"What’s inside your car?” - Car interior emissions testing using Thermal desorption GC/MS analysis
Souhrn
Significance of Topic
Understanding and controlling volatile organic compound (VOC) and semi-volatile organic compound (SVOC) emissions from automotive interiors is critical for passenger health, regulatory compliance and perceived vehicle quality. Thermal desorption coupled with gas chromatography–mass spectrometry (TD-GC/MS) enables sensitive, high-throughput profiling of interior material emissions, supporting both product development and quality assurance.
Objectives and Study Overview
This work demonstrates a complete TD-GC/MS workflow to identify, quantify and characterize VOC and fogging substances emitted by non-metallic automotive materials. Key aims include:
- Compliance with major automotive industry standards (VDA, ISO 12219 series, JAMA, OEHHA-based limits).
- Establishment of a rapid micro-chamber screening protocol for both surface and bulk emissions.
- Evaluation of instrument performance for full-scan and selected-ion monitoring (SIM) acquisition modes.
Methodology and Instrumentation
Sample preparation and analysis follow defined micro-chamber and direct desorption procedures:
- Micro-chamber testing (ISO 12219-3): samples equilibrated at 65 °C for 20 min, air flow rates of 50 ml/min for VOC and 250 ml/min for formaldehyde, sampling on sorbent tubes for 15 min.
- Direct thermal desorption: 30 min at 90 °C for VOC value, 60 min at 120 °C for fogging value with two split ratios (high and low) and 2-stage graphitized carbon trap (–30 °C to 300 °C).
- GC parameters: Trace GC, RTX-5 ms capillary column (30 m × 0.25 mm × 0.25 µm), oven ramp from 40 °C to 280 °C in multi-segment program, constant He flow of 1.5 ml/min.
- MS detection: Thermo Fisher ISQ single quadrupole, electron ionization scan m/z 29–370 at ~200 ms/scan, optional SIM for high sensitivity on target ions.
- Autosampler and sorbent tubes: Markes TD-100 with electrically cooled focusing trap, cryogen-free cooling, capacity for up to 100 tubes and optional canister sampling modules.
- Calibration and QC: liquid standard mixtures of normal alkanes (C7–C16) and aromatic VOCs injected via standard loading rig; quantitative routines based on VDA 278 toluene and hexadecane equivalents.
Main Results and Discussion
Instrument performance and emission testing yielded the following highlights:
- Efficient capture and desorption of compounds from C2 to n-C40, including reactive VOC such as H2S and N2O.
- High scan speeds (up to 70 amu/s) with excellent repeatability and sensitivity, S/N ratios exceeding 5 × 10^4 in full-scan and SIM modes.
- Correlation of micro-chamber results with longer-term bag and small chamber studies, validating rapid screening against established methods.
- Leather sample emissions: total VOC value of 81.3 µg/g and fogging contributions assessed using hexadecane equivalents, identifying 17 major peaks between 9.35 and 19.84 min.
Benefits and Practical Use
The combined Markes TD-100 and Thermo Fisher ISQ GC/MS platform offers:
- Versatility across low to high concentrations and a wide compound range without cryogens.
- High throughput with automated leak test, purge-to-vent, backflush trap and split flow control.
- Fully software-controlled workflows enabling repeat injections, precise tube tagging and robust automation.
- Compliance with automotive regulatory and voluntary programs, including VDA 270–278, JAMA and ISO 12219 series.
Future Trends and Opportunities
Advances likely to shape interior emission analysis include:
- Integration of ultra-fast GC columns and high-resolution MS for enhanced speciation.
- Real-time cabin air monitoring using online TD modules and direct sampling interfaces.
- Expanded data analytics and machine learning to predict long-term emission profiles from rapid screening data.
- Harmonization of global regulatory limits and adoption of portable TD-GC/MS units for end-of-line quality control.
Conclusion
Thermal desorption GC/MS using a cryogen-free focusing trap and single-quadrupole MS provides a robust, flexible and compliant solution for automotive interior emission testing. The workflow described meets major industry standards, delivers high sensitivity across a broad volatility range and supports rapid screening and detailed compound identification in a single platform.
