. Protože monoklonální protilátky a fúzní proteiny mají díky přítomnosti amino- a karboxylových skupin dostatečný náboj v širokém rozmezí pH, očekává se zajímavý profil, neboť na základě poznatků z glykosylačních studií podléhají biofarmaka rozsáhlým posttranslačním modifikacím.

Obr. 5: glykosylační adukty adalimumabu (lišící se počtem navázaných galaktózových jednotek, tj. s hmotnostním rozdílem 162), produkty posttransalční modifikace při bioprodukci

Výsledek je bez zardění překvapující. Díky vazbě až dvou molekul lysinu na C-konce protilátky a procesu vícenásobné deamidace aminokyselin asparaginu a glutaminu v řetězci proteinu dochází k tvorbě (a nikoliv na úrovni stopových množství) k řadě různě nabitých variant oddělitelných jak chromatograficky tak i hmotnostně spektrometricky, viz Obr. 6, 7 a 8.

Obr. 6: chromatografická separace finální monoklonální protilátky na iontoměniči odhalující přítomnost nábojových variant

Obr. 7: chromatografická separace adalimumabu na iontoměniči odhalující přítomnost nábojových variant (deamidace + lysinové modifikanty); HRMS spektrum dokladuje charakterizaci trojnásobného deamidačního produktu, navíc glykosylovaného, na nízké koncentrační úrovni

Obr. 8: profily jednotlivých finálních forem komerčně dostupných biofarmak z pohledu přítomnosti nábojových variant z procesu posttranslační modifikace

Studium dalších a dalších modifikací biofarmak se zdá být bezbřehé. S orbitálními pastmi lze odhalovat oxidace na methioninu a tryptofanu, tvorbu pyroglutamátů nebo např. rozpad disulfidické vazby; významná kapitola odhalování nečistot při bioprocesu je také detekce a následná eliminace proteinů z hostitelské buňky (host cell proteins). Podpora a implementace moderních chromatografických a hmotnostně spektrometrických postupů se stává klíčem k úspěšnému analytickému zvládnutí problematiky charakterizace a kvantifikace biofarmak a příbuzných nečistot.

Spektroskopická společnost Jana Marka Marci
 

Mohlo by Vás zajímat

VITATOX 2020: Nové plynové chromatografy Agilent 8890, 8860 Intuvo 9000

Prezentace
| 2020 | Ostatní
Instrumentace
GC
Výrobce
Agilent Technologies
Zaměření
---

VITATOX 2020: Specifika přípravy vzorku v analýze potravin a krmiv

Prezentace
| 2020 | Ostatní
Instrumentace
Příprava vzorků
Výrobce
---
Zaměření
Potraviny a zemědělství

VITATOX 2020: Novinky v chromatografickém spotřebním materiálu - ANALYTICKÉ KOLONY

Prezentace
| 2020 | Ostatní
Instrumentace
GC kolony, Spotřební materiál, LC kolony
Výrobce
Thermo Fischer Scientific
Zaměření
---
 

Podobné články

Článek | Akademie

Elektroforéza – úspěšná analytická metoda

Vznik elektroforézy jako analytické separační metody je datován do roku 1937, kdy Arne Tiselius publikoval práci o elektroforetické separaci proteinů v krevním séru.
Článek | Popularizace

Hmotnostní spektrometrie a velké molekuly

Ionizační metody analýzy biologických makromolekul. Málokdy se stává, aby cenu sdíleli dva vědci, z nichž jeden je bezmála dvakrát tak stár než druhý – Johnu Fennovi je 85 let, K. Tanakovi jen 43.
Článek | Různé

Fyziologický ústav AV ČR: Místo, kde se přichází na kloub civilizačním chorobám

Nervová soustava, kardiovaskulární fyziologie a metabolismus – v třítaktním rytmu bije srdce Fyziologického ústavu AV ČR, který patří mezi přední vědecké instituce na poli biomedicínského výzkumu.
21. Škola hmotnostní spektrometrie: Orbitální pasti ve vývoji biofarmak
St, 16.9.2020
| Originální článek z: Pragolab/Lukáš Plaček
V přednášce na 21. Škole hmotnostní spektrometrie se zameříme na podporu a implementaci moderních chromatografických a hmotnostně spektrometrických postupů v charakterizaci a kvantifikaci biofarmak a nečistot.

