GCMS
Další informace
WebinářeO násKontaktujte násPodmínky užití
LabRulez s.r.o. Všechna práva vyhrazena. Obsah dostupný pod licencí CC BY-SA 4.0 Uveďte původ-Zachovejte licenci.

"What’s inside your car?” - Car interior emissions testing using Thermal desorption GC/MS analysis

Prezentace |  | Thermo Fisher ScientificInstrumentace
GC/MSD, Termální desorpce, GC/SQ
Zaměření
Životní prostředí, Materiálová analýza
Výrobce
Thermo Fisher Scientific, Markes

Souhrn

Significance of Topic


Understanding and controlling volatile organic compound (VOC) and semi-volatile organic compound (SVOC) emissions from automotive interiors is critical for passenger health, regulatory compliance and perceived vehicle quality. Thermal desorption coupled with gas chromatography–mass spectrometry (TD-GC/MS) enables sensitive, high-throughput profiling of interior material emissions, supporting both product development and quality assurance.

Objectives and Study Overview


This work demonstrates a complete TD-GC/MS workflow to identify, quantify and characterize VOC and fogging substances emitted by non-metallic automotive materials. Key aims include:
  • Compliance with major automotive industry standards (VDA, ISO 12219 series, JAMA, OEHHA-based limits).
  • Establishment of a rapid micro-chamber screening protocol for both surface and bulk emissions.
  • Evaluation of instrument performance for full-scan and selected-ion monitoring (SIM) acquisition modes.

Methodology and Instrumentation


Sample preparation and analysis follow defined micro-chamber and direct desorption procedures:
  • Micro-chamber testing (ISO 12219-3): samples equilibrated at 65 °C for 20 min, air flow rates of 50 ml/min for VOC and 250 ml/min for formaldehyde, sampling on sorbent tubes for 15 min.
  • Direct thermal desorption: 30 min at 90 °C for VOC value, 60 min at 120 °C for fogging value with two split ratios (high and low) and 2-stage graphitized carbon trap (–30 °C to 300 °C).
  • GC parameters: Trace GC, RTX-5 ms capillary column (30 m × 0.25 mm × 0.25 µm), oven ramp from 40 °C to 280 °C in multi-segment program, constant He flow of 1.5 ml/min.
  • MS detection: Thermo Fisher ISQ single quadrupole, electron ionization scan m/z 29–370 at ~200 ms/scan, optional SIM for high sensitivity on target ions.
  • Autosampler and sorbent tubes: Markes TD-100 with electrically cooled focusing trap, cryogen-free cooling, capacity for up to 100 tubes and optional canister sampling modules.
  • Calibration and QC: liquid standard mixtures of normal alkanes (C7–C16) and aromatic VOCs injected via standard loading rig; quantitative routines based on VDA 278 toluene and hexadecane equivalents.

Main Results and Discussion


Instrument performance and emission testing yielded the following highlights:
  • Efficient capture and desorption of compounds from C2 to n-C40, including reactive VOC such as H2S and N2O.
  • High scan speeds (up to 70 amu/s) with excellent repeatability and sensitivity, S/N ratios exceeding 5 × 10^4 in full-scan and SIM modes.
  • Correlation of micro-chamber results with longer-term bag and small chamber studies, validating rapid screening against established methods.
  • Leather sample emissions: total VOC value of 81.3 µg/g and fogging contributions assessed using hexadecane equivalents, identifying 17 major peaks between 9.35 and 19.84 min.

Benefits and Practical Use


The combined Markes TD-100 and Thermo Fisher ISQ GC/MS platform offers:
  • Versatility across low to high concentrations and a wide compound range without cryogens.
  • High throughput with automated leak test, purge-to-vent, backflush trap and split flow control.
  • Fully software-controlled workflows enabling repeat injections, precise tube tagging and robust automation.
  • Compliance with automotive regulatory and voluntary programs, including VDA 270–278, JAMA and ISO 12219 series.

Future Trends and Opportunities


Advances likely to shape interior emission analysis include:
  • Integration of ultra-fast GC columns and high-resolution MS for enhanced speciation.
  • Real-time cabin air monitoring using online TD modules and direct sampling interfaces.
  • Expanded data analytics and machine learning to predict long-term emission profiles from rapid screening data.
  • Harmonization of global regulatory limits and adoption of portable TD-GC/MS units for end-of-line quality control.