References
- VDA 270–278 (German Automotive Industry Standards for Cabin Emissions and Odor).
- ISO 12219-1 to 12219-4 (Methods for Determination of VOC Emissions from Road Vehicle Interiors).
- JAMA Cabin Air Quality Guidelines (Ministry of Health, Labour and Welfare, Japan).
- California OEHHA Reference Exposure Levels for Target VOCs.
Obsah byl automaticky vytvořen z originálního PDF dokumentu pomocí AI a může obsahovat nepřesnosti.
"What’s inside your car?”
Car interior emissions testing using Thermal
desorption GC/MS analysis
Inge de Dobbeleer
EU GCMS specialist
ThermoFisher
Lara Kelly
Sales Manager
Markes
Thermal desorption
3
The Thermal Desorption Process
Electrically-cooled
focusing trap
100-200 µL injection
of vapour into GC(MS)
Water and volatile
interferences may be
purged to vent
On-line
Canisters
Sorbent
Tubes
Direct
desorption
of materials
Headspace …
4
What can be analysed by TD?
Yes
• VOC / SVOC
• C
2 to n-C40 (b.p. <500°C),
• GC analysis
• Matrix compatible with high
temperatures required
No
• Compounds which are not
compatible with standard gas
chromatography
• CH
4
• > n-C
40 (non-volatiles)
• Special GC analysis, e.g. on-column
injection
• Most inorganic (permanent) gases
(O
2, O3, CO2, SO2, NO2, etc.
Exceptions include H
2S, N2O & SF6)
5
Thermal desorption
(TD) instruments
TD sampling
accessories/consumables
6
Autosampler and Sample tubes
Sample
Tubes
(Glass)
Standard-
Tubes
(Tenax)
DiffLok™ -
Caps
7
Electrically-cooled focusing trap
Inert and high thermal conductivity
Maximum trapping efficiency: -30ºC & 4 sorbents
Simultaneous VOC & SVOC analysis
Maximum sensitivity
Reduces analytical interference
Gas flow during focusing
Gas flow during trap desorption
Narrow-bore inlet/outlet end
Collar for easy trap
withdrawal and
installation
Sorbents
Weak
Medium
Strong
8
Heated valve
To GC
Time
Int
ens
ity
Stage 1: Primary (tube) desorption with optional (inlet) split
9
Heated valve
To GC
Time
Int
en
s
ity
Stage 2: Secondary (trap) desorption with optional
(outlet) split
10
• All applications on one platform – C
2 to n-C40 AND reactive compounds
plus high and low concentrations - means versatility
• Cryogen-free cooling – reliability and low running costs
• Capacity and versatility – up to 100 tubes plus up to 8 cans or online
means high capacity and fast return on investment
• SecureTD-Q as standard for repeat analysis and validation
• ECC and optional electronic mass flow control of TD split/desorb flows
• Splitless operation with high res. capillary for optimum sensitivity
• Optional tube tagging for enhanced tube and sample tracability
• Uniquely effective tube seals for TD automation offering simple/robust
automation
• Standard method compliant: leak test, purge to vent, backflush trap..