Pragolab: Orbitální pasti ve vývoji biofarmak

Biofarmaka zaujímají vedle kompletně synteticky připravených látek významnou a stále expandující oblast na poli léčiv. Může se jednat o krev a krevní komponenty, buňky, tkáně, vakcíny či celé živé organismy, ale hlavně monoklonální protilátky (mAb, struktura proteinu) a fúzní proteiny, které na trhu podle serveru Pharmacompass.com dominují. Díky nim se poslední léta biofarmaka umísťují v žebříčcích nejprodávanějších (dle objemu peněz) léčiv na předních příčkách a v loňském roce se jich v prvních deseti umístilo úctyhodných šest (viz Obr. 1). Biologická léčba (tedy taková, kde jsou použita biofarmaka) našla nezastupitelnou roli ve zvyšování kvality života při onkologické a imunologické terapii nejen díky své efektivitě, ale hlavně díky minimalizaci vedlejších účinků.

Obr. 1: nejprodávanější léčiva/účinné látky roku 2019 dle serveru pharmacompass.com

Vakcíny nikdy nepatřily k hlavním tahounům farmaceutického průmyslu, což se však může brzy změnit díky současnému koronavirovému rozšíření (milovníci konspiračních teorií zvedají obočí). Nelze opomenout fakt, že významní potenciální producenti očkovacích agens proti SARS-CoV-2 viru nekonstruují vakcínu na bázi oslabených či mrtvých virů jak je běžně zvykem, ale na základě produkce (in vitro v bioreaktorech nebo in vivo v těle po vakcinaci) tzv. spike proteinů („satelitní struktury“ na povrchu viru, viz Obr. 2), které mají přítomnost koronaviru navodit a nastartovat kýženou imunitní reakci.

Obr. 2: skladba SARS-CoV-2 viru spolu s proteinovými strukturami (N Engl J Med 2020; 382:2261-2264)

V kontextu s výše uvedenými skutečnostmi stojí analytičtí chemici před úkolem, jak zvládnout charakterizaci a následnou kvantifikaci účinných látek a potenciálních nečistot. Specialisté přicházející z prostředí ortodoxních molekulárně biologických technik nastavili a formálně v direktivách ukotvili praktická a v jistých mezích i dostatečná kritéria s pomocí technik jako je ELISA a SDS-PAGE. Jiní specialisté (léta bičovaní regulemi jakosti syntetických molekul), kteří využívají moderní chromatografické postupy s vysoko rozlišující hmotnostní spektrometrií (HRMS) bývají často zaskočeni, udiveni a navrhují nekompromisní zásahy založené na masivním využití platformy HRMS. Vždyť i k biologickým léčivům lze přistupovat v komplexním analytickém pojetí (i nejprodávanější účinnou bio-látku adalimumab lze popsat sumárním vzorcem C6428H9912N1694O1987S46).

První logický krok s HRMS přístupem se nabízí provést chromatografickou separaci na reverzní fázi s následnou hmotnostně spektrometrickou analýzou. Zde platí pravidlo o nastavení co největšího rozlišení na hmotnostním spektrometru (běžně 150 000, nejlépe > 200 000 FWHM), čemuž vyhovují spektrometry s iontovou cyklotronou rezonancí nebo orbitální pastí. Díky cenové dostupnosti, bench-top uspořádání a nízkým provozním nákladům se orbitrapy (viz Obr. 3) stávají první volbou. Krásně vykreslená obálka různých nábojových stavů monoklonální protilátky ve stavu denaturovaném a nativním je znázorněna na Obr 4. Zajímavé zjištění přinese zoom jednoho nábojového klastru, resp. spektrum po dekonvoluci, kde lze elegantně pozorovat glykosylační adukty (lišící se počtem navázaných galaktózových jednotek, tj. s hmotnostním rozdílem 162), produkty posttranslační modifikace při bioprodukci. Detailní studium glykosylace může být provedeno iontově chromatografickou separací po kyselé hydrolýze (analýza monosacharidů)) nebo po glykosidázovém štěpení (analýza glykanů/oligosacharidů) nebo proteomickým bottom-up přístupem.

