GCMS
Další informace
WebinářeO násKontaktujte násPodmínky užití
LabRulez s.r.o. Všechna práva vyhrazena. Obsah dostupný pod licencí CC BY-SA 4.0 Uveďte původ-Zachovejte licenci.

Discovery of Environmental Pollutants at an Electronic Waste Recycling Facility by Pegasus GC-HRT 4D

Aplikace | 2017 | LECOInstrumentace
GCxGC, GC/MSD, GC/HRMS, GC/TOF
Zaměření
Životní prostředí
Výrobce
Agilent Technologies, GERSTEL, LECO

Souhrn

Significance of the Topic


Rapid growth of electronic waste has elevated environmental risks as modern electronics contain persistent organic pollutants and generate toxic byproducts when dismantled improperly. Comprehensive identification of known and emerging contaminants at recycling facilities is essential to protect worker health, mitigate environmental release, and guide regulatory measures.

Objectives and Study Overview


This study employed comprehensive two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HRT) to conduct non-target screening of organic contaminants in samples from the interior of an e-waste recycling facility. Key goals included discovery of novel or overlooked halogenated compounds and detailed profiling of legacy and emerging pollutants.

Methodology and Instrumentation


Chemical extracts were prepared from two matrices: fine dust settled on workshop floors and plastic residues left after metal recovery from shredded electronics. After initial fractionation for flame retardant analysis, extracts were injected via a cold splitless inlet. The separation employed a non-polar primary column followed by a polar secondary column and a dual-stage cryogenic thermal modulator for enhanced peak capacity. Continuous infusion of perfluorotributylamine enabled sub-ppm mass accuracy by real-time drift correction.

Instrumentation Used


  • Gas chromatograph: Agilent 7890B with dual-stage quad jet modulator and Gerstel MPS2 autosampler
  • Columns: Rtx-Dioxin2 (60 m × 0.25 mm × 0.25 µm) and Rxi-17SilMS (0.6 m × 0.25 mm × 0.25 µm)
  • Detector: LECO Pegasus GC-HRT 4D high-resolution TOFMS (R = 25 000)
  • Ionization: Electron impact; mass range m/z 15–1000; acquisition rate 5 spectra/s (1D), 100 spectra/s (2D)
  • Data processing: ChromaTOF-HRT software with library searches against NIST 14 and Wiley 10

Key Results and Discussion


GC×GC-HRT resolved thousands of chromatographic peaks per sample. Mass deconvolution combined with accurate-mass measurements (<1 ppm) allowed tentative identification of numerous halogenated classes, including polychlorinated biphenyls, naphthalenes, brominated diphenyl ethers, hexabromobenzene, Dechlorane Plus, and mixed bromo-chloro diphenyl ethers. Complex unresolved regions revealed a suite of petroleum biomarkers such as hopanes, steranes and secohopanoids, hinting at hydrocarbon sources in shredder waste. Unknown congeners were proposed based on isotope patterns, sub-ppm mass accuracy and structural interpretation of deconvoluted spectra.

Benefits and Practical Applications


  • Unparalleled separation power reduces coelution and enables detection of low-abundance contaminants in complex matrices
  • Accurate-mass deconvolution supports confident non-target screening without authentic standards
  • Comprehensive profiling informs risk assessment at recycling sites and guides emission control strategies
  • Methodology adaptable for routine monitoring in environmental laboratories and regulatory agencies

Future Trends and Applications


Integration of GC×GC-HRT data with chemometric and machine learning tools will accelerate discovery of novel pollutants. Expansion of high-resolution libraries and application to air, water and biota sampling promises broader environmental surveillance. Miniaturization of modulation systems and coupling with ambient ionization techniques may enable field‐deployable non-target analysis.

Conclusion


GC×GC-HRT demonstrates exceptional capability for uncovering known and emerging organic contaminants at e-waste recycling facilities. Its high peak capacity and mass accuracy deliver comprehensive chemical characterization, supporting environmental monitoring, worker safety evaluations and the development of mitigation measures.