Advantages of Markes TD
ISQ
12
The ISQ: single quad MS
Heated source: ion volume, repellor, lenses, RF prefilter
Solid, highly inert material ensures reliable performance in all
ionization modes, including EI and CI
Dual filament cartridge
Two filaments in same magnetic orientation
Filament lens assures that both filaments will remain protected, for
longer life even with redundancy
The S-Shaped Ion Guide
Reduces neutral noise created by excited helium neutrals striking
the detector, resulting in lower detection limits and better selectivity
Autotune:
Complete and standardized autotune algorithm for excellent day to
day variability
13
Maintenance without venting and without wires
Step 1. Insert removal tool
Step 2. Remove source
Step 3. Hot source is held in tool
Step 4. Push source out of tool
14
The ISQ: True Fast scanning
d:\training\fs2802
28/02/2010 11:33:35
new 1pgOFN, at scan rate 2500 amu/s, factory spec
RT: 3.502 - 3.753 SM: 5B
3.55
3.60
3.65
3.70
3.75
Time (min)
0
10000
20000
0
10000
20000
0
5000
10000
15000
20000
R
e
la
ti
ve
A
b
u
n
d
a
n
ce
0
5000
10000
15000
624 625
623
621
627
620
628
619
1201 1203
1200
1206
1198
1209
1196
1212
2262 2263
2260
2267
2257
2270
2255
2273
2251
4531
4530
4533
4541
4522
4546
4516
4554
4512
NL:
1.79E4
m/z=
271.500-
272.500 MS
fs2802
NL:
2.04E4
m/z=
271.500-
272.500 MS
fs2803
NL:
2.28E4
m/z=
271.500-
272.500 MS
fs2806a
NL:
2.40E4
m/z=
271.500-
272.500 MS
fsre2801
Theoretical (scan/sec)
Actual (scans/sec)
9.62
9.67
18.52
18.58
35.00
35.00
70.13
70.00
15
RT: 10.41 - 11.71 SM: 5G
10.6
10.8
11.0
11.2
11.4
11.6
Time (min)
0
20
40
60
80
100
R
e
la
ti
ve
A
b
u
n
d
a
n
ce
0
20
40
60
80
100
R
e
la
ti
ve
A
b
u
n
d
a
n
ce
0
20
40
60
80
100
R
e
la
ti
ve
A
b
u
n
d
a
n
ce
11.06
10.53
11.44
10.69
11.54
10.74
10.91
11.20
11.65
RT: 11.06
SN: 303RMS
RT: 11.06
SN: 26758RMS
RT: 11.55
SN: 546RMS
NL: 4.49E6
TIC F: + c Full ms [35.00-300.00]
MS 20091117a83
NL: 5.50E4
m/z= 48.50-49.50 F: + c Full ms
[35.00-300.00] MS ICIS
20091117a83
NL: 7.48E4
m/z= 48.50-49.50 F: + c SIM ms
[48.80-49.00, 56.85-57.05,
57.90-58.10, 61.85-62.05,
87.90-88.10] MS ICIS
20091117a83
FS and SIM simultaneous
RT: 10.41 - 11.71
SM: 5G
10.6
10.8
11.0
11.2
11.4
11.6
Time (min)
0
20
40
60
80
100
R
el
at
ive
A
bu
nd
an
ce
0
20
40
60
80
100
R
el
at
ive
A
bu
nd
an
ce
RT: 11.06
SN: 303RMS
RT: 11.06
SN: 26758RMS
RT: 11.55
SN: 546RMS
NL: 5.50E4
m/z= 48.50-49.50 F: + c Full
ms [35.00-300.00] MS ICIS
20091117a83
NL: 7.48E4
m/z= 48.50-49.50 F: + c SIM
ms [48.80-49.00, 56.85-57.05,
57.90-58.10, 61.85-62.05,
87.90-88.10] MS ICIS
20091117a83
Simultaneous FullScan and SIM: One
injection only with
• screening of unknowns
• quantitation of known compounds at
very low level
FullScan
Selected ion 49 in FS
S/N 303
SIM mode m/z49
S/N 26758
Datapoints
In SIM: approx 20
In FS: approx 20
Rules and regulations
17
• Voluntary program (at the moment) for Auto manufacturers as set up by
the German automotive industry (VDA)
• Cabin air quality must adhere to quality guidelines
• VDA 270 - Odour
• VDA 275 - Formaldehyde
• VDA 276 - VOC, s-VOC Test Chamber
• VDA 277 - VOC Headspace
• VDA 278 - VOC, s-VOC Direct desorption
• The list of target compounds and specified concentration limits defined
by TÜV (Technischer Überwachungs-Verein Nord)
German regulations
18
JAMA‟s Japanese Automotive Manufacturers Association:
New models of passenger cars to be sold from fiscal 2007 must
satisfy the indoor concentration guidelines established for
13 VOCs by the Ministry of Health, Labour and Welfare.
Each carmaker must continuously strive to reduce VOC
concentration in passenger compartments. Vehicles covered
by the guidelines are passenger cars manufactured and sold
domestically.