Obr. 3: hmotnostní spektrum adalimumabu, ESI+, rozlišení 200 000 FWHM, orbitální past

Obr. 4: princip detekce a zpracování signálu na orbitální iontové pasti

Další krok při charakterizaci biofarmak by měl směřovat k ortogonální separaci (proti reverzní fázi) na iontoměniči. Protože monoklonální protilátky a fúzní proteiny mají díky přítomnosti amino- a karboxylových skupin dostatečný náboj v širokém rozmezí pH, očekává se zajímavý profil, neboť na základě poznatků z glykosylačních studií podléhají biofarmaka rozsáhlým posttranslačním modifikacím.

Obr. 5: glykosylační adukty adalimumabu (lišící se počtem navázaných galaktózových jednotek, tj. s hmotnostním rozdílem 162), produkty posttransalční modifikace při bioprodukci

Výsledek je bez zardění překvapující. Díky vazbě až dvou molekul lysinu na C-konce protilátky a procesu vícenásobné deamidace aminokyselin asparaginu a glutaminu v řetězci proteinu dochází k tvorbě (a nikoliv na úrovni stopových množství) k řadě různě nabitých variant oddělitelných jak chromatograficky tak i hmotnostně spektrometricky, viz Obr. 6, 7 a 8.

Obr. 6: chromatografická separace finální monoklonální protilátky na iontoměniči odhalující přítomnost nábojových variant

Obr. 7: chromatografická separace adalimumabu na iontoměniči odhalující přítomnost nábojových variant (deamidace + lysinové modifikanty); HRMS spektrum dokladuje charakterizaci trojnásobného deamidačního produktu, navíc glykosylovaného, na nízké koncentrační úrovni

Obr. 8: profily jednotlivých finálních forem komerčně dostupných biofarmak z pohledu přítomnosti nábojových variant z procesu posttranslační modifikace

Studium dalších a dalších modifikací biofarmak se zdá být bezbřehé. S orbitálními pastmi lze odhalovat oxidace na methioninu a tryptofanu, tvorbu pyroglutamátů nebo např. rozpad disulfidické vazby; významná kapitola odhalování nečistot při bioprocesu je také detekce a následná eliminace proteinů z hostitelské buňky (host cell proteins). Podpora a implementace moderních chromatografických a hmotnostně spektrometrických postupů se stává klíčem k úspěšnému analytickému zvládnutí problematiky charakterizace a kvantifikace biofarmak a příbuzných nečistot.

Spektroskopická společnost Jana Marka Marci
 

Mohlo by Vás zajímat

VITATOX 2020: Nové plynové chromatografy Agilent 8890, 8860 Intuvo 9000

Prezentace
| 2020 | Ostatní
Instrumentace
GC
Výrobce
Agilent Technologies
Zaměření
---

VITATOX 2020: Specifika přípravy vzorku v analýze potravin a krmiv

Prezentace
| 2020 | Ostatní
Instrumentace
Příprava vzorků
Výrobce
---
Zaměření
Potraviny a zemědělství

VITATOX 2020: Novinky v chromatografickém spotřebním materiálu - ANALYTICKÉ KOLONY

Prezentace
| 2020 | Ostatní
Instrumentace
GC kolony, Spotřební materiál, LC kolony
Výrobce
Thermo Fischer Scientific
Zaměření
---
 

Podobné články

Článek | Akademie

Elektroforéza – úspěšná analytická metoda

Vznik elektroforézy jako analytické separační metody je datován do roku 1937, kdy Arne Tiselius publikoval práci o elektroforetické separaci proteinů v krevním séru.
Článek | Popularizace

Hmotnostní spektrometrie a velké molekuly

Ionizační metody analýzy biologických makromolekul. Málokdy se stává, aby cenu sdíleli dva vědci, z nichž jeden je bezmála dvakrát tak stár než druhý – Johnu Fennovi je 85 let, K. Tanakovi jen 43.
Článek | Různé

Fyziologický ústav AV ČR: Místo, kde se přichází na kloub civilizačním chorobám

Nervová soustava, kardiovaskulární fyziologie a metabolismus – v třítaktním rytmu bije srdce Fyziologického ústavu AV ČR, který patří mezi přední vědecké instituce na poli biomedicínského výzkumu.
21. Škola hmotnostní spektrometrie: Orbitální pasti ve vývoji biofarmak
St, 16.9.2020
| Originální článek z: Pragolab/Lukáš Plaček
V přednášce na 21. Škole hmotnostní spektrometrie se zameříme na podporu a implementaci moderních chromatografických a hmotnostně spektrometrických postupů v charakterizaci a kvantifikaci biofarmak a nečistot.