Reference


  1. Baldé C.P. et al. The global e-waste monitor – 2014, United Nations University, IAS – SCYCLE, 2015
  2. Ma J. et al. Environ Sci Technol. 2008;42:8252–8259
  3. Wen S. et al. Environ Sci Technol. 2008;42:4202–4207
  4. Robinson B.H. Sci Total Environ. 2009;408:183–191
  5. Oliveira C.R. et al. Org Geochem. 2012;53:131–136

Obsah byl automaticky vytvořen z originálního PDF dokumentu pomocí AI a může obsahovat nepřesnosti.

PDF verze ke stažení a čtení
 

Podobná PDF

Toggle
Non-Target Analysis of Electronic Waste Samples from China
Non-Target Analysis of Electronic Waste Samples from China Jonathan D. Byer,1 Ed Sverko,2 Kurunthachalam Kannan,3 Qian Wu,3 Joe Binkley1 1LECO Corporation, Saint Joseph, MI, USA; 2 National Laboratory for Environmental Testing, Environment Canada, Burlington, ON, Canada; 3 Wadsworth Center, New…
Klíčová slova
waste, wasteelectronic, electronicdust, dustpolychlorinated, polychlorinatedesw, eswshredder, shredderbromo, bromochloro, chlorodibenzo, dibenzobiphenyls, biphenylsdioxins, dioxinsdiphenyl, diphenyltetrabde, tetrabdecomprehensive, comprehensivecountries
Accelerated Solvent Extraction Environmental Applications Summary
Accelerated Solvent Extraction Environmental Applications Summary
2012|Thermo Fisher Scientific|AplikacePříručky
Accelerated Solvent Extraction Environmental Applications Summary Pesticides • Chlorinated Compounds • Persistent Organic Pollutants (POPs) Watch the video to learn more about the Thermo Scientific™ ASE™ Accelerated Solvent Extraction System. Additional product information available at www.thermoscientific.com/samplepreparation Contents Introduction The Accelerated…
Klíčová slova
extraction, extractionaccelerated, acceleratedsolvent, solventase, asepolychlorinated, polychlorinatedsoxhlet, soxhletpolybrominated, polybrominatedbiphenyls, biphenylspbdes, pbdessolvents, solventsequivalent, equivalentdiphenyl, diphenylextractor, extractorchlorinated, chlorinatedpesticide
Enhanced Quantitative Analysis of Polychlorinated Paraffins by Comprehensive GCxGC-HRTOFMS with Negative Chemical Ionization
Application Note ® + Instrument: Pegasus HRT 4D EMPOWERING RESULTS Enhanced Quantitative Analysis of Polychlorinated Paraffins by Comprehensive GCxGC-HRTOFMS with Negative Chemical Ionization LECO Corporation; Saint Joseph, Michigan USA Key Words: Quantitative Analysis, Persistent Organic Pollutants, Chlorinated Paraffins, Comprehensive Two-Dimensional…
Klíčová slova
hrtofms, hrtofmscontour, contourionization, ionizationmass, massgcxgc, gcxgcpcps, pcpsmccps, mccpsplot, plotecni, ecnisccps, sccpsrepository, repositoryhousehold, householdmode, modeparaffins, paraffinspcp
Comprehensive Analysis of Short-Chained Chlorinated Paraffinsand other POPs in Environmental Samples by GCxGC-HR-TOFMS with a Novel Ion Source
Comprehensive Analysis of Short-Chained Chlorinated Paraffins and other POPs in Environmental Samples by GCxGC-HR-TOFMS with a Novel Ion Source Scott Pugh, Georgy Tikhonov, Viatcheslav Artaev | LECO Corporation, St. Joseph, MI USA E-Waste Dust Sample SCCPs Overview Methods A prototype…
Klíčová slova
sccps, sccpsecni, ecnidust, dustchlorinated, chlorinatedsource, sourcesccp, sccpnovel, novelgcxgc, gcxgctofms, tofmschlorination, chlorinationparaffin, paraffinion, ionparaffins, paraffinsfilament, filamentshort
Další projekty
LCMS
ICPMS
Sledujte nás
Další informace
WebinářeO násKontaktujte násPodmínky užití
LabRulez s.r.o. Všechna práva vyhrazena. Obsah dostupný pod licencí CC BY-SA 4.0 Uveďte původ-Zachovejte licenci.