Japanese regulations
19
JAMA and TÜV
Guidelines
20
American regulations
• Manufacturer specific
• Joint ventures between some manufactures
• Limit of compounds taken from California‟s
OEHHA list
• Test chambers
21
Chronic Reference
Exposure Level
(REL)s
22
ISO 12219-1 Whole vehicle test chamber -Specification and
method for the determination method for the determination of
volatile organic compounds in car interiors
ISO 12219-2 Determination of the emissions of volatile organic
compounds from car trim components
–Bag method (Screening
method)
ISO 12219-3 Determination of the emissions of volatile organic
compounds from car trim components
–Micro-chamber method
ISO 12219-4 Determination of the emissions of volatile organic
compounds from car trim components
–Small chamber method
Harmonisation: Regulations and Methods
ISO 12219 Indoor Air of Road Vehicles
23
External - Certification
VOC emission profiles under „real-use‟ conditions are
best obtained using test chambers or cells with
sorbent tube sampling and TD-GC(-MS) analysis.
Internal QC - Prevention
Direct thermal desorption / thermal
extraction of materials - Measures VOC
content as an indication of emission
potential
Methods
24
ISO 12219-3 Determination of the emissions of
volatile organic compounds from car trim
components
– Micro-chamber method
• Surface-only or bulk emissions testing
• 4 or 6 samples/hour
• Sorbent tubes ((S)VOC) or DNPH cartridges
(H
2CO)
• Parameters:
• 65 °C
• equilibrate for 20 minutes.
• 50 ml/min (VOCs) or 250 ml/min (H
2CO)
• Collect vapour for 15 minutes (VOC) or for 2-4
hours (H
2CO)
* UK patent application 0501928.6
25
Using the microchamber for bulk/content testing
Sample tube
Sample
Air space
Bulk Emissions
• Ambient/elevated
temperature
• Dynamic Headspace
• Homogenous sample
Proprietary flow
control device
– no
pump required
Heated air
stream
26
Surface emissions
Sample
Air space
Heated lid: The collar projecting
from lid defines area for surface-
only emission testing and
minimises ingress of edge
emissions
Spacers to present
sample at correct height
Proprietary flow control
device
– no pump required
Heated air
stream
Micro-chamber
data has been
shown to
correlate with
results from
long term tests
Sample tube
27
Correlation Studies
Micro-chamber emission screening methods are now being
standardised
Small
chamber -
Days
Tedlar
bag-
Hours
Microcham
ber-
Minutes
The ‘new car’ smell
29
Trace ISQ and Markes TD-100
30
Analysis Goal
• The analysis procedure serves to indentify the emissions from
non-metallic materials that are used in Automobiles. For example:
• Textile
• Carpets
• Adhesives
• Sealants
• Foams
• Leather
• Plastics
• Transparancies
• Paint
• Combination Materials
31
Description of the method- VOC
• The samples are thermally extracted and the emissions analyzed using
GC/MS
• There are two half-quantitative summation values determined that
determine the emission levels for
• volatile organic compounds (VOC-Value) and
• The portion of condensable substances (Fogging-Value)
• The VOC value according to VDA 278 is the sum of high to medium
volatile substances and is reported as toluene equivalent results.
Substances with vapor point or retention times for substances up to
Eicosan (C20) are determined and reported.
• The sample is analyzed for 30 minutes at 90°C
32
Description of the method determination- Fogging
• The Fog value is the sum of the heavy
volatile substances that occur after the
elution time for n-Hexadecane. This will
be reported as the Hexadecane
equivalents.