Conclusion


Thermal desorption GC/MS using a cryogen-free focusing trap and single-quadrupole MS provides a robust, flexible and compliant solution for automotive interior emission testing. The workflow described meets major industry standards, delivers high sensitivity across a broad volatility range and supports rapid screening and detailed compound identification in a single platform.

References


  • VDA 270–278 (German Automotive Industry Standards for Cabin Emissions and Odor).
  • ISO 12219-1 to 12219-4 (Methods for Determination of VOC Emissions from Road Vehicle Interiors).
  • JAMA Cabin Air Quality Guidelines (Ministry of Health, Labour and Welfare, Japan).
  • California OEHHA Reference Exposure Levels for Target VOCs.

Obsah byl automaticky vytvořen z originálního PDF dokumentu pomocí AI a může obsahovat nepřesnosti.

PDF verze ke stažení a čtení
 

Podobná PDF

Toggle
Determination of Volatile Compounds in Automotive Interior Materials by Thermal Desorption GC-MS
Jinshui Che1, Guifeng Deng1, Lina Liang1, Hans-Joachim Huebschmann2 Thermo Fisher Scientific, 1Beijing, 2Singapore A pplicat ion N ot e 1 0 3 6 3 Determination of Volatile Compounds in Automotive Interior Materials by Thermal Desorption GC-MS Keywords: automobile industry, VDA…
Klíčová slova
tvoc, tvocdesorption, desorptioncar, carinterior, interiorvolatile, volatilexylene, xylenesponge, spongematerials, materialscompounds, compoundsvoc, vocleather, leathervocs, vocsautomobile, automobiletubes, tubesvehicles
Analysis of VOCs in automotive trim components using TD-GC-MS
APPLICATION NOTE 73527 Analysis of VOCs in automotive trim components using TD-GC-MS Authors: Klaus Schrickel1 and Jane Cooper2 Thermo Fisher Scientific, Dreieich, Germany Thermo Fisher Scientific, Runcorn, UK 1 2 Keywords: Automotive industry, automotive interior materials, vehicle interior air quality,…
Klíčová slova
fog, fogsvoc, svochexadecane, hexadecanevoc, vocpolyurethane, polyurethaneinterior, interiorcounts, countstic, ticstandard, standardsample, sampledesorption, desorptionautomotive, automotivecsvoc, csvoccvoc, cvoctemperature
Direct Desorption of Car Trim Materials for VOC and SVOC Analysis in Accordance with VDA Method 278
Application Note 059 Direct Desorption of Car Trim Materials for VOC and SVOC Analysis in Accordance with VDA Method 278 Application Note Abstract In this application note, we demonstrate the suitability of Markes’ TD-100 automated thermal desorption system for performing…
Klíčová slova
hexadecane, hexadecanetrim, trimtoluene, tolueneabundance, abundancepentadecane, pentadecanevoc, voctetradecane, tetradecanedodecane, dodecanecar, careicosane, eicosanetriethylenediamine, triethylenediaminegraphitised, graphitisedtrimethylsilanol, trimethylsilanolautomotive, automotiveamount
Thermo Fisher Scientific/Markes International Solutions for Vehicle Interior Air Quality (VIAQ) Analysis
Get in the driver’s seat Thermo Fisher Scientific/Markes International Solutions for Vehicle Interior Air Quality (VIAQ) Analysis Confidently get in the driver’s seat with industry-leading VIAQ testing solutions Plastic, leather, carpets, foams, and adhesives used in vehicle interiors have the…
Klíčová slova
viaq, viaqsampling, samplingvapors, vaporstube, tubemarkes, markestrap, trapvehicle, vehicledesorbed, desorbedfocusing, focusinginterior, interiordesorber, desorberdesorption, desorptionnevervent, neverventemissions, emissionsscientific
Další projekty
LCMS
ICPMS
Sledujte nás
Další informace
WebinářeO násKontaktujte násPodmínky užití
LabRulez s.r.o. Všechna práva vyhrazena. Obsah dostupný pod licencí CC BY-SA 4.0 Uveďte původ-Zachovejte licenci.