Pragolab: Orbitální pasti ve vývoji biofarmak

Biofarmaka zaujímají vedle kompletně synteticky připravených látek významnou a stále expandující oblast na poli léčiv. Může se jednat o krev a krevní komponenty, buňky, tkáně, vakcíny či celé živé organismy, ale hlavně monoklonální protilátky (mAb, struktura proteinu) a fúzní proteiny, které na trhu podle serveru Pharmacompass.com dominují. Díky nim se poslední léta biofarmaka umísťují v žebříčcích nejprodávanějších (dle objemu peněz) léčiv na předních příčkách a v loňském roce se jich v prvních deseti umístilo úctyhodných šest (viz Obr. 1). Biologická léčba (tedy taková, kde jsou použita biofarmaka) našla nezastupitelnou roli ve zvyšování kvality života při onkologické a imunologické terapii nejen díky své efektivitě, ale hlavně díky minimalizaci vedlejších účinků.

Obr. 1: nejprodávanější léčiva/účinné látky roku 2019 dle serveru pharmacompass.com

Vakcíny nikdy nepatřily k hlavním tahounům farmaceutického průmyslu, což se však může brzy změnit díky současnému koronavirovému rozšíření (milovníci konspiračních teorií zvedají obočí). Nelze opomenout fakt, že významní potenciální producenti očkovacích agens proti SARS-CoV-2 viru nekonstruují vakcínu na bázi oslabených či mrtvých virů jak je běžně zvykem, ale na základě produkce (in vitro v bioreaktorech nebo in vivo v těle po vakcinaci) tzv. spike proteinů („satelitní struktury“ na povrchu viru, viz Obr. 2), které mají přítomnost koronaviru navodit a nastartovat kýženou imunitní reakci.

Obr. 2: skladba SARS-CoV-2 viru spolu s proteinovými strukturami (N Engl J Med 2020; 382:2261-2264)

V kontextu s výše uvedenými skutečnostmi stojí analytičtí chemici před úkolem, jak zvládnout charakterizaci a následnou kvantifikaci účinných látek a potenciálních nečistot. Specialisté přicházející z prostředí ortodoxních molekulárně biologických technik nastavili a formálně v direktivách ukotvili praktická a v jistých mezích i dostatečná kritéria s pomocí technik jako je ELISA a SDS-PAGE. Jiní specialisté (léta bičovaní regulemi jakosti syntetických molekul), kteří využívají moderní chromatografické postupy s vysoko rozlišující hmotnostní spektrometrií (HRMS) bývají často zaskočeni, udiveni a navrhují nekompromisní zásahy založené na masivním využití platformy HRMS. Vždyť i k biologickým léčivům lze přistupovat v komplexním analytickém pojetí (i nejprodávanější účinnou bio-látku adalimumab lze popsat sumárním vzorcem C6428H9912N1694O1987S46).

První logický krok s HRMS přístupem se nabízí provést chromatografickou separaci na reverzní fázi s následnou hmotnostně spektrometrickou analýzou. Zde platí pravidlo o nastavení co největšího rozlišení na hmotnostním spektrometru (běžně 150 000, nejlépe > 200 000 FWHM), čemuž vyhovují spektrometry s iontovou cyklotronou rezonancí nebo orbitální pastí. Díky cenové dostupnosti, bench-top uspořádání a nízkým provozním nákladům se orbitrapy (viz Obr. 3) stávají první volbou. Krásně vykreslená obálka různých nábojových stavů monoklonální protilátky ve stavu denaturovaném a nativním je znázorněna na Obr 4. Zajímavé zjištění přinese zoom jednoho nábojového klastru, resp. spektrum po dekonvoluci, kde lze elegantně pozorovat glykosylační adukty (lišící se počtem navázaných galaktózových jednotek, tj. s hmotnostním rozdílem 162), produkty posttranslační modifikace při bioprodukci. Detailní studium glykosylace může být provedeno iontově chromatografickou separací po kyselé hydrolýze (analýza monosacharidů)) nebo po glykosidázovém štěpení (analýza glykanů/oligosacharidů) nebo proteomickým bottom-up přístupem.