• These are the substances in vapor
pressure range from n-
Alcanes „C16“ up
to „C32“ are reported
• These substances can condensate at
slightly warmer than room temperatures
and can be seen as “Fog Film” on the
inside portion of windshields
33
Sample Preparation TDS
34
Instrument parameters
• Trace GC
• Column: TR 5 ms, 30m x 0.25m x 0.25 µm
• Oven: 40°C – 2min – 3°C/min – 92°C – 0min- 5°C/min – 160°C – 0min- 10°C/min –
280°C
– 10min
• Carrier: 1.5 mL/min He, const. Flow
• ISQ MS
• EI-Scan: m/z 29 – 370 w. 200ms / Scan
• TDS 100
• Flow Path: 200°C
• Desorption:
• 30 min at 90°C (VOC)
• 60 min at 120°C (FOG)
• Split (high): Desorption: 4,2:1; Injektion: 27:1; Gesamt: 113:1
• Split (low): Desorption: 2,1:1; Injektion: 15,6:1; Gesamt: 32,8:1
• Trap: 2-stage graphitised carbon
• Trap low Temp: -30°C; Trap high Temp: 300°C for 3 minutes
35
Standard Loading Rig
C-SLR
Direct injection of
liquid standard
C-SLR injection of liquid
standard in a flow of inert
gas
From: Markes Technical Presentation
36
Standards used in this application
QC standard
Component
Amount
injected
Ret.time
C7
0.32 µg abs.
2.95
C8
0.31 µg abs.
5.29
C9
0.34 µg abs.
7.59
C10
0.31 µg abs.
9.20
C11
0.30 µg abs.
10.47
C12
0.34 µg abs.
11.57
C13
0.34 µg abs.
12.56
C14
0.35 µg abs.
13.47
C16
0.36 µg abs.
15.14
Benzene
0.34 µg abs.
2.49
Toluene
0.35 µg abs.
4.30
o-Xylene
0.33 µg abs.
6.97
p-Xylene
0.35 µg abs.
7.43
2-Ethylhexanole
0.35 µg abs.
9.59
Diethyladipate
0.37 µg abs.
20.38
Calibration standard
Component
Conc.
Ret.time
Toluol
0.5 µg/µL
4.30
C16
0.5 µg/µL
15.14
2µL Std in MeOH are used
37
QC standard
RT: 1.50 - 21.10
8
9
10
11
12
13
14
15
16
17
18
19
20
21
Time (min)
0
20
40
60
80
100
0
20
40
60
80
100
0
20
40
60
80
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
0
20
40
60
80
100
0
20
40
60
80
100
RT: 15.14
RT: 13.47
RT: 12.56
RT: 11.57
RT: 10.47
RT: 6.97
RT: 9.20
RT: 7.59
RT: 4.30
RT: 2.49
RT: 5.29
RT: 2.95
RT: 13.47
RT: 12.56
RT: 15.14
RT: 11.57
RT: 10.47
RT: 9.20
RT: 7.59
RT: 20.38
RT: 5.29
RT: 2.95
RT: 2.49
RT: 7.43
RT: 7.43
RT: 6.97
RT: 4.30
RT: 20.38
NL:
2.93E8
m/z=
45.00-370.01
MS Genesis
15KompMix_30
0ng_01
NL:
6.55E7
m/z=
56.50-57.50
MS Genesis
15KompMix_30
0ng_01
NL:
3.76E7
m/z=
77.50-78.50
MS Genesis
15KompMix_30
0ng_01
NL:
6.13E7
m/z=
90.50-91.50
MS Genesis
15KompMix_30
0ng_01
NL:
4.25E7
m/z=
128.50-129.50
MS Genesis
15KompMix_30
0ng_01
TIC
m/z=57
m/z=78
m/z=91
m/z=129
Diethylhexyladipat
p-Xylol
o-Xylol
Toluol
Benzol
C7
C10
C9
C8
C13 C14
C16
C11
C12
2-Ethylhexanol
38
Calibration standard: Toluene + C16: 1µg each
c:\xcalibur\...\tds files\std_mix_vda_01
10/28/2010 9:38:24 AM
Toluol+C16 je 1ug, Tube 142662
RT: 0.12 - 19.65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Time (min)
