GCMS
Další informace
WebinářeO násKontaktujte násPodmínky užití
LabRulez s.r.o. Všechna práva vyhrazena. Obsah dostupný pod licencí CC BY-SA 4.0 Uveďte původ-Zachovejte licenci.
Pořadatel
SelectScience
SelectScience
SelectScience® je inovativní online vydavatel v oboru vědy, který propojuje vědce s informacemi a pomáhá jim při výběru nejlepší laboratoře prostřednictvím kombinace bohatého obsahu, informací typu peer-to-peer a důvěryhodných recenzí produktů
Tagy
FTIR Spektroskopie
MALDI
LC/MS
LC/TOF
LinkedIn Logo

Validated differentiation of Listeria monocytogenes by FT-IR spectroscopy using an artificial neural network based classifier

ZÁZNAM | Proběhlo Čt, 16.5.2024
Ověřený pracovní postup pro rozlišení séroskupin Listeria monocytogenes pomocí FT-IR spektroskopie.
Přejít na webinář
Bruker - Validated differentiation of Listeria monocytogenes by FT-IR spectroscopy using an artificial neural network based classifier
Bruker - Validated differentiation of Listeria monocytogenes by FT-IR spectroscopy using an artificial neural network based classifier

Listeria monocytogenes, a foodborne pathogen, poses a particular risk to vulnerable populations such as infants, the elderly, immunocompromised individuals, and pregnant women. Timely and accurate identification helps to prevent outbreaks of listeriosis and is essential for ensuring food safety and protection of public health.

In this webinar, Dr. Helene Oberreuter, food microbiologist and senior government councilor, will highlight a validated workflow for the differentiation of Listeria monocytogenes serogroups by FT-IR spectroscopy. The workflow consists of species identification by MALDI-TOF mass spectrometry (MALDI Biotyper®) followed by serogroup differentiation with the IR Biotyper® using a classifier which is based on an artificial neural network.

Key learning objectives

  • Explore the use of FT-IR spectroscopy in food pathogen detection

  • Discover a validated workflow for serogroup differentiation

  • Learn how to apply an artificial neural network to pathogen classification

  • Gain insights into the preselection of samples by FT-IR for whole genome sequencing

Presenter: Dr. Helene Oberreuter (Food Microbiologist and Senior Government Councilor, CVUA Stuttgart, Germany)

Presenter: Lawrence Howes (SelectScience)

Who should attend?

Those working in food microbiology laboratories, reference laboratories and centers for food pathogens, state and public health laboratories, and centers for disease control and prevention

Certificate of attendance

All webinar participants can request a certificate of attendance, including a learning outcomes summary, for continuing education purposes.

SelectScience
LinkedIn Logo
 

Mohlo by Vás zajímat

PFAS in Bottled Water: A Simple Approach Using HS-SPME GC/MS/MS for Volatile Contaminant Analysis

Postery
| 2025 | Shimadzu (ASMS)
Instrumentace
HeadSpace, SPME, GC/MSD, GC/MS/MS, GC/QQQ
Výrobce
Shimadzu
Zaměření
Životní prostředí

Advancing PFAS Detection in Drinking Water: GC-MS as a Complementary Technique to LC-MS for Closing PFAS Mass Balance

Postery
| 2025 | Shimadzu (ASMS)
Instrumentace
SPME, GC/MSD, GC/MS/MS, GC/QQQ
Výrobce
Shimadzu
Zaměření
Životní prostředí

Performance evaluation of GC-MS/MS for Dioxin analysis with amendments to EU Regulations 644/2017 and 771/2017 for food and feed

Postery
| 2025 | Thermo Fisher Scientific (ASMS)
Instrumentace
GC/MSD, GC/MS/MS, GC/QQQ
Výrobce
Thermo Fisher Scientific
Zaměření
Potraviny a zemědělství

Through-container analysis with Raman spectroscopy

Aplikace
| 2025 | Metrohm
Instrumentace
RAMAN Spektrometrie
Výrobce
Metrohm
Zaměření
Materiálová analýza

Comparative Analysis of Air Sampling Strategies for VOC Monitoring using TD- GCMS Along with Chemometrics Study to Enhance Understanding of Complex Samples

Postery
| 2025 | Agilent Technologies (ASMS)
Instrumentace
GC/MSD, GC/SQ, Termální desorpce
Výrobce
Agilent Technologies, Markes
Zaměření
Životní prostředí
Další projekty
LCMS
ICPMS
Sledujte nás
Další informace
WebinářeO násKontaktujte násPodmínky užití
LabRulez s.r.o. Všechna práva vyhrazena. Obsah dostupný pod licencí CC BY-SA 4.0 Uveďte původ-Zachovejte licenci.