Obr. 3: hmotnostní spektrum adalimumabu, ESI+, rozlišení 200 000 FWHM, orbitální past

Obr. 4: princip detekce a zpracování signálu na orbitální iontové pasti

Další krok při charakterizaci biofarmak by měl směřovat k ortogonální separaci (proti reverzní fázi) na iontoměniči. Protože monoklonální protilátky a fúzní proteiny mají díky přítomnosti amino- a karboxylových skupin dostatečný náboj v širokém rozmezí pH, očekává se zajímavý profil, neboť na základě poznatků z glykosylačních studií podléhají biofarmaka rozsáhlým posttranslačním modifikacím.

Obr. 5: glykosylační adukty adalimumabu (lišící se počtem navázaných galaktózových jednotek, tj. s hmotnostním rozdílem 162), produkty posttransalční modifikace při bioprodukci

Výsledek je bez zardění překvapující. Díky vazbě až dvou molekul lysinu na C-konce protilátky a procesu vícenásobné deamidace aminokyselin asparaginu a glutaminu v řetězci proteinu dochází k tvorbě (a nikoliv na úrovni stopových množství) k řadě různě nabitých variant oddělitelných jak chromatograficky tak i hmotnostně spektrometricky, viz Obr. 6, 7 a 8.

Obr. 6: chromatografická separace finální monoklonální protilátky na iontoměniči odhalující přítomnost nábojových variant

Obr. 7: chromatografická separace adalimumabu na iontoměniči odhalující přítomnost nábojových variant (deamidace + lysinové modifikanty); HRMS spektrum dokladuje charakterizaci trojnásobného deamidačního produktu, navíc glykosylovaného, na nízké koncentrační úrovni

Obr. 8: profily jednotlivých finálních forem komerčně dostupných biofarmak z pohledu přítomnosti nábojových variant z procesu posttranslační modifikace

Studium dalších a dalších modifikací biofarmak se zdá být bezbřehé. S orbitálními pastmi lze odhalovat oxidace na methioninu a tryptofanu, tvorbu pyroglutamátů nebo např. rozpad disulfidické vazby; významná kapitola odhalování nečistot při bioprocesu je také detekce a následná eliminace proteinů z hostitelské buňky (host cell proteins). Podpora a implementace moderních chromatografických a hmotnostně spektrometrických postupů se stává klíčem k úspěšnému analytickému zvládnutí problematiky charakterizace a kvantifikace biofarmak a příbuzných nečistot.

Spektroskopická společnost Jana Marka Marci
 

Mohlo by Vás zajímat

VITATOX 2020: Nové plynové chromatografy Agilent 8890, 8860 Intuvo 9000

Prezentace
| 2020 | Ostatní
Instrumentace
GC
Výrobce
Agilent Technologies
Zaměření
---

VITATOX 2020: Specifika přípravy vzorku v analýze potravin a krmiv

Prezentace
| 2020 | Ostatní
Instrumentace
Příprava vzorků
Výrobce
---
Zaměření
Potraviny a zemědělství

VITATOX 2020: Novinky v chromatografickém spotřebním materiálu - ANALYTICKÉ KOLONY

Prezentace
| 2020 | Ostatní
Instrumentace
GC kolony, Spotřební materiál, LC kolony
Výrobce
Thermo Fischer Scientific
Zaměření
---
 

Podobné články

Článek | Akademie

Elektroforéza – úspěšná analytická metoda

Vznik elektroforézy jako analytické separační metody je datován do roku 1937, kdy Arne Tiselius publikoval práci o elektroforetické separaci proteinů v krevním séru.
Článek | Popularizace

Hmotnostní spektrometrie a velké molekuly

Ionizační metody analýzy biologických makromolekul. Málokdy se stává, aby cenu sdíleli dva vědci, z nichž jeden je bezmála dvakrát tak stár než druhý – Johnu Fennovi je 85 let, K. Tanakovi jen 43.
Článek | Různé

Fyziologický ústav AV ČR: Místo, kde se přichází na kloub civilizačním chorobám

Nervová soustava, kardiovaskulární fyziologie a metabolismus – v třítaktním rytmu bije srdce Fyziologického ústavu AV ČR, který patří mezi přední vědecké instituce na poli biomedicínského výzkumu.
Další projekty
Sledujte nás
Další informace
WebinářeO násKontaktujte násPodmínky užití

LabRulez s.r.o. Všechna práva vyhrazena.