0
10
20
30
40
50
60
70
80
90
100
0
10
20
30
40
50
60
70
80
90
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
0
10
20
30
40
50
60
70
80
90
100
RT: 15.13
RT: 4.29
RT: 15.13
RT: 4.29
NL:
7.16E8
m/z=
45.00-
370.01
MS
Genesis
std_mix_vd
a_01
NL:
1.63E8
m/z=
56.50-
57.50 MS
Genesis
std_mix_vd
a_01
NL:
1.17E8
m/z=
90.50-
91.50 MS
Genesis
std_mix_vd
a_01
Toluene
C16
39
VOC analysis in a Leather sample
c:\xcalibur\...\p14886_voc_vda_01
10/27/2010 7:47:32 PM
High Split, 8.7mg, Tube 159483
RT: 0.12 - 19.65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Time (min)
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
RT: 15.17
RT: 14.50
RT: 15.95
RT: 16.46
RT: 19.22
RT: 17.22
NL:
7.04E8
m/z=
45.00-
370.01 MS
Genesis
p14886_voc
_vda_01
Sample weight: 8.7mg
40
Quantitative calculation according to VDA278 using Excel
PEAK LIST
Calibration std 2µL
RT: 0.00 - 27.37
Number of detected peaks: 2
Apex RT
Area Smpl wt.
RF
Toluene
4.33
529551054
1.0 µg
0.00189
C16
15.16
493687204
1.0 µg
0.00203
PEAK LIST
Leather 1, 7.5mg
RT: 9.35 - 17.57
Number of detected peaks:
17
Apex RT
Area Smpl wt.
Emission
0.31
3269790
7.5 µg
0.82 µg/g
1.4
6378870
7.5 µg
1.61 µg/g
1.42
5510904
7.5 µg
1.39 µg/g
9.57
3244823
7.5 µg
0.82 µg/g
12.8
2169023
7.5 µg
0.55 µg/g
14.32
3263013
7.5 µg
0.82 µg/g
14.54
50653977
7.5 µg
12.75 µg/g
14.86
3448186
7.5 µg
0.87 µg/g
15.2
197164983
7.5 µg
49.64 µg/g
15.27
5493497
7.5 µg
1.38 µg/g
15.68
4914860
7.5 µg
1.24 µg/g
15.74
2379247
7.5 µg
0.60 µg/g
15.98
6359969
7.5 µg
1.60 µg/g
16.49
3742545
7.5 µg
0.94 µg/g
16.84
4345190
7.5 µg
1.09 µg/g
19.26
18002683
7.5 µg
4.53 µg/g
19.84
2494424
7.5 µg
0.63 µg/g
Sum
81.3 µg/g
41
Leather sample according to VDA 278, Weight: 8.7mg
c:\xcalibur\...\p14886_voc_vda_01
10/27/2010 7:47:32 PM
High Split, 8.7mg, Tube 159483
RT: 0.12 - 19.65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Time (min)
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
R
el
at
iv
e
A
bu
nd
an
ce
RT: 15.17
RT: 14.50
RT: 15.95
RT: 16.46
RT: 19.22
RT: 17.22
NL:
7.04E8
m/z=
45.00-
370.01 MS
Genesis
p14886_voc
_vda_01
VOC- Run
42
Leather 1: Identification of main components
c:\xcalibur\...\p14886_voc_vda_02
10/29/2010 9:29:22 AM
High Split, 9.6 mg, Tube 159485
RT: 29.04 - 35.97
29.5
30.0
30.5
31.0
31.5
32.0
32.5
33.0
33.5
34.0
34.5
35.0
35.5
Time (min)
0
10
20
30
40
50
60
70
80
90
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
RT: 33.25
AA: 3376723764
SN: 338
RT: 31.19
AA: 805570076
SN: 57
NL:
1.31E9
TIC MS
Genesis
p14886_voc
_vda_02
p14886_voc_vda_02 #9759-9768 RT: 33.22-33.25 AV: 10 NL: 3.73E8
T: {0,0} + c EI Full ms [29.00-370.00]
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
m/z
0
10
20
30
40
50
60
70
80
90
100
R
e
la
ti
v
e
A
b
u
n
d
a
n
c
e
71
43
70
159
111
69
56
173
243
41
155
72
55
83
143
32
98
89
57
127
110
160
244
112
174
215
81
198
53
185
229
153
242
271
253
287
207
327
346
332
355
315
311
295
359 368
43
Leather sample according to VDA 278, Weight:
8.7mg
RT: 0.00 - 54.95
0
5
10
15
20
25
30
35
40
45
50
Time (min)
0
10
20
30
40
50
60
70
80
90
100
0
10
20
30
40
50
60
70
80
90
100
R
el
at
ive
A
bu
nd
an
ce
RT: 38.78
RT: 33.25
RT: 40.59
RT: 41.07
RT: 36.07
RT: 36.18
RT: 1.45
RT: 31.20
RT: 41.42
RT: 24.89
RT: 14.02
RT: 2.95
RT: 37.59
RT: 44.08
RT: 38.71
RT: 40.58
RT: 31.21
RT: 36.18
NL:
9.08E8
m/z=
45.0-370.0
MS
Genesis
P14886_FO
G_VDA_04
NL:
1.32E7
m/z=
148.5-
149.5 MS
Genesis
P14886_FO
G_VDA_04
Fog- Run
m/z=149
44
c:\xcalibur\...\p15191_voc_vda_02
10/29/2010 12:02:01 PM
High Split, 10.3 mg, Tube 159489
RT: 0.00 - 43.65
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
Time (min)
0
20
40
60
80
100
0
20
40
60
80
100
R
el
at
iv
e
A
bu
nd
an
ce
RT: 42.81
AA: 1281251569
SN: 102
RT: 33.28
AA: 1372424399
SN: 1307
RT: 28.22
AA: 1234515244
SN: 1297
RT: 4.27
AA: 1031758037
SN: 505
RT: 25.25
AA: 1131409241
SN: 1538
RT: 7.22
AA: 1010852408
SN: 454
RT: 12.69
AA: 818062226
SN: 732
RT: 17.34
AA: 874848281
SN: 1053
RT: 18.99
AA: 555475684
SN: 88
RT: 14.04
AA: 108170669
SN: 106
RT: 39.67
AA: 16373824
SN: 5
RT: 33.40
AA: 136260935
SN: 3
RT: 5.27
AA: 19099600
SN: 14
38.23
0.15
31.88
35.11
1.46
31.40
28.23
36.67
15.60
21.77
17.53
28.00
5.76
25.26
24.12
10.66
12.91
8.08
NL: 7.51E8
TIC - m/z=
31.50-32.50+
39.50-40.50+
43.50-44.50 MS
Genesis
15KompMix_300ng_
02
NL: 3.73E7
TIC - m/z=
31.50-32.50+
39.50-40.50+
43.50-44.50 MS
Genesis
p15191_voc_vda_02
p15191_voc_vda_02 #5476-5542
RT: 18.65-18.88
AV: 67
SB: 131 19.62-20.06
NL: 3.60E6
T: {0,0} + c EI Full ms [29.00-370.00]
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
m/z
0
10
20
30
40
50
60
70
80
90
100
R
el
at
iv
e
A
bu
nd
an
ce
88
73
87
57
41
55
101
116
115
43
39
69
45
74
89
83
59
102
117
51
38
129
90
144
253
342
165
151
188
207
193
332
175
325
346
267
315
237
277
223
297
284
307
364
PVC sample
45
Artificial leather VOC
46
Artificial leather FOG
47
Conclusions
• Thermal desorption by Markes:
• Reliable; every tube is leak tested
• Controlable; repeat injections through recollection
• Completely controlled by software
• Enormously versatile
• GCMS by ThermoFisher :
• High robustness
• High productivity
• High reliability
• A powerful combination providing complete
thermal desorption GCMS solutions for your lab
• info: go to www.markes.com and get access to all the applications
• And www.thermo.com for more info on the ISQ and the applications